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Abstract

The system of two first-order spatial differential equations describing small-
amplitude harmonic motions in a cylindrical equilibrium of a perfectly con-
ducting plasma is derived from the basic set of the linear ideal magnetohy-
drodynamic equations. Enough details of the derivation are given to prove
explicitly that the system earlier derived by the authors [Phys. Fluids, 17,
1471 (1974)] is complete and that the frequency spectrum of the motions
contains at most two continua, thereby contradicting a recent publication
of Lashmore-Davies, Thyagaraja and Cairns [Physics of Plasmas, 4, 3243

(1997)).
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I. INTRODUCTION

Lashmore-Davies, Thyagaraja and Cairns have recently stoked up [1,2] an old controversy
between Harold Grad and a part of the MHD community concerning the number of continua,
contained in the spectrum of ideal magnetohydrodynamics in a cylindrical screw pinch.
From an inspection of the Hain-Liist second-order differential equation [3] governing the
radial plasma displacement, Grad had conjectured [4] that there were four continua, one
associated with the Alfven wave, two with the slow magnetosonic wave (termed ”slow wave”
and ”cusp” continuum) and one associated with the fast magnetosonic wave. This conjecture
was at variance with numerical results which here and there were beginning to be obtained
based on the strong variational formulation of the MHD problem. A little later [5], the
present authors were able to derive from the basic linear MHD equations a system of two
first-order equations which manifestly were only singular for frequencies in the Alfven and
the slow-wave continuum. It was therefore concluded that there were only two continua.

In their papers [1,2] concerning this topic, Lashmore-Davies, Thyagaraja and Cairns
claim that the existing theory is incomplete and that there are four continua as conjectured
by Grad. They also claim that their findings have important physical consequences. The
reason for their astonishing claims can be traced to an additional term [2] in the afore-
mentioned first-order system which they have obtained with sophisticated mathematics.
This is in striking contrast with our 1974 work for which we had used simple transparent
mathematics to derive the first-order system and where no such term had been found.
Considering our derivation to be cumbersome but elementary, we did not at that time find
it necessary to publish the details of it. This assessment has changed with the publications
of Lashmore-Davies et al. We now think that it is important that the community can see
without effort how our result had been obtained. The goal of this paper therefore is to
sketch the derivation of our old result [5] (referred to as I from now on ) and by doing so to
prove that the result and the conclusions of Lashmore-Davies, Thyagaraja and Cairns are

wrong.



II. DERIVATION

As in the original paper, our starting point will be the linearized equations of ideal single-
fluid magnetohydrodynamics. Let po, po, By represent the equilibrium values of the mass

density, pressure, and magnetic field. The pertinent basic equations can then be written in

the form [6]
pO%;-zg—z—Vp—El(;[Bx(VxBo)-i-Box(VXB)], (1)
B =V x (€ x By), (2)
p+&-Vpo+peV - € =0, (3)

where £ is the displacement from an equilibrium position, B and p the magnetic field and
the pressure perturbations, and < is the adiabaticity index.
In a cylindrical equilibrium, the field components Bog, By, and the pressure p, are func-

tions of radius 7, and are constrained by the pressure balance

d Bo?\ . Bu®
dr (po + 2,uo> + Lot 0. ()

The mass density po is an arbitrary function of radius.

Now turning to the Fourier analysis of eqs.(1)-(3), we take the time and space dependence

as exp[i(kz + mf — wt)] and introduce the total perturbed pressure

BB
P=p4+ =2 (5)
Ho
as a new variable. Equation (1) then takes the explicit form
0 , 2
- Pow §'r =—-P + —"BTF - _BHBOO’ (6)
Ho o
2 m 1 1
— PowW f@ = —j—P —+ _BGF + _Br(v X BO)z’ (7)
r Ho Ho
' 1
—pow?€, = —ikP + LBzF — —B,(V x Bo)s, (8)
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where the prime ’ stands for d/dr and F = (m/r)Bos + kBy,. Likewise, eqs.(2) and (3)

become
B, =1iF¢,, (9)
Bog\ :
By = —BopV-&{—r (7) & +1iF&, (10)
Bz = _BOZV : 6 - BOzlfr + ZFé.z; (11)
and
p+YpoV -€+po'E =0. (12)

The eight equations (5)-(12) determine the eight unknowns P, £ , B and p in cylindrical
coordinates. Four equations, namely (5) and (7)-(9) are algebraic, eq.(6) contains a first-
order derivative d/dr on the unknown P and the remaining three equations (10)-(12) contain
the expression V - €. The most transparent way of deriving the first-order system presented

in I is to introduce V - £ as a new unknown,
) .
€= —7:(7"6,« Y + Z—Tﬂlfg + k€, , (13)

herewith turning eqs.(10)-(12) into algebraic relations.

