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Abstract

We present a fully-global linear gyrokinetic simulation code (GYGLES) aimed at describ-
ing the unstable spectrum of the ion-temperature-gradient modes in toroidal geometry.
We formulate the Particle-In-Cell method with finite elements defined in magnetic coor-
dinates, which provides excellent numerical convergence properties. The poloidal mode
structure corresponding to &y = 0 is extracted without approximation from the equa-
tions, which reduces drastically the numerical resolution needed. The code can simulate
routinely modes with both very long and very short toroidal wavelengths, can treat

realistic (MHD) equilibria of any size and runs on a massively parallel computer.
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1 Introduction

lon-temperature-gradient-driven turbulence is now commonly thought to play an im-
portant role in anomalous radial energy transport in tokamaks; the latter brings one of
the main limitations on the performance of current and future tokamaks. Turbulence
develops when the plasma equilibrium is linearly unstable; the knowledge of the stability
conditions and of the properties of the linear unstable spectrum of the ITG modes is

therefore of great interest.

Linear stability in axisymmetric toroidal plasmas, characteristic of tokamaks, is a two-
dimensional problem, since each toroidal Fourier harmonic n can be treated separately.
The problem can be treated using the ballooning expansion [1], which is valid at finite
magnetic shear and large values of n. At lowest order, it reduces the number of spa-
tial dimensions to one, a poloidal-like direction. Microinstabilities have been studied
extensively with such models [2] 3] [4].

However, the ballooning approximation breaks down at low n, at low shear, and when
the mode is not localized on the outer side of the torus. Even when valid, it can provide
only an estimate of the radial structure. Furthermore, the experimentally measured
fluctuation spectrum [5] [6] in the TFTR tokamak has been found to be concentrated in
very long radial wavelengths; the corresponding modes are therefore of strong interest

and require a radially-global approach.

The equations in fully-2D toroidal geometry have been studied by few authors only. In
a pioneering work, first results were obtained with a spectral approach [7] [8] [9]. The
model does not include finite ions Larmor effects and uses an expansion to second order
in banana width, but includes the full trapped electron response. The code, however,
must be handled with care to avoid spurious numerical modes. More recently a small
number of non-linear gyrokinetic Particle-In-Cell codes have been developed [10] [11] [12].
They showed that in equilibria with large temperature gradients, unstable global modes
with strong growth rates and large radial extension develop; in the subsequent nonlinear
turbulent phase, the field energy was found to be concentrated in long wavelength modes,
which then drive strong anomalous transport. However, the computational cost of these
simulations is such that systematic parametric studies such as those needed to study

marginal stability conditions are difficult.



We therefore developed simultaneously two new complementary codes to solve efficiently
the global linear gyrokinetic kinetic problem: an eigenvalue approach [13] and a time-
evolution approach, reported here. This code, GYGLES (GYrokinetic Global LinEar
Solver), includes gyrokinetic ions with full banana orbits and Larmor radius effects up
to the order of (k1 p)?, adiabatic electrons and solves for quasineutral electrostatic per-
turbations. Three elements give it its originality. First, a Particle-In-Cell method for
solving the gyrokinetic equations has been formulated using a finite element representa-
tion for the potential, allowing the use of a spatial grid in magnetic coordinates. This
provides a fast numerical method that converges very well to the solution of the gy-
rokinetic equations. Second, the short-wavelength poloidal structure of unstable ITG
modes has been extracted without approximation from the equations. This drastically
reduces the resolution needed and allows the code to simulate both low-n modes, which
are usually in the trapped-ion regime and require the simulation of the full plasma cross
section, and high-n modes, which are usually toroidal ITG modes for which the balloon-
ing approximation holds. Third, the code has been coupled with the MHD equilibrium
solver CHEASE [14] which allows to study ITG modes in realistic magnetic structures.

To reduce the computing time, the code is run on a massively parallel computer, the
Cray T3D. The resulting code allows to find efficiently for any toroidal mode number n
the most unstable mode of a given equilibrium; this is done faster and more precisely

than with a nonlinear code. It can routinely treat large realistic toroidal global problems

[15].

The remaining of this paper is organized as follows. Section 2 describes the physical
model, section 3 the numerical methods, and section 4 the validation of the code, in-
cluding convergence studies and comparison with other global codes. An example of

simulation is shown with the conclusions in section 5.

2 The physical model

We focus on the evolution of quasineutral electrostatic perturbations in a plasma mod-
eled by gyrokinetic ions and adiabatic electrons, a model adequate to study ITG stabil-

ity. This allows to compute whether a given equilibrium configuration is stable for each



toroidal mode number n. If it is unstable, the system is dominated by the most unstable
mode after a finite time-evolution. By looking at the electrostatic potential and its time
evolution, we can then compute the frequency, growth rate and spatial structure of the

most unstable mode.

2.1 Definitions and coordinate system

We study axisymmetric equilibria, associated naturally with a cylindrical coordinate
system (R, ¢, 7). The magnetic field B(z), like any axisymmetric and divergence-free

vector field, can be written as:
B=T(¥)Vo+ VUIXVp (1)

where W is a function of R and Z only and, to an arbitrary additive constant, 1s the
magnetic flux that goes through the disc {(R, ¢, Z),» = [0,2n]} perpendicular to the
axis of symmetry. The direction of the magnetic field is h = B/B. Since B-V¥ = (,
the magnetic field lines lie on the surfaces of constant magnetic flux; theses are called
magnetic surfaces. There is a magnetic axis on the innermost surface at (R=Rum,Z =0)
where VW (Ryr,0) = 0 and the magnetic field is purely toroidal. The additive constant
that may be added to ¥ is chosen so that ¥ = 0 on the magnetic axis. A magnetic

spatial coordinate system is given by (s, ¢, 8), such that

Z 4
_ =4/ — 2
R R and s . (2)

where W, is the value of U at the plasma edge; s acts as a radial variable and 0 is a

tan § =

poloidal angle.

