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Abstract

We investigate the nonlinear drift response of electrons in Si, GaAs and InP crystals to high-
power electromagnetic waves by means of a Monte Carlo technique, with the aim of developing
an efficient frequency converter for 1 THz output radiation. Drift velocity amplitudes and
phases determining the conversion efficiency are calculated for the 1%, 3- and 5% harmonics in
the pumping wave amplitude range of 10 < E, < 100 kV/cm, for frequencies between 30 and
500 GHz, and at the lattice temperatures of 80, 300 and 400 K. It is found that the efficiency is
a maximum at the pumping wave amplitude of the order of 10 kV/cm depending on the
intervalley electron scattering parameters and the lattice temperature. Cooling the nonlinear
crystal down to the liquid nitrogen temperature enhances the efficiency several times in Si and
by orders of magnitude in GaAs and InP. This is promising for obtaining a 10 percent

conversion efficiency.



1. Introduction

Powerful cw or quasi-cw power sources in the 1 THz frequency domain are required for
plasma diagnostic purposes, in particular for collective Thomson scattering of a «-particles’ or
some other applications such as high frequency radar. Apart from the free electron lasers no
such sources are currently available. Existing gyrotrons are able to deliver powers in the MW
range, but not at these high frequencies, which either requires very high magnetic fields or
operation at higher harmonics with correspondingly reduced efficiency. However, existing
gyrotrons around 200 to 300 GHz, followed by a passive frequency multiplier, which converts
the radiation into the third or fifth harmonic, might be a suitable solution. Such a scheme would
only be of interest if the efficiency of the converter reached at least 10% and were able to handle

the power absorbed at the fundamental frequency.

Previous theoretical and experimental investigations®® have shown that different semiconductor
materials exhibit significant gain at higher harmonics in the frequency range of interest.
However, the highest efficiency achieved so far was only 0.1% in the normal incidence
experiments on n-type silicon plates®®. The limitations were given by a surface breakdown
effect which precluded pumping of the material with higher powers, and by saturation effects
observed below the breakdown threshold. Considerably higher nonlinear susceptibilities need

to be revealed if the problem is to be solved by judicious choice of material alone.

The present paper remaining in the framework of the drift nonlinearity aims to explore the

efficiency of technologically important materials on the basis of Monte Carlo simulations.

The paper presents the details of the problem formulation (Sec. 2), the results of Monte Carlo

simulations (Sec. 3), and the discussion of possible experimental realizations (Sec. 4).



2. Problem formulation

The primary idea’ of efficient harmonic generation is based on the cubic relation between the
forward-emitted 3™ harmonic intensity I, and the pumping wave intensity I, incident on a slab

of thickness d
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where c is the speed of light, y, is the third-order nonlinear susceptibility understood as the
coefficient in the expansion of the polarization P = y,E + (x;E’)E + ... in the power series of
electric field E, T, is the factor of the electric field amplitude change when crossing the front

and back boundaries of the slab’,
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and C(d) is the thickness-dependent phase matching factor’
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where ¢, is the dielectric permeability at the N* harmonic frequency, and k, is the N**

harmonic wave vector.

If the 3" order susceptibility as well as T, and C(d) are independent of the wave amplitude,
then Eq.(1) implies that a sufficiently high pump intensity is all that is required to obtain high

intensity and efficiency of 3" harmonic generation. In contrast to this, experiments on n-type Si



crystals have shown that the 3 harmonic intensity deviates from the cubic increase and finally
saturates with rising pump wave intensity. The cause of saturation is found in the change of

electron scattering and their effective mass in the high-amplitude pumping wave electric field.

The problem is to find semiconductor materials and/or operating temperatures which result in
higher third harmonic generation (THG) efficiency. Let us consider electrons in the conduction
band as the only source of non-linearity. Assuming constant electron density, we focus our
attention on the drift non-linearity. Monte Carlo modeling provides the time dependence of the
drift velocity V(z) of electrons in the pumping wave field varying in time as E,cos,t. Fourier-
transformation applied to V(z) then gives the drift velocity components V,cos(wyt + yy) where
wy is the drift velocity phase. Following the relation dP/dt = neV, where ¢ is the elementary

charge, one gets the equivalence®
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where ¢, is the free-space dielectric constant, and the ratio of V; and E, is complex due to the

phase shift. The 3" harmonic intensity is now
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where K, is the material- and field-independent constant, ¢, is the complex permeability at the

pumping wave frequency,
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where g, is the lattice dielectric permeability, and the ratio of V, and E, is complex due to the

phase shift. The complex permeability at the 3 harmonic frequency is approximated as
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where Re(V,/E,) is the real part of the complex ratio, and m™ is the electron effective mass.

