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Abstract

A simple configuration that consists of a set of toroidal, helical and vertical field
coils is used to calculate free boundary equilibria with nonzero plasma current and
approximately helically symmetric plasma boundary shape. The amount of helical
boundary deformation is controlled by the ratio of the current in the helical field
coils to the current in the toroidal field coils. When this ratio is increased, the
(m,n) = (2,1) external kink is stabilized at 8 ~ 1% for inverse rotational transform
profiles in the region ¢ < 2 and an aspect ratio 4 ~ 10.



1 Introduction

In tokamak machines a strong plasma current is indispensable for the plasma confinement
and plays a significant role in plasma heating. It is known that this current may generate
disruptions with dangerous consequences for the machine components. Stellarators can
achieve plasma confinement without net plasma current and avoid thus disruptions but
have other kinds of drawbacks. The absence of symmetry can adversely impact particle
confinement and transport.The lack of ohmic heating requires auxiliary systems (rf waves
or neutral beam injection) which increase the total cost of the machine and the complex
three-dimensional (3D) structure of the magnetic field imposes strong accuracy conditions
when manufacturing and assembling the coils.

During the last years some papers have appeared in the literature presenting new con-
cepts for confinement devices. The terminology was enriched with terms like Spherical
stellarators [1], stellamaks [2] or more general designations like tokamak-stellarator hy-
brids [3], [4]. Characteristic of these machines is the fact that they combine the standard
coil system of a tokamak with a set of twisted or simple planar coils inclined vertically
reSponsible for stellarator effects. The net toroidal plasma current is non zero and the
machines based on these concepts should be able to operate in hybrid manner depending
on how the tWo systems of coils are powered (a significant part of the rotational transform
can be produced by the current flowing in the external coils). Until now the study of these
concepts focused on issues like B (magnetic field) properties, vacuum flux surface char-
acteristics, bootstrap currents estimations and particle confinement analysis. A general
study of the MHD stability of these configurations and in particular of the current-driven
kink modes has not been yet considered.

In earlier studies [5] or in more recent ones [6], [7], a series of authors considered the
effect of adding an external rotational transform on kink stability. The analysis were
however limited to pressureless, straight plasma columns with uniform or non uniform j
toroidal plasma currents and most of them to the cases when ¢, (the external rotational
transform) added to the system was constant. The results were expressed in the form of

analytical conditions for the stability of a given (m,n) mode generally with low m, n. It



was stated in [7] that a sufficient high external rotational transform can stabilize all ideal
kink modes.

In the context of the development of the hybrid machine concepts, the study of the ef-
fects of external rotational transform on kink mode stability in realistic 3D configurations
appears fully justified. In a previous work [8], the authors of the present paper studied
the kink modes in three dimensional plasmas with prescribed (fixed) helical boundary de-
formation and non vanishing toroidal current; the external rotational transform resulted
from the prescription of the boundary shape and the total : was determined from the
equilibrium computations. More precisely, L = 2, 3 configurations with single helicity
and mixtures of both were considered and the stability was tested with respect to the
(m,n) external kink modes with n = 1,2,3 (toroidal mode number) and m = n + 1
(poloidal mode number). The equilibrium parameters like the amount of helical bound-
ary deformation, the aspect ratio, the number of equilibrium field periods, the toroidal
current density, 3 and the pressure profiles were systematically varied in that investiga-
tion. Once these parameters were fixed, sequences of equilibria differing in the amount
of helical boundary deformation and such that 1 < ¢ < 2 — 2.5 (¢ is the inverse rota-
tional transform), were calculated with the fixed boundary version of the VMEC [9] code.
The ideal MHD stability analysis was performed with the TERPSICHORE [10] code. It
was shown that increasing the helical boundary deformation leads to the stabilization of
(m,n) external kinks with n =1,2,3, m = n+ 1 at values of 8 ~ 1 — 2%. These modes
are unstable in the circular tokamak at the same value of 3. If § is the amplitude of the
Fourier components responsible for the helical shape of the boundary, then windows of
stability [0min Omas] Mmay exist depending strongly on the other equilibrium parameters.