The plasma at equilibrium is assumed to be free of flow and of electric field.  The
equilibrium electron density is assumed equal to the ion density no(s). The electron
and ion temperatures are T.(s) and T;(s); the Boltzmann constant will be omitted
everywhere. The ion thermal velocity is vini($) = 1/Ti(s)/m;, and the MHD pressure is
p(s). The inverse scale lengths of ng and 7T} are given respectively by

L 1 Vinnl, L vy (3)
L, Ly
The ion cyclotron frequency is given by Q = ¢;B/m;, where ¢; and m; are the ion charge

and mass.



The quantities associated with the perturbations to the equilibrium are noted in the
following way. The electron and ion density perturbations are ne(a) and n;(x), and
induce an electric field E(a) and an electrostatic potential ¢(2). We denote as k the
perturbation wavevector, ky and k_ its parallel and perpendicular components, n the
toroidal mode number associated with ¢, m the poloidal mode number associated with

f, and w the frequency of the perturbation.

The MKSA unit system is used throughout.

2.2 Gyrokinetic model for ions

We describe the plasma ions with a gyrokinetic model obtained by averaging out the fast
cyclotron motion from a Vlasov-Poisson system. In the derivation from Ref. [16], the
phase-space Lagrangian variation method and the Lie perturbation theory are utilized in
order to preserve the Hamiltonian structure of the original Vlasov-Poisson model. The
usual gyrokinetic ordering is used: w/Q ~ ky/kL ~ e¢/T. ~ p/L, ~ p/Lyr ~ Ole,),
where p is the ion Larmor radius. A second small parameter is p/Lp ~ O(ep), with
Ly = B/|VB|. The equations are valid up to O(e2), O(¢,ep) and O(ep).

In this regime, the particle guiding centers are well defined. Let R be the position of
a particle guiding center, & the particle position, and p = & — R the Larmor radius
vector. One can define two orthonormal vectors e ; and e, that are perpendicular to
the magnetic field in R; one then has:

Uy

((R)

p(R,vi,0) = (eL1cosa+ejysina) (4)

where v and v, are the components of the particle velocity that are parallel and perpen-
dicular to the magnetic field, and where «a is the gyroangle. The gyrokinetic equations
describe the evolution of the guiding center distribution f(R, V), vL); the dependence in

the gyroangle o has been averaged out.



2.2.1 Original equations

In our notation, using the variable v, instead of M = m;v? /2Q, the equations from [16]

become:
d—;‘—' % jvm%www%m%%ﬂ—%hx [hXVXB (E)  (6)
dstL _ ;vw”v h+ S b VBB (E) (7)

0f AROS L dv 0 | dvy 0f

ot T AR T T ow T dt G (8)

e = [ 1R o) + =000~ ()R, >>%”—)] S(R -+ p)dRdv
9

(@) (R,vy) /gb — x4+ p)dzeda (10)

(ENRuos) = (60 (1)

Here, dz, dR and dv are associated with the integration over configuration and velocity
space. The nonlinear terms in the electric field equation (11) have been left out. In each
equation, the leading order terms only have been kept: B* = B + v 5 RV Xk has been
replaced by B and the term in O(€2) in the density equation (9) has been left out.

Equation (8) can also be written as the total derivative of f along the guiding center

trajectories: 1
g/ (B(t), (), v (2)) = 0 (12)

with the guiding center trajectories (R(t),v(t),v.(t)) defined by Egs. (5-7) for every

possible initial condition.

We shall treat the problem perturbatively. We first look for a stationary axisymmetric
solution fy of the equations, associated with a constant potential ¢o = 0. We set
f=fo+ cf and ¢ = $o + €ad, where ¢, is a small parameter proportional to the
amplitude of the perturbation of the stationary solution. We then expand the equations

to first order in ¢, to obtain the evolution of the perturbations f and .

To simplify notation, we now suppress the tildes over the perturbed quantities.
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2.2.2 lIon equilibrium distribution

We first need a stationary solution of equation (12). Since we consider equilibria free of
electric field, the gniding center trajectories are given by Egs. (5) to (7) with (E) = 0.

One can easily verify that these trajectories have three constants of motion: the kinetic

1

-Q-m(vﬁ +v7), the magnetic moment M = mv? /2Q and the toroidal canonical

energy € =
angular momentum ¥y = ¥ + %Rv“hw. Any arbitrary function fy of the constants of
motion is a stationary solution:

d _ dG 8f0 dM 8f0 d\Ijo afO _
dtfo(ﬁ’ M, Wo) = o T wam @ ov, 0 (13)

Expanding fo(¥s) around ¥, one gets:

fol ) = fo(W) + 22wy — ) (14)

The second term is smaller than the first by a factor (p/L, ~ ¢;) and can be neglected;
we therefore take fy as a function of ¥ instead of Wy, or equivalently as a function of
s. Choosing two free functions, the ion guiding centers density no(s) and temperature

Ti(s), we define fo as a local Maxwellian:

€,8) = —_no(s) ex {—lvﬁ—Hﬁ}
fO( ) ) (271")3/2”?}11'(3) p 9 Utzhi(s) (15)