The function C(d) in low-loss materials exhibits Maker’s oscillations’® when the sample
thickness is subject to monotonous change. In highly absorbing materials the function shows a
single maximum at a certain sample thickness mainly determined by the loss: therefore the
maximum does not present any guide for the harmonic output optimization in this case. Instead
of seeking for a thickness-controlled maximum, we focus here on thin samples so as to reduce
the Joule loss, and to reveal electronic factors controlling the output power and efficiency. With
the assumptions that the free-electron contribution in Eqs (6) and (7) is small compared to the

lattice one, and the slab thickness d is small enough to satisfy the condition
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where i, is the free-space magnetic constant, the 3* harmonic intensity can be expressed as
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where K, is the modified physical constant independent of the material and field parameters.

The last expression states that the efficiency n, = I, /I, is proportional to the square of the 3

harmonic surface current density at a given pumping wave amplitude. If the surface carrier

density nd is constant, the 3™ harmonic output power is governed by the 3™ harmonic drift



velocity amplitude at the pumping wave field amplitude E,. The same is true for the 5%

harmonic conversion efficiency.

We determine the 3™ and 5" harmonic drift velocity dependencies on E, using Monte Carlo
techniques. The algorithm of MC simulations in an alternating electric field follows the standard
procedure'’. It involves the intra- and intervalley scattering of electrons, and the band
nonparabolicity. We do not re-write here the basic equations for the scattering rates which are
presented elsewhere'?. The upper limit for the pumping field amplitude is taken to be 100
kV/cm. At higher fields a time-consuming full-band modeling would be required™ to account
for electron access to higher energy bands in the momentum space. However, the harmonic
intensity saturation and the efficiency decrease with the rise of the pumping wave field
amplitude starts at much lower amplitudes, making the upper limit of E, < 100 kV/cm
reasonable. At low pump field amplitudes (E, < 10 kV/cm) the Monte Carlo procedure is

exceedingly slow and hence this region was not investigated.
3. Results and discussion

3.1. Silicon

The indirect energy gap of bulk silicon crystals is 1.124 eV at T = 300 K'* allowing to apply
electric fields up to 100 kV/cm before the onset of impact avalanche processes. The lowest
conduction band minima are located at the X-points of the Brillouin zone, the constant energy
surfaces in the vicinity of these points are ellipsoidal, and the energy dependence on momentum

is non-parabolic.

The bulk crystals of n-type silicon are represented by six ellipsoidal X-valleys for electrons

taking into account the nonparabolicity. At room temperature, the electron intravalley scattering



is modeled including one type of acoustic phonons in the equipartition and elastic
approximation employing a deformation potential. The intervalley scattering is accounted for by
six types of large-momentum zone-boundary phonons' (Table I). Earlier results of Monte
Carlo modeling for n-type Si have been directly compared with experimental data on the 3™
harmonic generation at room temperature showing very good agreement®. The maximum
experimental efficiency was about 0.1 percent. We investigate now the amplitude- and
frequency dependencies of the drift response at the lattice temperatures 7 = 80 and 400 K, and
compare them with the data for T = 300 K. The lower temperature is representative of a
situation where the crystal is cooled down to liquid nitrogen temperature, whereas 400 K is a
typical value in a room temperature experiment, assuming the crystal has been heated up by a
cw or long pulse pump beam. We compare also the 3™ harmonic with the 5 harmonic. The

latter would allow us to use lower pumping wave frequencies.