The present paper reconsiders the effect of the helical boundary deformation on kink
mode stability but in the case where the numerical equilibria are calculated with a free
boundary. The geometry of the external coils responsible for stellarator effects is taken
into account; the ratio between the current in the external helical coils and the plasma
current replaces the ¢ parameter and represents the fundamental input parameter in the
investigation. The paper is divided as follows: section II and III explain how the equilib-

rium and stability calculations were performed, section IV presents some specific results



and section IV contains the summary and conclusion.

2 Equilibrium calculations

The calculations of the free boundary equilibria were performed in several steps. First,
a system of coils producing a toroidal field (TF), a vertical field (VF) and a helical field
(HF) is designed; the helical conductors are wound on a torus according to the winding
law
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with v and v the geometrical poloidal and toroidal angles of a particular coil segment,
Nper the number of field periods, ! = 1,..L an index specifying a particular coil and «
the pitch modulation coefficient of the helical coils. The magnetic field B is determined
from the Biot-Savart law and a field line tracing code is used to find the coil geometrical
parameters and currents such as to obtain closed helical flux surfaces in vacuum. The field
produced by these external currents is given then as input to the free-boundary version
of the equilibrium code VMEC [11]. At finite 8 and nonzero plasma current, the plasma
cross section is distorted; the currents in the coils are adjusted until the plasma cross
section recovers an approximate helical shape. Several types of coils systems (stellarator-,
heliotron- and torsatron-like) were considered. We illustrate the results with the example
of a L=2 stellarator-like configuration (N, = 4) with 16 TF coils, two pairs of HF
coils and one pair of VF coils. Sequences of equilibria were calculated with the following

parameters

Ry=5.0[m] r;,=18[m] r,=14[m] r, =7.0[m] 2, =% 2.1[m] a=—0.150
I, = —1.6 x 10°[4] I, = 1. x 10*[4] (2)

B = 1% , parabolic pressure profile, J'(s) ~ (1 — s2°)®

The subscripts 4, 5, and , refer to the TF, HF and VF coils respectively, Ry is the major
radius, r and z identify the distances of the coils from the major axis and the horizontal

midplane reespectively, I refers to the coil currents and J’ is the toroidal plasma current
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density profile. 0 < s < 1 is the radial variable proportional to the enclosed toroidal
magnetic flux. The equilibria belonging to one particular sequence differ in the amount
of HF coil current I,. The coil system is illustrated in Fig.1 and the plasma cross sections
for three values of I, are shown in Fig.2. For these calculations the plasma current was
J = 127 kA. If the conventional (tokamak) definition of normalized beta By = B/Iy
with Iy = J[MA]/(a[m] By [T]) where a and By are the averaged minor radius and the

magnetic field intensity on the axis respectively, is used we obtain By ~ 4 — 6.

3 Stability analysis

The variational formulation of the linear ideal MHD stability of 3D plasmas on which
TERPSICHORE is based is described in detail in [12]. The variational equation is written
as:

Wy + 6W, — w?dWy, =0 (3)

where 0W,, 6W,, 6W}, and w? represent the potential energy in the plasma, the magnetic
energy in the vacuum region, the kinetic energy and the eigenvalue of the system. The
perturbations have been assumed to evolve as exp(iwt) and the system is unstable to
MHD modes when w? < 0. The contribution of the vacuum to the potential energy is
treated according to the pseudoplasma technique [13] which considers the vacuum region
as a pressureless, shearless and massless pseudoplasma. The stability problem in vacuum
is similar in form to that in the plasma [12].