2.2.3 Linearization of the ion response

We now carry the expansion in perturbation amplitude, writing Eqs. (12) and (9) to

first order in ¢,:

dR vi+vi/2 VB of VXB
= = a hx 7 ﬁhx hx 5 (16)
dy; 1, dvy 1
—d"%'- = §-le h y m— = —Q—U_J_’UHV h (17)
d
g TR, v(8), v (t)) = T(E) (18)
_ _(B)XBdfs g, .. 0f
Ofe 1 8fs VB
—_ (U”a—vn + 5’0_]_%) <E> h><§
il VXB| | g2
+Bh>< hx iz <E>8v”




The density equation (9) becomes:

m(w):/[f(R,vn,vJ-H X (¢—(¢>)af0

miv L Ovy

S(R—z+p)dRdv  (20)

2.2.4 Long wavelength approximation for the polarization density

The second term in Eq. (20) is the polarization density, which depends on the potential
through an integral over the equilibrium distribution function fy. The integral kernel
has a correlation length of the order of the Larmor radius. Since wavelengths longer
than the Larmor radius are those which seem to lead to the highest values of anomalous
transport, one can assume k£ p < 1 without losing the correct description of the most

important modes.

By expanding the delta functions around R— in (10) and in the second term of (20) to
second order in p and performing the integrals over all the velocity variables, including
the gyroangle, one gets a differential expression for n; that is valid to the order of (kip)*:

nil@) = [ F(R,op01)0(R— 2 + p)dRdv + V. [%Vﬂﬁ(a@)] (21)

2.3 Model for electrons and closure

The quasineutrality constraint n, = n; is used. The electrons are assumed to be bound
to and to respond adiabatically within their magnetic surface. For small electron density

perturbations n., we get:

ni(@) = n.(e) = (¢(@) — &(s)) (22)

where —e is the electron charge and ¢(s) is the magnetic surface average of ¢(a). The
second term is non-zero for axisymmetric (n=0) perturbations only. It can be dropped,

since we will not consider such perturbations.

This closes our system of equations by providing an equation for the electrostatic po-

tential.



2.4 Consistent MHD equilibrium

The functions W and T(V) that appear in the expression for the magnetic field, Eq. (1),
are given either by an ad-hoc functions or by a numerical solution of the Grad-Shafranov
equation computed by the code CHEASE [14]. In that case, we use consistent kinetic
equilibria fo and MHD equilibria: the pressure profile that determines W through the
Grad-Shafranov equation is related straightforwardly to the density and temperature
profiles that determine fo, Eq. (15):

pls) = ni(s) (Te(s) + Ti(s)) (23)

This coupling introduces an interesting dependence on the value of the density: without
(23), the density appears only through its logarithmic gradient, which is insensitive to a
multiplication by a constant. The finite-pressure stabilization of ITG modes (or second

stability region) occurs at high density [17] [18].

2.5 Toroidal Fourier transform

Since the equations are linear and the equilibrium is homogeneous in the toroidal di-
rection, every toroidal Fourier harmonic n is independent. Choosing one value of n, we

define transformed quantities, denoted by a tilde (~):

f(R, 0, Z,v,01) = f(R, Z,v, vL)eiS(R"O’Z) (24)
¢ R, ¢, Z) = §(R, Z) 5I0:) (25)
S(R, 0, 7) = E(R, Z) — ne. (26)

At this point, we take ¥(R, Z) = 0, and the transformation reduces to a simple Fourier
transform. Later, ¥ will be used to split off from f a fast variation in R and Z; the

development that follows is valid for arbitrary functions Y(R, Z).
Defining K = VS and noting that %S = K-%R, we get:

df dsS
4

i =T, (27)



= = (EYXBOfo q, = 0f
Y o)

fi(x) = / f(Rvp,v)6(R — & + p)e B -5 Rdw (29)

+ (KL + V1) 5o KL+ V1) dle)

(E)(R,v,) = —/ [(Z'K + V) 5(:,;)} §(x — R+ p)e”@= 5 ) qgdy. (30)
The toroidal angle ¢ now appears only in S(z) and S(R). However, the phase difference
S(@) — S(R), which is related to the toroidal component of the Larmor radius, does not
depend on ¢. We note that V; and V operate on quantities that do not depend on ¢,

and that their component along V¢ has been removed into the vector K. The tildes

over the transformed quantities will be omitted hereafter.

2.6 Final equations

Incorporating all the elements developed above, one obtains the final equations of our

model.

o Unperturbed guiding center trajectories:

dR vi+vl/2, VB of VxB

?t— = U” Q hX B — ﬁh th B (31)
dyy 1, dv, 1
LA VAY i -h 2
a2ttt Ty 5ULUY (32)

e Evolution of the perturbed distribution function along the unperturbed guiding

center trajectories: o ds
n —HEf =T(E), (33)
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TE) = ——par"~ mih'<E>5qT” (34)
ofo 1 0fp VB
B (UH8U|| + imavl) <E>.h>< B?

VXB dfo
ST EVZLO
(E) 5o,
e Self-consistent electrostatic potential and the gyro-averaged electric field:

nope

1.

Bla) — (KL + V1) =2 (KL + V1) é(x) = (35)

= /f(vaH,U_L)(S(R —x + p)eS PSRy
(E)(R,v1) = —% / (1K + V) ¢(x)] §(x — R+ p)e" @5 BEdpda.  (36)

o The vector K is given by the gradient of S, Eq. (26), fo by Eq. (15), p by
Eq. (4) and the magnetic field B by Eq. (1). Both dR = dRdZRdy and de =
dR,dZ,R.dp, are related to the integration over configuration space and dv =

dyydvivida to the integration over velocities.