The result of cooling down the crystal to liquid nitrogen temperature is a 1.5 to 2 times higher
third harmonic drift velocity amplitude (Fig.1). Rising the lattice temperature to 400 K, on the
other hand, results in a decrease of the harmonic amplitude. The 3™ harmonic phase is most
sensitive to the pumping wave field amplitude when the lattice temperature is T= 80 K (Fig. 2)
whereas the 1" harmonic phase is much less sensitive both to the pumping wave field amplitude

and to the lattice temperature.

The 5 harmonic drift velocity amplitude at 7= 80 K (Fig. 3) is nearly equal to the 3" harmonic
amplitude at 7= 400 K (cf. Fig.1). This means that an appreciable 1 THz output wave can be
obtained in silicon crystals by using a lower-frequency pumping source. The 5% harmonic
phase is much more sensitive to the pumping wave field amplitude than that of the 3 harmonic
(Fig. 4) imposing more strict requirements on the spatial uniformity of the pump wave
amplitude for optimum output. On the other hand, it is a remarkable feature for device

applications implying phase modulation of the harmonic radiation.



The 3 harmonic drift velocity amplitude decreases with pumping wave frequency both at T =
80 K and at 300 K (Figs 5 and 6). At T'=400 K the same tendency is observed at low pumping
wave amplitudes only. It is seen that both an increase of lattice temperature and pumping wave
field amplitude results in reduced dispersion of the 3 harmonic drift velocity. The effects of
increasing lattice temperature are seen to be similar to those of increasing electron temperature
which grows with pumping wave amplitude®. The 5™ harmonic drift velocity exhibits much
more pronounced dispersion than the 3 harmonic one (Figs 5,6) whereas the 1* harmonic is

nearly dispersionless.

Note that the electric field vector in the present Monte Carlo simulations was assumed to be
parallel to the [100] direction, as it was in previous experiments™®.The fundamental frequency
in those experiments was 442 GHz, i.e., somewhat higher than that considered in the present
work. The Monte Carlo data show that the frequency decrease from 442 GHz to 333 GHz
does not significantly affect the 3" harmonic generation efficiency in n-type Si. Experiments at
the pump wave frequency of 600 GHz have shown” that the 3™ order susceptibility of n-type Si
at T =300 K is ;= 10m*V*for n = 10" cm?, and it varies linearly with the rise of the
carrier density. This is in fairly good agreement with the extrapolated data on the third harmonic

drift velocity (Fig.1) at E, = 100 kV/cm inserted into Eq. (4).

In Fig. 7 we present the third harmonic conversion efficiency, normalized to the maximum at
300 K, as function of the pump wave amplitude. Maximum efficiency is obtained at about 10%
of the highest pump power level investigated. The efficiency decreases nearly 3 times when the
power approaches this maximum value. Cooling the crystal down to 7= 80 K results in 4 times
higher efficiency at the maximum (or nearly 10 times compared to the efficiency at the highest
power level at room temperature). Thus cooling the crystal down to liquid nitrogen temperature

together with the use of reduced pumping power results in a 3" harmonic efficiency enhanced



by an order of magnitude compared to that observed at high pump power levels. It still does

not meet the requirement of 10% efficiency and other materials need to be investigated.

3.2. Gallium arsenide

The energy gap in GaAs crystals (1.429 eV at T = 300 K)'" is higher than that in Si allowing
for higher electric field application below the impact avalanche threshold. Thermal equilibrium
electrons in the conduction band of GaAs crystals are located at the central I-valley. They are
expected to exhibit an enhanced non-linearity in high electric fields due to the transfer between
the numerous (I'-, L-, and X-) valleys. Monte Carlo simulations of the drift response to the
microwave electric field have been reported earlier'® at low electric field amplitudes (E, < 20
kV/cm) and frequencies (v, < 135 GHz). One can deduce from those data that the 3™ harmonic
amplitude increases and the 1% harmonic one decreases with rising pumping wave field
amplitude presenting a favorable feature for the harmonic generation. However, the coupling
constants used in the modeling turned out to be different from that deduced from the existing
experimental works. Experiments on n-type GaAs in the millimeter wave range'”"® have shown
third harmonic emission; however, they have been focused rather on resonant phenomena than
on a high power output. Therefore, it was necessary to renew the Monte Carlo simulation,

expanding its limits to higher frequencies and field amplitudes.