In the TERPSICHORE code, the stability problem is formulated in Boozer coordinates
[14]. The equilibrium is remapped to this coordinate system and the perturbation compo-
nents are expressed in truncated Fourier series with respect to the angular variables 8 and
@. Let (me, Nperne) and (my,n;) represent Fourier components in Boozer coordinates of
the equilibrium and perturbation quantities respectively. The contribution to the plasma
and vacuum potential energy of the coupling between any two perturbation components

involves integrals of the type [12]
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where f., f1 and f; are sin or cos functions. The A, .. quantity represents the ampli-
tude of the equilibrium component; it is a function of the radial flux coordinate s. The
coupling between the two perturbation components (11, ny;) and (my9, ng) is nonzero if

the following relations hold between the mode numbers [15], [16], [8] :

me = my £ my

(5)

neNper = ny g

This means that a partial decoupling of the perturbation components occurs, depending
on the values of the toroidal mode numbers; the perturbation toroidal mode numbers are
distributed in families between which there are no interactions. Within this context, the
expression (m,n) mode means that the (m, n) Fourier component of the perturbation (in
Boozer coordinates) is dominant with respect to the other components.

If Nper = 4 and the mode studied is (m,n) = (2,1), then the contribution of the cou-
pling (me, Nperne) % (2,1) x (my,n;) to the potential energy is nonzero only if n; = 3,
5, 7,9, etc - cf. Eq.(5). When the numerical study is carried in the parameter region
corresponding to 1 < ¢(s) < 2 which is the region where the (2,1) mode may be strongly
destabilizing, then a particular attention should be given to those (my, ny) perturbation
components which are resonant i.e. m; > n; > n = 1. Depending on the ¢ profile, these
components can be destabilized and could lead a priori to significant couplings with (2, 1).
The contribution of a particular (my;,ny1) X (myg, ni2) nonzero coupling to the potential
energy - let us denote it by Wémll’"”)x(mlz’"'?), is determined by the amplitude A pe
of the (me, Npernte) equilibrium coupling term. Typical Apene terms appearing in these
couplings are Vm, . (the Jacobian), |B?|y, n, or combinations between the coefficients
of the metric tensor [12]. It can be seen from Eq.(5) that if Ny, = 4 the coupling between
(2,1) and (my, ;) resonant components with n, = 3,5 requires (m, Npe,1,) components
with n, = 1 and m, > 4; the coupling with resonant {my, n;) having n; = 7,9 requires
ne = 2 and m, > 8. Table 1 illustrates these combinations.

The numerical study performed in [8] has shown that a characteristic property of the equi-

libria with fixed helical boundaries is that those Ape,n. amplitudes (in Boozer coordinates)
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involved in couplings between (m,n), m =n+1, n = 1,2,3 and the resonant (my,n;) are
negligible compared to the amplitudes of the dominant equilibrium components. This is
true Vs (on each flux surface) for equilibrium quantities like \/Eme,ne , | B%mepmne » €t ;
it was checked for different types and amounts of helical boundary deformation, different
number of periods Npe,, and a multitude of equilibrium profiles (current density, pres-
sure). Fig.3a illustrates this for a particular case i.e. a L = 2 configuration with Nper = 4:
the Apene coupling (2, 1) to the resonant components (m; > n; > 1) are at least 3 orders
of magnitude smaller than the dominant A, ye.

If the equilibrium is calculated with a free boundary and the currents in the coils - see
Fig.1 - are adjusted such that the free boundary plasma has an approximate helical bound-
ary shape - see Fig. 2, then the above mentioned property remains valid. Fig.3b shows
Ameme amplitudes for an equilibrium belonging to the sequence characterized by Eq.(2)
and calculated for I, = 110 kA. This equilibrium is situated between those corresponding
to I, = 100 kA and I, = 130 kA for which the flux surface cross sections have been
represented in Fig.2 (2nd and 3rd row). The consequence of this property is that, the
numerical study of a mode like (m,n) = (2,1) does not require taking into account the
(my,ny), my > my > 1 perturbation components (with n; and n = 1 belonging to the
same family). This conjecture was systematically checked: it was found that if the reso-
nant (my,n;) are included in the calculations, then, the Wmmx(mum) contributions with
(m,n) = (2,1), (1,1) and my > n; > 1, are negligible when compared to the dominant
contributions to the potential energy. When one does not include the resonant (my, n;)
components the numerical effort is reduced and it becomes easier to follow the evolution

of the (m,n) mode studied.