¢ An equilibrium s fully specified by four free functions: the density ng(s) and the ion
and electron temperatures T,(s) and T;(s) determine the equilibrium distribution
function. A fourth function is needed, in addition to Eq. (23), to determine the
magnetic field, Eq. (1), through the Grad-Shafranov equation. We usually specify

either the surface-averaged current density or the current flux 7'(¥).
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3 Numerical resolution with a finite element PIC

method

We shall solve the system of equations derived in the previous section by integrating
the perturbed distribution function f, Eq. (33), along the unperturbed trajectories of
the guiding centers, Eqs. (31) and (32) using the source T(E) from Eq. (34). This
source depends on the self-consistent electric field given by Eqs. (35) and (36). This is

performed numerically with a finite element Particle-In-Cell method presented in this

section.

We represent the potential on a grid that is aligned with the magnetic surfaces; this
has several advantages. First, the radial and poloidal resolutions can be chosen indepen-
dently and adapted to the mode simulated. Typical mode structures are then reproduced
with relatively few grid points, and the particle noise, which is proportional to the square
root of the number of particles per cell, is consequently low. Second, it allows, when
appropriate, to discretize only the radial interval where the mode is localized; this in-
terval is usually much smaller than the plasma minor radius. Third, it allows to filter
out the poloidal harmonics that correspond to high values of & and whose amplitudes

are known to be small in unstable modes.

Complex geometries are difficult to deal with using standard PIC schemes, but are
handled naturally within the framework of finite elements. If the finite clement PIC
method [19] [20] is applied to a 1D slab Vlasov-Poisson model using linear finite elements,
one obtains a standard energy conserving scheme. With elements of higher order, the
scheme obtained also conserves energy in time and the solution of the field equation has
a higher order spatial convergence. Finite element PIC schemes can therefore be seen as
generalizations of standard energy-conserving schemes which allow complex geometries
to be used and have good spatial convergence properties. The finite element method is
not prone to the numerical instabilities described in [21]; it also allows to solve the field
equation (35) without approximation, contrarily to the usual simple Fourier methods
where the coefficients of the equation are assumed constant and where a Cartesian

operator replaces the correct cylindrical one [11] [12].

We also use a flexible phase space discretization scheme that allows to “pack” the par-
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ticles in phase space. The resulting scheme is very efficient in term of the number of

particles and grid points required for a given accuracy.

3.1 Discretization of the distribution function

The ion distribution function f has to be discretized in a four-dimensional reduced
phase space (1, Z, v, vy ), the toroidal angle  and the gyroangle o having been treated
analytically. The Jacobian in the reduced phase space is J = (27)? Rv, .

The initial distribution function is discretized in the reduced phase space domain limited
by [sf,, <s<sl 1 [0<0< 27] and [v] + UIZI < k%], where sf s . and &,
are numerical parameters to be chosen. This domain is partitioned into N, subdomains
which are referred to by the subscript v. Each has a phase space volume noted ¢, and is
centered initially on the coordinates (R,, Z,,v),,v1,). The subdomains can be concen-
trated where the distribution function is expected to be maximum or highly structured.

The distribution function is then discretized in the following way:
(1) cpo
J(R, Z, v, vL,t) = Z f—J(—lcV’ Z(R ~R,(1))0(v) — v (1) (ve — v (1)) (37)

where §*°/(R) = §(R)3(Z) denotes a delta function in the poloidal plane. The weights
fu(t) represent the perturbed number of ions in the phase space volume ¢, and the local
value of the distribution function is given by f,/¢,. We refer to the N, subdomains
as IV, gyrocenter "particles”; the center of each domain (R,, 7, V|, V1) is the particle
position in reduced phase space, £, the phase space volume carried by each particle, and

f, the particle weight.

Since the flow of guiding centers in phase space is incompressible, the phase space volume
{, carried by a particle is constant in time, though its shape changes. Therefore, inserting
(37) into (33) and integrating in phase space over ¢, yields, since £, commutes with ad—t
on the left hand side:

TG ST e (39)
The particle positions in reduced phase space (R,(t), Z,(t), vj.(t),v..(t)) are evolved
in time with Egs. (31) and (32). One therefore has a scheme that solves Eq. (33):

the value of the distribution function along the unperturbed guiding center trajectories

varies with the source T (E).
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Particles that leave the plasma are eliminated. As they carry only the perturbation
of the distribution function, this is equivalent to neglecting the perturbation along the

orbits that are not fully inside the plasma.

3.2 Discretization of the electrostatic potential with finite ele-

ments
3.2.1 The mesh and the finite elements

The finite elements chosen are splines, which are commonly used in Particle-In-Cell
simulations. Their usefulness stems from their robustness in avoiding sub-grid-scale

oscillations, and from the property that:

> SP(s+jAs) =1 (39)
J
for any value of s, where SP(s) is a spline of order p and of length (p + 1)As. This
ensures that the total charge associated with a particle is independent of its position

with respect to the mesh.

Let 7 and ¢ cover the intervals [1,...,n,] and [1,...,n] in what follows. We define a

two-dimensional mesh in (s, 8) of n,Xng points, with 0 < s, < Spae < 1, Fig. (1):

$j = Smin + (J — 1)As, As = imer=smin

ne—1

9; = (i — 1)A0, Af = 2=

ng—17

(40)

Let L;(s) be n, linear splines, centered respectively on s;, and {L;(8)} be ng periodic
linear splines, centered respectively on ;. We define similarly two sets of quadratic
splines {Q;(s)} and {Q:(0)}, Fig. (2), centered respectively on s;41/2 and on 64/, [19].
A two-dimensional basis for the discrete potential is built either with the linear (41) or

the quadratic (42) splines:
Ak(S,H) = L](S)LZ(H), k:i+n9(j—1), k= [1,...,nsn9] (41)

Ak(s,H) = Q]‘(S)Qi(g), k:z+n9(]~1), k= [1,...,n5n9] (42)