We now have a system of nine equations for the nine unknowns P, £, B, p and € with one
single derivative acting on P, eq.(6), and one on &,, eq.(13). The whole system can therefore
be reduced to 2 first-order differential equations for &, and P, egs.(5) and (6) in I, or to a
single second-order differential equation for either &, (the Hain-Liist equation) or for P. The
elimination procedure is elementary but cumbersome. In order to show that Thyagaraja’s
equation (51) in [2] is wrong a mere sketch of the procedure is sufficient. We have just to
show that apart from trivial divisions by r or uo the only denominator ever occuring is that
giving rise to the two continua mentioned in I.

We first rewrite eqs.(6) using egs.(9), (10) and (13) and restate eq.(13):

P = |ppw® — — + i$o, 14
P e T o % por 0 (14)

(r& )= re — mi& — kri€,. (15)
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Now, the perturbed pressure p can be eliminated from eq.(12) with the help of eq.(5).
Then, the resulting equation together with eqs.(7) and (8) can be freed from B,, By and B,
using eqs.(9)-(11) and (13) with the result,

By? By F . By, F 2B
— <’7po+ S e+ X gy 4+ g, =P~ 2 00" —&, (16)
Ko Mo T Uo
F F2 _ 2 By F
20 € —. powz——- 7/50— P_"‘ % gr, (17)
Ho ' Ho
By, F F?
— 22— | pow?— — \ig, = kP. (18)
Ho Ho

Note that in obtaining eq.(16) from eq.(12) the equilibrium pressure balance, eq.(4) has been
used. Equations (16)-(18) constitute a linear system for the unknowns ¢, i€, and i€, which

can be computed in terms of P and &, as long as the determinant,

F? By? F?
D= <P0w2 - —) [Pow2 (’VPO + —O) - ’Ypo—}, (19)
o Lo Mo
is non-vanishing. For D # 0 we therefore have
F? 2
—De = pow? (Pow2 - —)(P - ———3092§r>> (20)
Ho Tlo
m F? B,V 2B F' F? B
_Difs = 2 2420z P 06 _ 2 Oz
i [Typo (pow m > + pow— - L pow® o) TP &, (21)
F? BoV 2By, F Byo?
~Dig, = [kvpo (o = ) — = ]P L 2 (22)
Lo Ho THo Ho

where V' = (m/r) By, — kByg.
The final system of two first-order differential equations, egs.(5) and (6) in I, are obtained
by multiplying egs. (14) and (15) by D % 0 and substituting De, Di¢; and Di€, by their

expressions given in egs.(20)-(22):
D(r&, Y= Ci(r& ) — rCyP, (23) |
DP = %03(1@ )~ C\P. (24)
where C, Co, C; are defined in I and are complicated expressions in terms of the quantities
T, w, m, k, po, Bog, Bo, and ypp without any denominators other than r and py. This means

that there is no way other than by error that an additional term, and in particular a singular

term like in Thyagaraja’s equation (51) in ref.2, could appear in these final equations.
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ITI. DISCUSSION AND CONCLUSIONS

We conclude therefore that the mathematics of Thyagaraja et al has gone out of control
somewhere along their apparently unsuitable elimination path.

Our choice of systematically working towards the equations for &, and P had originally
been motivated by their usefulness in other problems in cylindrical coordinates and in par-
ticular in the derivation by Kadomtsev [7] of approximate solutions for the instabilities of
a surface-layer pinch. In this problem, other choices for the two independent variables can
lead to heavy inconsistencies. It is also interesting to note that together & and P make
up the radial energy flux which, in a cold plasma, can be interpreted as the Poynting flux.
The choice of & and P as the master variables in cylindrical MHD is therefore physically
appealing and perhaps even unavoidable.

An additional remark concerning numerical solutions of the ideal MHD spectral problem
is in order because Thyagaraja et al also pretend that the continua had never been obtained
with mathematical rigor in general cases. This is another incomprehensible statement.
Finite-element discretizations of the strong variational form of the spectral MHD problem
are based on rigorous mathematical theory and have never, general cases included, shown
anything more than 2 continua. Numerical analysis has substantially contributed to the
progress of MHD theory in the last 25 years and it is inexcusable that Thyagaraja et al
ignore this fact.

We restate here that the pertinent system of equations (23) and (24) has the only sin-

gularity at D = 0, and that this singularity can merely give rise to two continuous spectra.
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