4 Results

Once an equilibrium sequence has been calculated by increasing I uniformly, the main
task of the stability analysis consists in the successive determination of the unstable
eigenvalues w? starting with the most unstable w2, and the identification of the pertur-
bation components associated with them. This is done for every I;. In the first step

the calculations are performed excluding the resonant (my,n;), m; > m; > 1 perturba-
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tion components. At the beginning of the equilibrium sequence presented in Fig.4 i.e for
I, = 60 kA the g profile is such that the (2,1) component is already destabilized. The
effect of increasing I, is to lower the inverse rotational transform. The (2,1) component
is strongly destabilized and becomes the dominant perturbation component - the (2,1)
mode. The most unstable eigenvalue w2, (I5) decreases until a minimum is attained,
after which it starts increasing again; this is the stabilizing effect associated with an in-
creasing (approximately) helical boundary deformation. Depending on the equilibrium
parameters, a stability window I,y = [[[™", I"®] may appear in the sense that all (m, 1)
components with m > 1 are stable and the (1, 1) component is not yet destabilized. Fig.4
(c) illustrates a stability window bounded by I7%" ~ 100 kA and I**® ~ 130 kA.

When the resonant perturbation components i.e. (my,3) with m; > 3, (my, 5), etc, are
taken into account and the stability calculations are performed again for those equilibria
in the stable window, then several unstable eigenvalues may appear for each I, € L.
Each of these eigenvalues is associated to one of the resonant (my, n;) modes (component
with largest amplitude) and the most important contributions to the potential energy

myr ey

come from terms like W™ ) with m; > n; > 1 and my > ny > 1. Table 2 illus-
trate these results for three selected equilibria from the (previous) stability window i.e. for
Iy, = 105,110,120 kKA. Only some of the most unstable eigenvalues are shown and for each
of them the associated perturbation components are displayed together with the dominant
contribution to the potential energy. The maximum value of the couplings involving (2,1)
or (1,1) with any of the excited (my,n;) is also shown for comparison purposes. One sees
that these couplings are insignificant i.e. < 10~* smaller than the dominant contribution.
The particular case I, = 110kA and w? = —5.832 - 10~* deserves some attention because
the value of Wyree (mm)x(mum) is Jarge, i.e. —2.20 x 10~%, which is about 20 times smaller
than W;"**. The perturbation components involved in this coupling are (1,1) and (4, 3);
the (2,1) x (my,n;) couplings continue to have a negligible role in determining the value
of the potential energy. Among the leading contributions to the potential energy (those
covering upto nearly one order of magnitude) none could be identified to result from the

coupling between the (2,1) and non-resonant perturbation components. However, these

last couplings are not insignificant and tend to give in general (very) weak destabilizing



contributions. Fig.5 illustrates another stability window obtained with the same plasma
parameters as those from Fig.4 but with a larger value of the current in the TF coils i.e.
I; = —180kA. The larger toroidal field skews the magnetic field lines in the toroidal di-
rection and in principle, the inverse rotational transform increases. The stability window
corresponds to 115kA < I, < 150 kA and the ¢ profiles delimiting this interval can also
be seen in Fig.5. A larger current in the HF coils is needed to reach the stability window

and this occurs at an increased Geqge ~ 1.4 (in the preceding case gegpe =~ 1.33 see Fig.4).