14



Figure 1: Grid aligned with
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Figure 2: Set of quadratic splines in 6
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3.2.2 Representation of the potential

The potential is represented on this finite element basis by:
x) = Prhi(e) (43)
k

Inserting (37) and (43) into the field equation (35) and performing the integrals over v

and vy (but not over ) on the right hand side, one gets:

S | A(®) ~ (KL +V)-

7 (KL + V1) Al() (44)

Ezﬁ

— fV pol iS(R)—iS(x)
‘;/(%)235 (R—R,)§(R— +p,)e dRda

where p,, is the Larmor radius for the particle v. Multiplying this equation by an element

M), [ =1,...,nsnp and integrating over space yields:
quk "06 Ap(@) = (K |+ V1) (K + V1) Ag(e)| A(e)de = (45)
BQ

—Z/ o 2R5P01R R)S(R—a + p,)eSB=S@ 7 (2)dzd Rda

or, in matrix form, after integration of the delta functions and integration by parts of

the V| term:
> Muydr = N, (46)
k

My, = /{%@Ak(m)m( )+ Eﬁ [GK L+ V1) Ap(e)] - [(—i K + VL)AZ(;,;)]} da (47)

N, = Z g—;’r/A[(RU + pu)eiS(Ru)—iS(RﬁPu)da (48)

The computation of the vector IV is called “charge assignment” in Particle-In-Cell meth-
ods, because it assigns to the mesh the charge associated with the distribution function.
It appears naturally within the finite element formulation. The finite element matrix
M is complex, hermitian and positive definite. Once the charge assignment is done,
the coefficients ¢; are computed by solving the linear problem (46). This is achieved by
performing first a Choleski decomposition, followed by a back-substitution [22]. Since

the matrix does not vary in time, it is built and decomposed once only at the beginning

16



of the simulation. The back-substitution provides the solution very efficiently at each

time step.

The boundary conditions on ¢ are periodic in §. Radially, for all values of 8, we impose
D(Smazs 0) = G(Smin, 0) = 0, unless spmin, = 0; in that case, we require that ¢(s = 0,0 =

[0,27]) has a unique value.

3.2.3 Electric field

The gyro-averaged electric field (36) becomes, integrating the delta functions:
(E)Y(R,v,)=-Y -;%’;- / LKAL(R — p) + VAR — p)] SHE=P-isB) g, (49)
k

The electric field is therefore an analytic differential of the potential, which avoids spu-

rious numerical instabilities [21]. The gradient is computed exactly using:

_ OA DA
VAp = —EVs+ = V0 (50)

3.2.4 Gyro-averaging

We approximate with a four-point discrete sum the integrals over the gyroangle that
are found in the charge assignment (48) and the gyro-averaged electric field (49). This
has been shown [23] to be sufficient for perturbations with k; p < 2. It is correct to the
order of (ki p;)?, the order at which (35) is correct.

Furthermore, the Larmor radius is approximated to lie in the poloidal plane rather than
in the plane locally perpendicular to the magnetic field. The errors involved in the
poloidal plane are of the order of (B,/B;)? which is usually small in tokamaks. As a
consequence, V and K| in the polarization density, Eq. (35), are approximated as
the poloidal plane components of V and K, and the gyro-averages are computed in the

poloidal plane.

17



3.2.5 Filtering

Filtering the potential can improve the numerical convergence of PIC schemes if it is
used carefully. An efficient filter must use a representation where the signal is well
separated from the noise. This is the case when the potential is Fourier transformed
in the poloidal direction: the poloidal spectrum of unstable modes is localized around

poloidal harmonics m ~ ngq.

The potential is Fourier transformed in the poloidal direction and harmonics that are
outside a user-selected range are eliminated. The filtered potential is then transformed
back. In our simulations, we control the poloidal resolution with the range of poloidal
harmonics; convergence with the filtering range is usually very fast. The number of
poloidal grid points is kept large enough so that the highest poloidal harmonic allowed
by the filter is well resolved. No filtering is done in the radial direction.

3.3 Spatial coordinate systems

The field quantities are computed in magnetic (i.e. (s,0)) coordinates, because it allows
an economical representation of the unstable modes and produces very good noise prop-
erties. This coordinate system has a singularity at s = 0 that causes two difficulties for
dealing with particles: first, g_f_ along guiding center trajectory diverges near the axis;
second, finding the particle position @ = R 4 p from the guiding center position R is
difficult near the axis. These problems are circumvented by storing and evolving the

particles in (R, Z) coordinates.

The transformations involved turned out to be computationally fast. For instance, the
electric field from Eq. (49) is dealt with in the following way: for each of the four values
of o considered, the particle position @ = R+ p(v1, ) is converted from (R, Z) to (s,0)

coordinates; A(s,®) and its gradient can then be easily evaluated.
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3.4 Computational cycle

The system is initialized by partitioning the phase space into N, gyrocenter particles,

the particle v representing a phase volume ¢, and carrying an initial weight f, =

Lf(R,,v,,t =0).

The charge assignment (48), which involves a four-point gyro-average deposition of the
weight, provides a discrete charge on a (s,0) mesh. The finite element matrix problem
(46) is then solved for the discrete potential. This allows the computation of the potential
(43) and of the gyro-averaged electric field (49) at any point in space. The gyro-averaged
electric field is given by a four-point average of the exact gradient of the electrostatic
potential. The time-derivative of the particle weights (38), given by the computed
electric field, and of the particle positions (31) and (32) are then known. This has to be
evolved in time with an appropriate scheme; the one we use is described in Appendix
(6.1). When the system evolves, the most unstable eigenmode of the system grows faster
than any other mode and, after a finite amount of time, its amplitude dominates the
perturbation. The spatial structure of the associated potential can then be reconstructed

and the eigenmode frequency and growth rate can be measured during the time evolution.