The set of n-type GaAs parameters used in the present work is given in Table II. We focus on
the region of high amplitudes of the pumping wave field, omitting the “ohmic” part of the V,-
E, characteristics. In contrast to Si crystals, gallium arsenide exhibits a negative slope of the V,-
E, characteristics (Fig. 8). It indicates that the electron transfer from the I'-valley to higher (X-
and L-valleys) is effective even at these quite high frequencies of the pumping wave. The

negative slope has been observed in dc measurements® and microwave experiments at low



frequencies®. There are no experimental data on the high-field response at the frequencies we

are interested in.

The 3* harmonic drift velocity amplitude at T = 80 K shows an especially interesting feature: it
is nearly independent of the pumping field amplitude above 20 kV/cm and is much higher than
that in n-type Si. At T'= 300 K, the 3* harmonic drift velocity amplitude in GaAs is higher than
that in Si only in the region of low pumping field amplitudes. Harmonic phase behavior in n-

type GaAs is similar to that in n-type Si.

The 5" harmonic drift velocity amplitude in GaAs at 7 = 80 K (Fig. 9) is significantly higher
than in Si. It is equal to the 3" harmonic amplitude in Si at 7 = 300 K in the region of high
pumping wave amplitudes. Moreover, the 5* harmonic in GaAs at T = 80 K is higher than the
3™ harmonic in Si at 7 = 300 K in the range of lower pumping field amplitudes. This means
that the 1 THz radiation in GaAs can be obtained employing lower-frequency pumping wave
sources. However, the 5 harmonic phase in GaAs is quite sensitive to the pumping wave

amplitude in accordance with what is observed in Si.

The drift velocity amplitude dispersion in GaAs (Figs 10,11) shows some peculiarities not
encountered in Si, e.g. the slightly positive dispersion of the 1* harmonic drift velocity at low
field amplitudes (E, = 10 kV/cm, dashed lines in Figs 10,11). It can be attributed to the inertia
of electrons which becomes more pronounced with the rise of frequency. Another effect is the
higher harmonic amplitude cross-over which takes place, e.g., at n, = 160 GHz for the 3"
harmonic at T = 80 K. At this pumping wave frequency the harmonic drift velocity amplitude
does not depend on the pumping wave amplitude in the range of 10 < E, < 100 kV/cm. At
pumping wave frequencies below the cross-over point the drift velocity harmonic amplitudes
decrease with the rise of the pump wave electric field amplitude, whereas at frequencies above

the cross-over point the drift velocity harmonic amplitudes grow with the rise of pumping field.
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The 3" harmonic cross-over point shifts to lower frequencies and broadens slightly to cover a
range of frequencies with the rise of temperature (Figs 10,11). The cross-over point for the 5%

harmonic at T = 80 K is at v, ~ 60 GHz. It shifts and broadens with rising temperature as well.

The relative efficiency of the 3" harmonic generation in GaAs at 7= 80 and 300 K is shown in
Fig. 7. One can judge that, similarly to the case of silicon, an exceedingly high pump power
results in diminishing efficiency. The maximum efficiency is at the pump wave amplitude of E,

~ 10 to 15 kV/cm, depending on the lattice temperature.

3.3. Indium phosphide

The band structure of InP crystals is similar to that of GaAs but the energy gap is slightly
smaller (1.344 eV at T = 300 K)'"*, The energy separation between the lowest and upper valleys
in the conduction band, as well as the relevant phonon energies are somewhat higher (Table
III). Therefore one can expect an enhanced harmonic generation related to the intervalley

electron transfer. We examine this assumption using the same Monte Carlo procedure.