5 Summary and conclusions

In this work we considered the global ideal MHD stability properties of free boundary
plasmas with approximate helically symmetric cross-sections and nonzero toroidal plasma
current. A simple L = 2 stellarator-like configuration of toroidal, helical and vertical field
coils was proposed as a tool for studying the influence of the helical boundary shape (and
through it of the external rotational transform) on the (m,n) = (2, 1) external kink. An
example of a complete set of plasma and coil parameters was given for the calculation of
sequences of free boundary equilibria which approximately recovered the desired boundary
shapes and such that the ¢ profiles were in the region of interest 1 < ¢ < 2. The parameter
which was varied throughout the equilibrium sequence was the amount of current in the
helical coils. These configurations are characterized by a spectrum of equilibrium Fourier
components such that the couplings between the (2,1) perturbation component and the
resonant (my,n;) perturbation components with m; > n; > 1 are negligible (in the fixed
boundary calculations it was found that the (m,n) x (my,n;) couplings with m = n + 1,
n=1,2,3 and (my, n;) as above, do not play any role in the determination of the global
MHD stability with respect to external kinks). Finally, it has been shown that a helical
(free) boundary deformation can stabilize the (2,1) external global mode at values of ¢
below 2.0 and § values of the order of 1%. The stabilization occurs in a window of sta-
bility I, € [I;*™, I;**] where I" and I[*** depend on the equilibrium parameters. The
fixed boundary results are thus generalized.

Before any comparison between these results and those of M.I.Mikhailov and V.D.Shafranov
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c.f. Section I and Ref.[7] can be made, it is necessary to point out the important differ-
ences between the two studies: 1) In our case 3D geometries were considered. We have
seen that, within the ideal MHD model, the couplings between (2,1) and the resonant
components are insignificant but weak contributions due to the coupling with non reso-
nant (my,n), n; # 1 may appear. 2) Our calculations were performed for 8 > 0. 3) The
stability diagrams presented in Ref.[7] were derived under the assumption of a constant
external rotational transform ¢, added artificially to the tokamak rotational transform;
the ¢ profile was always monotonic. In the study presented here 1, results directly from
the currents in the HF coils and the total rotational is computed consistently with the
equilibrium. The ¢ profiles are not necessarily monotonic and significant differences may
exist between these profiles at the beginning and at the end of the equilibrium sequence.
We add that our free boundary results are based only on calculations done for a L = 2
configuration with Ny, = 4, an aspect ratio ~ 10 and a couple of current density profiles.
The whole set of available equilibrium parameters was not explored as was done in Ref.[8]
and we cannot conclude on the possibility of stabilizing all ideal kink modes simultane-
ously. Such a problem was considered in Ref.[8] and we point out that the results were

not so optimistic as those of Ref.[7].
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Table 1 : Some perturbation components with m;/n; < 2 resonant values and correspond-
ing equilibrium coupling terms (Mme, Nperne) ((Me1,Me1) or (Mg, Nez) depending on the +
sign in Eq.(5) for (m,n) = (2,1) and Nper = 4. The equilibrium toroidal mode numbers
correspond to one field period. A ”-” symbol means that n, n; and the corresponding n.;

cannot satisfy the periodicity requirements imposed by Eq.(5)

Table 2 : The 5 most unstable eigenvalues obtained when including the resonant (my,ny),
my > ny > 1 components in the study of the (2,1) mode. The three values of I, belong
to the stability window shown in Fig.4. The plasma parameters and coil configuration
characteristics are given by Eq.(2) - see also Fig.1. The column to the right of w? iden-
tifies the perturbation components with the largest amplitudes. The quantity Wer is the
most important contribution to the potential energy and wraee (mm)x(mum) s the largest

coupling between the (2,1) or (1,1) and any of the (my,n;) considered in the calculations.