Quadratic elements yield better results than linear elements; they provide a more ac-
curate and less noisy answer in a computational time that is only slightly longer, or,

conversely, a shorter computing time for a given accuracy.

3.5 Extraction of the ballooning phase factor

ITG modes can be unstable only when k << k.. Setting k= h-Vo(s,x,p) =0, one
can obtain a good estimate of the poloidal mode structure:

A

¢(s,0,0) = ¢(s) exp[—ing + inq(s)x(s, 0))], (51)

1 BV
x(s,6) = q(s)/o BV

where ¢(s) is a free complex function; y is the “straight-field-line” angle [24].

de’, (52)

As high-n modes have a fine poloidal structure, their numerical treatment demands both

a large number of poloidal grid points and a small time step At¢. Indeed, integration
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accuracy and stability require At to be smaller than the time it takes a particle to cross
one poloidal wavelength. This translates into a maximum time step which is inversely
proportional to n. This limitation at high n can be overcome by taking advantage of
the approximate knowledge given by Eq. (51), similarly to what was done in [25]. Let
us redefine transformed quantities by redefining the function ¥ in Eq. (26):

£(s,0) = na(s)x(s, ). (53)

With this, the transformed potential (25) corresponding to (51) reduces to d~>(s, @, 0) =
gﬁ(s) and does not vary poloidally: the structure corresponding to kj = 0 (or, in other
words, the ballooning phase factor) has been extracted analytically. In unstable ITG
modes, k| is small, but non-zero, and the extracted quantities vary in the poloidal
direction, but only slowly, even at high n. This transformation is closely related to that

which leads to the ballooning approximation.

The transformed quantities ¢ and f are not periodic at the boundary 6 = 0/27 for non-
integer values of ng(s). To avoid the technically cumbersome jump conditions involved,

we consider a simpler choice for ¥.(s, §):
E(S, (9) = ?’I’LQX(SQ7 (9) (54)

where my is an integer close to ng(sg) and sy is the expected radial position of the
mode. The equations derived in previous sections are valid for any function X. No new

approximations are involved.

Figure (3) shows the potential from a typical medium-n (n = 24) simulation without
extraction. The same physical case is shown in Fig. (4), using the extraction with
mo = —37. The frequency and growth rate agree within 1% and 5% respectively, which
is within the uncertainties resulting from the numerical resolution. The number of
poloidal grid points needed is reduced, which in turn reduces the numerical noise and
the number of particles required. The simulation time step can be greatly increased
because the poloidal wavelength of the transformed quantities is large and independent
of n. As a consequence, the extraction decreases the cost of large n simulations by two

orders of magnitude while improving the precision of the results.
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Figure 3: Potential ¢(s,0) obtained in a simulation without extraction, i.e. with
Y(s,0) = 0, using 128 poloidal grid points. The frequency and growth rate obtained
are w=627 kHz and v=233 kH:.
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Figure 4: Simulation with extraction of ¥(s,0) = mox(se,0), mo = —37, using 32

poloidal grid points. The transformed potential ¢(s,0) (right) which is discretized using
the finile elements, varies very slowly compared to the potential ¢(s,6) = &(s,0)e'® (left).
The frequency and growth rate obtained are w=63/ kHz and y=2/3 kHz. The time step
is 24 limes larger than in the simulation shown in Fig. (3), and both the noise and the
number of poloidal grid points are reduced. The extraction decreases the cost of large n
simulations by two orders of magnitude while improving the precision of the results.
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4 Validation

The code is validated in three different ways.

First, we check the power consistency of the simulations: the work of the ions in the
electric field must be equal to the time-derivative of the field energy. These quantities

are calculated during the evolution and are compared.

Second, we show that the simulations converge to a unique solution when the numerical

resolution is enhanced.
Third, we compare the results with those of other codes that solve the same equations.

These three validations are successful; they have been made on realistic cases of physical
interest. We believe that together, they show that the model is implemented correctly,
that the numerical procedure converges well to the physical solution of the equations

solved and that the results of the code are valid.

4.1 Power consistency

The original nonlinear equations conserve energy in time; this cannot be checked directly
in a linear simulation, since the ion kinetic energy depends on the perturbed particle
trajectories, which are not known. However, the time-derivative of the kinetic energy
can be written in the form of the work done by the particles in the electric field, and
then computed. It can then be compared to the numerical time-derivative of the field
energy, which is directly accessible. The field energy is given by:

Npe

Eﬁeld - & [i‘

! ¢2+-é%%13L2 da (55)
The first term is related to the adiabatic electron response and the second to the ion
polarization drift. For notation compactness, ¢, f and F refer here to the quantities
before the transformations (24) and (25). Using Liouville’s theorem as in [16] and the

field equation (35), one can show that:

dEgaa _ dEin

e e / f vge+(E)dRdw (56)
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where %Ekin is the power transfer from the particles to the electric field, Vge = %R is

the guiding center velocity from Eq. (31) and (F) is the gyro-averaged electric field.