The 3" harmonic drift velocity amplitude in n-type InP at T = 80 K (Fig. 12) is only slightly
higher than in GaAs (Fig. 7) and nearly 1.5 times higher than in Si (Fig.1). The advantage of
InP is seen in significantly higher harmonic amplitudes at 7 = 300 and 400 K, as compared to
those in GaAs or Si. The 3™ harmonic phase behavior at E, < 20 kV/cm (Fig.13) is more
complicated than in GaAs or Si. The 5 harmonic drift velocity amplitude in InP at T = 80 K
(Fig.14) is higher than the 3" harmonic in Si at T = 300 K. Even at temperatures of 300 to 400
K the 5™ harmonic in InP is nearly the same as the 3" one in Si at room temperature. This is a
promising peculiarity for frequency up-converters operating at comparatively low pumping
frequency. A complicated behavior of the 5" harmonic amplitude and phase is seen in the range

of the pumping field amplitudes below 30 kV/cm (Figs 14 and 15). Most likely, it is related to
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electron runaway from the I'™-valley to upper valleys which starts at higher field amplitudes as
compared to GaAs because of the higher separation between the valleys. The 1* harmonic drift
velocity amplitude dispersion in InP crystals is negligible (Figs 16,17). The 3" harmonic
amplitude decreases 2 to 3 times, and the 5 harmonic amplitude decreases up to 10 times with
a pumping frequency rise from 30 to 500 GHz. The cross-over points of the dispersion curves
calculated for E; = 40 and 100 kV/cm are shifted to much higher frequencies, compared to that
in GaAs (Figs 16,17 and 10,11). At low pumping field amplitudes the dispersion
characteristics of higher harmonics in InP do not cross those belonging to high pumping field
amplitudes. This means that electrons in InP remain in the central valley up to much higher field

amplitudes as compared to GaAs.

The 3" harmonic generation efficiency in InP is compared to that in Si and GaAs crystals in
Fig. 7. It is seen that InP at T =300 K is nearly as good a nonlinear crystal as GaAs at T = 80
K. Gallium arsenide is superior in the range of the pumping field amplitudes up to 30 kV/cm,
whereas InP is somewhat better in the range of E, = 40 to 50 kV/cm. Indium phosphide seems

to beat other candidate materials for frequency tripling at T = 80 K (Fig. 7) for E,; > 20 kV/cm.

3.4 Joule loss

The problem of heat removal is crucial for the cw operation of frequency converters. Sample
heating by the pumping wave reduces the efficiency, as is seen from the temperature
dependence of efficiency. It can cause thermal activation of electrons and holes resulting in
heavy loss and severely reduced penetration of the pumping wave in the non-linear crystal. It is
interesting to compare the heat production per electron in Si, GaAs, and InP. This has been

calculated as V,E,cosy, The results show that the loss in InP at 7= 80 K in the field amplitude

range where the 3 harmonic generation efficiency is a maximum does not exceed that in GaAs
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(Fig. 18). The loss at the maximum efficiency is 2.5 times higher than that in n-type Si at T =
300 K.

It has to be emphasized that the linear absorption per electron in all the crystals is quite high and
hence an efficient harmonic generation can only be considered in thin layers, in agreement with
the assumption this paper is based on. The active layer needs to be deposited on a highly
transparent thermal conductor. This is feasible in epitaxial active layers on insulating substrates

of the same material.

The thermal conductivity of Si is 14.5 W/(cm K) at T = 80 K and 1.56 W/(cm K) at 300 K'*.
At liquid nitrogen temperature it is even higher than that of copper’, presenting a favorable
feature for heat extraction: it facilitates an intense thermal flow to the bath. On the other hand,
GaAs and InP crystals are more efficient than Si and less sensitive to thermal generation of
carriers or electric breakdown owing to their larger energy gap between the valence and
conduction bands. The thermal conductivity of GaAs (4.3 W/(cm K) at T = 80 K and 0.58
W/(cm K) at 300 K)' is 3 times lower than that of Si, whereas InP crystals present somewhat
better values of 5.2 W/(cm K) at 7 = 80 K and 0.7 W/(cm K) at 300 K'. Thus, some
complications incurred by cooling down the crystals to 80 K can be justified, especially when
one takes into account the resulting improvement both of the harmonic generation efficiency and

the Joule heat transfer.

4. Conclusion

On the basis of Monte Carlo modeling we find that silicon, a readily available and simple to use
material, is nearly as good as n-type GaAs or InP, as far as efficiency at high power is

concerned. However, much higher efficiency in GaAs and InP as compared to Si is expected at

relatively low pumping power levels. The 3* harmonic generation efficiency can probably be
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raised up to 10 percent employing pure n-type GaAs or n-type InP crystals cooled down to

liquid nitrogen temperatures. The 5" order nonlinearity of InP turns out to be competitive too.