Figure 1 : Stellarator-like configuration with 16 TF coils, two pairs of 2 HF coils and one
pair of VF coils

Figure 2 : Free boundary equilibrium fluz surfaces produced with VMEC. Each column rep-
resents the cross sections at one toroidal angle and each of the three rows are associated
with one value of I,. The coil system is represented in Figure 1. The parameters are those
of Eq.(2). The three currents correspond to particular equilibria from the sequence shown

in Fig.4 i.e. the first point and the two points just before and just after the stability window

Figure 3.a : /g n, amplitudes for s =1 (plasma boundary) for a fized boundary equi-
librium characterized by L = 2, Nyer = 4, 1/€ = 10 (inverse aspect ratio), 8 = 1%, with
parabolic pressure profile. The z-azis corresponds to the n. equilibrium mode number.

The points marked with **’ represent the equilibrium components responsible for couplings
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between the (2,1) mode and the (my,n;) perturbation components with my > n; > 1 (only
the ne < 3 i.e. ny < 13 are shown). All other equilibrium components are marked with
‘o’. The fact that the VY, n, @Mmplitudes with odd n. are estremely low is characteristic

of the L = 2 fized boundary configurations; only those VY n, With ne =1, 3 are shown.

Figure 3.b : \/ﬁme ne amplitudes for the free boundary equilibrium described by Eq.(2).
The z-axis corresponds to the n equilibrium mode number. The '*’ and o’ symbols have
the same meaning as in Fig 8.a but only the n, < 2 i.e. n; <9 are shown. The V9, ne

amplitudes with odd n. are larger than in the fized boundary case but continue to remain

very low compared to those with even n,

Figure 4 : Study of the (2,1) mode: (a) toroidal plasma current density profile, (b) q(s)
profile, (c) sequence of most unstable eigenvalues w2, (I) when the coil geometry and
plasma parameters are given by Eq.(2). The aspect ratio is 1/e =~ 10 and the toroidal
plasma current is J = 1.27 - 10°[A). The inverse rotational transform profile is repre-
sented for In = 0.60 x 10°A (-), 1.0 x 10°[A] (- -) and I, = 1.30 x 105[A] (-). The stability
window 1s delimited by the two vertical lines and is associated with values of I, between

1 x 10°[A] and 1.3 x 10%[4]

Figure 5 : The same as in Fig.4 but for Iy = —1.8 x 10°[A]. The inverse rotational
transform profile is represented for I = 0.95 x 10°[A] (), 1.15 x 10%[4] (- -), and I, =
1.50 x 10°[A] () and the stability window corresponds to 1.15x 105[A] < I, < 1.50 x 105 A]
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Table 2 A.Ardelea

I - 105[A] Jazis Gmin Jedge w? (ml7nl) W;naa: W;naz (mam) (m,m)
1.050 1437 1.273 1.273 -9.889E-04 4 3 -7.05E-04 -4.81E-08
-7.314E-04 9 7 -6.80E-04 -2.37E-11
-2.073E-04 7 5 -7.61E-04 -4.22E-09
-1.097E-04 4 3 -3.45E-04 -3.09E-09
-9.354E-06 7 5 -843E-04 -6.85E-09
1.100 1.386 1.202 1.202 -6.210E-04 11 9 -3.58E-04 -1.28E-08
-5.832E-04 4 3 -5.15E-04 -2.20E-05
-1.232E-04 4 3 -6.89E-04 -6.93E-07
-9435E-05 4 3 -6.32E-04 -4.09E-07
-1.787E-05 4 3 -4.17E-04 -4.63E-07
1.200 1286 1.065 1.065 -3.104E-04 6 &5 -5.27E-04 -3.20E-08
-1.979E-04 8 7 -2.20E-04 1.26E-09
-1.877E-04 11 9 -6.48E-04 -5.41E-10
-1.808E-04 6 5 -5.03E-04 -3.94E-08
-1.145E-04 11 9 -6.47E-04 -1.99E-09
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Figure 1 A.Ardelea
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Figure 2 A.Ardelea
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Figure 3.a A.Ardelea
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Figure 3.b A.Ardelea
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Figure 4 A Ardelea
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Figure 5 A.Ardelea
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