When one eigenmode only is present in the simulation, its growth rate  is given by the

logarithmic time-derivative of the field energy:

1 dEgeq
v = YT or (57)
1
y=— qz-/f vger(E)dRdv (58)
2E5a4

Equation (58) therefore provides an instantaneous measurement of the growth rate. The
destabilizing mechanism can be revealed by decomposing the growth rate (58) into a sum
of the various contributions of the guiding center velocity in Eq. (56). For instance, one
can distinguish the slab ITG mechanism [26] ¥ ~ [ fvjh-(E) from the toroidal ITG
mechanism [27] v ~ [ foP%.(E), where vP% is the poloidal drift guiding velocity.

gc gc

In Fig. (5), left, one can compare the growths rates computed with Eqs. (58) and (57)
the time-derivative being computed with finite difference. Their relative error is shown
on the right. The two simulations shown (top and bottom) differ by the number of
particles used only. When there are enough particles, after an initial transient period,
the error reduces to the order of one percent. It decreases when the numerical resolution
is enhanced, e.g. when reducing the time step. The numerical scheme does not guarantee
intrinsically the power consistency (56). Since the powers compared are measured from
two very different quantities, (the time derivative of the potential and an instantaneous
integral over the particles), the comparison provides a good measurement of the quality
of a simulation. It checks both whether the physical model is implemented correctly and
whether the numerical resolution is adequate, which is the case in the example shown

within an uncertainty of less than two percent in the growth rate, Fig. (5), bottom right.

4.2 Convergence studies

There are a number of numerical parameters which define the resolution with which the
model equations are solved. The phase space discretization of the distribution function
is determined by the number of particles and the phase space discretization limits (range

in radial variable s and the maximum discretized velocity). The discretization of the
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Figure 5: Left: Normalized power transfer from particles to field, Eq. (58) (plain line)
and variation of field energy, Eq. (57) (dotted line), the time-derivative being computed
by finite difference between time steps. The difference is so small that the curves are
difficult to distinguish on the present scale. Right: relative error on power transfer.
Top: simulation with one quarter of a million particles, bottom: the same case with four
million particles.
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potential is controlled by the number of poloidal and radial mesh points as well as the
range in poloidal harmonics that are not filtered out. The magnetic field is stored on
a grid (see Appendix 6.2) whose resolution must be adequate. The simulation timestep
sets the time resolution, and, finally, the total simulation time must be long enough to

allow the most unstable mode to grow to a dominant amplitude.

All these parameters have been checked to provide convergence, i.e. above a certain
resolution, their value does not influence significantly the code results. We show two
convergence tests here. First, we show the convergence of the growth rate obtained with
an increasing number of particles. Second, the spatial structure of the numerical solution
to the field equation is shown to converge to the exact solution as the mesh spacing to

the fourth power when we use quadratic finite elements.

4.2.1 Convergence with the number of particles

We show here the convergence of the growth rate with the number of particles. The
growth rate is shown versus the number of particles in Fig. (6a). The full line shows the
growth rate averaged over a time span after the transients. The growth rate converges
well to a fixed value; for this case, a quarter of a million particles is enough to produce a
result accurate to the order of a percent, which is more than enough for our purpose. The
final results are usually produced using one million particles for additional safety. The
standard deviation, shown by the crosses, shows the typical error in the instantaneous
growth rate. The relative error in powers, Fig. (6b), converges to a fixed value of the
order of one percent. It can be reduced further by enhancing the numerical resolution

associated with other numerical parameters.

4.2.2 Convergence of the potential with mesh spacing

We measure here the accuracy of the numerical solution of the field equation (35). An
analytic solution is found for a particular perturbed density; this density is used as the
right-hand-side of Eq. (35). The field equation is solved and the discrete potential
obtained is compared to the analytic solution. The error obtained is shown in Fig. 7 as

a function of the number of radial grid points: it decreases as the mesh spacing to the
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Figure 6: Convergence with the number of particles: growth rate (a) and relative power
error (b). The crosses are one standard deviation away from the time-average, shown

by the full line.

fourth power for second order spline finite elements, an excellent convergence property.
The analytic solution used is maximum at the s=0 origin, this test therefore shows that
the unicity condition is implemented correctly. For quadratic finite elements, 3-5 points

per wavelengths ensure that the results are converged with respect to the mesh spacing.

4.3 Comparison with other codes

The code was validated against two other codes: the global eigenvalue code [28] and the
nonlinear code [12], during the linear growth phase. Our comparison case has a major
radius Ry = 1.2 m, a minor radius ¢ = .2m, an average Larmor radius p = 3.2 mm, a
parabolic safety factor ¢ = [1.25...4.25] and a flat density. The steepest temperature
gradient is at s = .5 where Ly /R = .13. The growth rate and frequencies of the most
unstable mode are compared on Fig. (8). The growth rate from the eigenvalue code
differ at low n because it does not take the trapped ions into account, and the frequency
(at low n) is comparable to the trapped ion bounce frequency. The nonlinear code results
have a large uncertainty in the frequency related to the method of measurement. The
field equation solved in this code is approximate (the coeflicients of the equation are
assumed constant in space): this might explain the differences in growth rate observed

at low n.
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Figure 7: Convergence of the potential with the number of radial grid points. The num-
ber of poloidal grid points varies proportionally. (o0): linear finite elements; the error
converges with the number of radial points squared. (z): second order finite elements;
the error converges with the number of radial points to the fourth power.

Both the eigenvalue code and the nonlinear code include Larmor radius effects to all
order in (kyp), corresponding to Eq. (20), while the present code uses an expansion in
Larmor radius leading to Eq. (21). This approximation breaks down at high n (kep ~ 1,
here at n &15), but seems to have little effect here, since the results of the three codes

agree well, at least for the growth rate.
Overall, though, the results are in good agreement, and the validation is successful.

The code was also benchmarked qualitatively against the nonlinear code [11] in a version
that uses a full MHD equilibrium. More benchmarking was done against the eigenvalue
code and reported in [28]; the latter code has been benchmarked successfully [13] against

a ballooning code.