Phase synchronism is important for frequency up-conversion. In the case of the harmonic
generation along the pumping wave path in a crystal, the harmonic- and the pumping wave
phases are subject to spatial change related to the amplitude variation. This, together with the
Joule heat production, limits the useful thickness of a non-linear crystal plate. The output power
optimization can therefore not be achieved by using thick samples. Instead of this, thin non-
linear layers in a resonant cavity seem to be advantageous. Insertion of the converter into a
resonant structure should enable us to extract a much larger fraction of the stored energy by
passing the harmonic radiation repetitively through the same active layer. Hereby the thickness
of the active material should be chosen small enough to reduce the Joule loss and achieve an
optimal gain during each pass; a parameter which is mainly determined by the phase
relationship between fundamental and harmonic waves®. Since a free-standing thin layer in a

cavity is difficult to cool, epitaxial layers on insulating substrates have to be considered.

The cavity must provide the possibility of independent phase control for the pumping- and the
harmonic waves. This is difficult to realize in pulsed operation because the phases are subject to
dramatic change with the field amplitudes. The same is true for the transient build-up during cw

operation. The cavity needs to be readjusted with the change of cw operation power level.

The problem of heat removal is crucial for the cw operation of the frequency converters.
Sample heating by the pumping wave reduces the efficiency. It can cause thermal activation of
electrons and holes resulting in heavy loss and severely reduced penetration of the pumping
wave into the non-linear crystal. This is especially critical in narrow-gap materials. By cooling
down to liquid nitrogen temperatures the harmonic generation efficiency is improved by orders

of magnitude. The thermal conductivity of semiconductor crystals at low temperatures results in
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an intense thermal flow to the bath. GaAs and InP crystals are more efficient than Si and less
sensitive to overheating or electric breakdown owing to their larger energy gap between the

valence and conduction bands.

Concerning further Monte Carlo modeling, wide-gap materials with even higher energy
distance between the fundamental and upper valleys like silicon carbide or gallium nitride seem
to be prospective candidates for high-temperature operation of high-power harmonic radiation
sources.
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Table I. Selected parameters of silicon crystals®

Density: 2.33 g/cm®
Longitudinal sound velocity: 9 km/s

Lattice dielectric permeability (static):11.3

X valley
Number of valleys 6
Location in k-space k=0.85k,, [100]
Nonparabolicity coef., eV 0.5

Uniax. deformation potential, eV 9

Electron effective mass:
longitudinal, m, 0.9
transverse, m,, 0.192

Phonon parameters for electron scattering in silicon":

Phonon Phonon  Electron-phonon

type energy,  coupling constant,
meV 10®eV/icm

f 19 0.3

f 47.4 2.0

f 59 2.0

g 12 0.5

g 18.5 0.8

g 62 11

“Ref. 14 "Ref. 15
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Table II. Selected GaAs crystal parameters®

Density: 5.32 g/cm?

Longitudinal sound velocity: 5.24 km/s

Lattice dielectric permeability (static):12.8 ; (optic):10.9

Number of valleys

Valley location in k-space

Energy separation, eV
Nonparabolicity coef., eV
Uniax. deformation potential, eV
Optical phonon energy, meV

Electron effective mass, m,

Intervalley scattering parameters®

X valley L valley
3 4
k=0.9k,,. k=k

max

[100] [111]
0.52 0.33
0.36 0.65
8 8

35 35
0.43 0.23

Transition Phonon

Electron-phonon

energy, meV coupling constant,
10° eV/em
I-L 26 10
r-X 26 10
LL 26 10
L-X 26 9
X-X 26 9

Ref. 14 "Ref. 19

19
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Table III. Selected InP crystal parameters®

Density: 4.8 g/cm®

Longitudinal sound velocity: 5.13 km/s

Lattice dielectric permeability (static):12.35; (optic): 9.52

Number of valleys

Valley location in k-space

Energy separation, eV
Nonparabolicity coef., eV
Uniax. deformation potential, eV
Optical phonon energy, meV

Electron effective mass, m,

Intervalley scattering parameters’:

X valley L valley
3 4
k = 0%,k =k,

X

[100] [111]
0.775 0.54
0.38 0.23
6.5 14.5
43 43
0.325 0.26

Transition Phonon

Electron-phonon

energy, coupling constant,
meV 10% eV/em

I-L 27.8 10

r-X 29.9 10

LL 29 10

L-X 29.3 9

X-X 29.9 9

Ref. 14 *Ref. 19

20

0.078



Figure captions

Fig. 1. Drift velocity amplitude of the first (1) and the third (3) harmonics of 333 GHz in n-type Sias a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 2. Drift velocity phase of the first (1) and the third (3) harmonics of 333 GHz in n-type Si as a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 3. Drift velocity amplitude of the first (1) and the fifth (5) harmonics of 200 GHz in n-type Sias a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 4. Drift velocity phase of the first (1) and the fifth (5) harmonics of 200 GHz in n-type Si as a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 5. The 3" harmonic drift velocity amplitude (solid line) as a function of the pump wave frequency in
n-type Si at the lattice temperature of 80 K. The curve labels give the wave electric field amplitudes (in
kV/cm). The 1°- (dashed line) and the 5* (dotted line) harmonic drift velocity amplitudes are shown for

comparison.

Fig. 6. The 3" harmonic drift velocity amplitude (solid line) as a function of the pump wave frequency in
n-type Si at the lattice temperature of 300 K. The curve labels give the wave electric field amplitudes (in
kV/cm). The 1* (dashed line) and the 5* (dotted line) harmonic drift velocity amplitudes are shown for

comparison.
Fig. 7. THG efficiency divided by the maximum efficiency of n-type Si at T = 300 K as a function of the

pumping wave amplitude. The curve labels give materials and lattice temperatures. The pump wave

frequency is 333 GHz.
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Fig. 8. Drift velocity amplitude of the first (1) and the third (3) harmonics of 333 GHz in n-type GaAs

as a function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 9. Drift velocity amplitude of the first (1) and the fifth (5) harmonics of 200 GHz in n-type GaAs as

a function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 10. The 3 harmonic drift velocity amplitude (solid line) as a function of the pumping wave
frequency in n-type GaAs at T = 80 K. The curve labels give the wave electric field amplitudes (in
kV/cm). The 1*(dashed line) and the 5™ (dotted line) drift velocity harmonic amplitudes are shown for

comparison.

Fig. 11. The 3" harmonic drift velocity amplitude (solid line) as a function of the pumping wave
frequency in n-type GaAs at T = 300 K. The curve labels give the wave electric field amplitudes (in
kV/cm). The 1* (dashed line) and the 5™ (dotted line) drift velocity harmonic amplitudes are shown for

comparison.

Fig.12. Drift velocity amplitude of the first (1) and the third (3) harmonics of 333 GHz in n-type InP as

a function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig.13. Drift velocity phase of the first (1) and the third (3) harmonics of 333 GHz in n-type InP as a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig.14. Drift velocity amplitude of the first (1) and the fifth (5) harmonics of 200 GHz in n-type InP as

a function of the electric field amplitude. The curve labels give the lattice temperatures (in K).
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Fig. 15. Drift velocity phase of the first (1) and the fifth (5) harmonics of 200 GHz in n-type InP és a

function of the electric field amplitude. The curve labels give the lattice temperatures (in K).

Fig. 16. The 3" harmonic drift velocity amplitude (solid line) as a function of the pumping wave
frequency in n-type InP at T'= 80 K. The curve labels give the wave electric field amplitude (in kV/cm).
The 1* (dashed line) and the 5* (dotted line) drift velocity harmonic amplitudes are shown for

comparison.

Fig. 17. The 3* harmonic drift velocity amplitude (solid line) as a function of the pumping wave
frequency in n-type InP at T'= 300 K. The curve labels give the wave electric field amplitude (in kV/cm).
The 1* (dashed line) and the 5™ (dotted line) drift velocity harmonic amplitudes are shown for

comparison.

Fig. 18. Joule loss of the pumping wave power divided by the loss in n-type Si at room temperature as a

function of the pumping wave amplitude. The curve labels give materials and lattice temperatures.
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