5 Conclusions

We have developed a global gyrokinetic simulation code to address the problem of the

stability of electrostatic perturbations in realistic toroidal equilibria. A time-evolution
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Figure 8: Frequency(left) and growth rate(right) obtained with the three codes compared,
versus the toroidal mode number n. Positive frequencies refer to modes propagating in
the ion diamagnetic direction.

approach allows us to find efficiently the most unstable mode of the system. The finite
element formulation allows to use magnetic coordinates for the representation of the
potential and provides excellent convergence properties. The fast-varying poloidal & = 0
structure (or ballooning phase factor) was extracted from the equations without loss of
generality for the global solution; we then solve for the slowly-varying envelope. This
reduces the computing time by up to two orders of magnitude and allows to treat
all values of the toroidal mode number n without approximation. The code has been
carefully validated, both with convergence tests and by comparison with other codes. All
toroidal wavelengths, all plasma sizes, shapes and pressures can be handled routinely,
often with less than a million particles. With this code, we can perform global, kinetic
calculations to study, Fig. (9), the regimes of toroidal ITG, trapped-ion mode and slab
ITG, as well as their transitions. The code has been applied to study finite pressure
effects on ITG modes [15] [17] [18].

Future development will be aimed at improving the physical model; we are currently in-
cluding the dynamics of the trapped electrons, which is know to be important, especially
at small values of n [13]. Other interesting improvements are the inclusion of plasma
flow, electromagnetic perturbations and collisionality. Extensions of the code towards

other 2D geometries (e.g. helical symmetry) have been started.
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Figure 9: Low-B JET-size equilibria with major radius Ry=3m, minor radius a=1.08m,
T; = 16 keV at plasma center. At the mode approzimate radial location, ¢ = 1.5, n;=4,
Ro/Lr=18 andT; =T, = 4 keV. Left: n=2, a trapped ion mode. Right: n=48, a toroidal
ITG mode. Simulation with | million particles and 32*32 grid points. The transition
between the trapped-ion and toroidal ITG regimes occurs around n=10.
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6 Appendices

6.1 Time integration scheme

We describe here the numerical scheme that is used to integrate the equations over time.
The superscript indicates the time step number. Starting from the weights f* at time

t", one obtains f™! at time #"*! in a predictor-corrector procedure.

Half step forward:

(a) Compute ¢ from f™, Eq. (46)
(b) Evolve f™ to fnts using T (¢"), Eq. (38)
(c) Evolve (R, Z,vy,v.)" to (R, Z,UH,UL)M’%, Eqgs. (31),(32)

Time-centered full step:

(d) Compute ¢"+3 from fr+s
(e) Evolve f* to f*+! using T (¢"*7)
(f) Evolve (R, Z, 'U”,'U_J_)Tl_'—% to (R, Z,v),v.)"

Steps (c) and (f) are done using a sophisticated Burlisch-Stoer scheme [22] which guar-
antees a very precise infegration, even for large time steps. Steps (b) and (e) need

special care if large time steps arc to be taken when Yi(s,#) has fast spatial variations.

In that case, 9 in Eq. (33) is large and induces rapid phase variations in f(t) during

one time step, up to many times 27 when the &k = 0 extraction is used at high n. A

good integration scheme for arbitrary values of %‘%At is obtained by splitting the time

step and integrating the fast variation analytically:

(A) fo=T+T4,
(B) Jos = f e—i%At’

(C) f45 = [+ T4

where At = t"*1 — " for step (e) and half that value for step (b) above. This scheme is

ds

5; and 7 do not vary in time.

exact when
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6.2 Coupling with the MHD equilibrium solver CHEASE

The functions W and 7'(V) that appear in the expression for the magnetic field, Eq. (1),
are given either by an ad-hoc function or by a numerical solution of the Grad-Shafranov

equation computed by the code CHEASE [14].

In an interface developed for our gyrokinetic code, the quantities ¥, %, g—g—, g%, 227%,
EQ%, T, and %, are interpolated using cubic splines on a (R, Z) mesh which encloses
the plasma boundary. The quantities appearing in the gyrokinetic equations, such as
%B XV B are pre-computed in the gyrokinetic code and stored on the same mesh. They

are retrieved and interpolated linearly when needed.

Alternatively, W(R, Z) and T'(¥) will be given by ad-hoc functions, producing a circular

equilibrium without Shafranov shift and with a prescribed safety factor profile:

(R, Z) = /(R — Ra)? + 22 (59)
W(r) = /0 ;<§3dr’ (60)

q(r) = qo + (g5 — qo)(r/a)P (61)
T(¥) = BoRo (62)

where @ is the plasma small radius and g(r) is the approximate safety factor which

depends on the parameters gq, g, and p,.

6.3 Parallelization on the T3D

Most of the computing time is spent on evolving the distribution function, i.e. on
dealing with particles. This leads us to divide the particles among the processors, thus

spreading among processors the most computing-intensive calculations.

The charge assignment is done privately: each processor computes the charge density
corresponding to the particles it stores. The private densities are then summed across
the processors, each processor getting as a result the charge corresponding to all the
particles. The back-substitution for the solution of the field equation is duplicated on

every processor, as it is very fast.
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Figure 10: Speed-up obtained on the T3D for a small size run, 262000 particles and
30230 grid. The computing speed scales up very well to 64 processors.

Figure (10) shows the ratio of execution time obtained to the execution time on one
processor, or speed-up, as a function of the number of processors. The computing time
decreases linearly with the number of processors up to 64 processors for typical numerical
parameters, and up to 256 processors for larger physical cases. The performance obtained
is around 15 Mflops per processor. Typical well-converged cases such as shown on Fig.
(9) takes around one hour on a 64-processor configuration, but a rough growth rate,

within 10%-30%, can be obtained ten times faster.
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