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1 Introduction

Equilibrium and stability computations are an important part of theoretical
investigations of tokamak plasma physics and interpretation of experimental
data. Several MHD stability codes have been developed during the last twenty
years to satisfy these needs [1-6]. However the self-consistent modeling of plas-
mas with separatrix inherent to divertor configurations and investigations of
doublets with internal separatrix are beyond the scope of most of the codes.
The reason for that is the use of the flux coordinates in the problem formula-
tion. Indeed, the ideal MHD equation anisotropy — different derivative orders
of tangential displacement within and across magnetic surfaces — forces the
use of the computational grids aligned with magnetic surfaces. The coordi-
nate transformation to the flux coordinates connected with magnetic surfaces
is not regular in the configurations with a separatrix. In the codes with Fourier
decomposition in the poloidal angle, this results in a large number of harmon-
ics needed for the solution representation. The finite element codes are more
suitable to treat the associated singularities. The domain decomposition into
several subdomains with nested flux surfaces makes possible the computations
of the divertor and doublet configurations.

The use of hybrid finite elements gives a family of difference schemes which do
not pollute the MHD spectrum. However, the numerical destabilization results
in a convergence from below to the spectrum lower boundary and therefore
difficulties in marginal stability determination. The elimination of the desta-
bilization makes possible an efficient calculation of the stability index using
the reduced ideal MHD stability problem (§W-code) with different spectrum
structure.

The KINX code presented in the paper has proven to be a useful tool of sta-
bility analysis for different types of tokamak plasma configurations. Examples
of the code applications are given in the Section 4.

2 Formulation of the problem
2.1 Potential energy representation

Linearized ideal MHD eigenvalue equations for a plasma displacement Eem
from an equilibrium can be written in the weak form [7]:
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where f is an arbitrary trial vector. The quadratic functionals W(f f) and

WK (f 13 ) correspond to potentlal and kinetic energies of the plasma displace-
ment. A negative eigenvalue w? gives an unstable solution growing in time.

The following projections of the vector E are used
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where B is the equilibrium magnetic field

B=V¢ xVé+ F($)Vé= Ve x D, (3)

£ = { Vi, ¢ is the toroidal angle. The functionals W and K can be repre-
sented as follows [8]:
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where 7 is the current density ; =V x E, ' is the adiabatic index, p is the
plasma pressure, p, is the plasma density, V, is the plasma volume, W, is the
vacuum part of the potential energy.

The flux coordinate system (3,8, #) with Jacobian /g = (Vi x VO - V¢)~!
1s used where ¢ = const mark magnetic surfaces, 8 is a poloidal variable and
¢ is the toroidal angle. In the flux coordinate system the first term in the
expression (4) for W can be rewritten as follows:
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where gi; and /g are metric coefficients and Jacobian of the coordinate system,
v =—\/gF[r?, (r,z,¢) are cylindrical coordinates. There are no 1)-derivatives



of the components ¢P and ¢2 entering the functional W. This fact leads to a
noncompactness of the operator corresponding to the equation (1) and gives
a spectrum containing continuous parts and accumulation points [9].

For an axisymmetric equilibrium Fourier modes f_;lei"qs with different toroidal

wave numbers n are decoupled and the equation (1) becomes a two—dimensional
eigenvalue problem for each &,.

2.2 Vacuum

The vacuum part of the potential energy functional (4) is
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where A is a vector potential of the vacuum magnetic field perturbation
6B, = V x A. At the ideally conducting wall

ixA=0. (7)

The boundary condition at the plasma -~ vacuum interface is given by the to
tangential electric field continuity across the interface:

ixA=ix(€xB) (8)
Then the total pressure continuity is a natural boundary condition for the
variational formulation (1).

The Euler equation of the functional (6)

VxVxA=0 (9)
together with the boundary conditions (7), (8) specifies the vacuum problem.
2.8 6W-code

To find only the stability index — the sign of the lowest eigenvalue — it is
suflicient to use some other norm instead of the kinetic energy to minimize



the potential energy (6W-code). It can be chosen as a positive functional of
only one displacement component ¢¥:

1 1
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This choice of the norm changes the spectrum structure, shifting the continu-
ous spectrum in such a way that unstable eigenvalue branches can be traced
into the stable part of the spectrum [10]. It is important for stability limits
computations.

The specific features of the spectrum of the reduced ideal MHD eigenprob-
lem are generated by the singularity in the potential energy functional Wy =
mingp W after minimization against the tangential components of the dis-
placement: the derivative 9¢¥ /0y enters the reduced functional under the
operator BV. The kernel of the operator BV includes so called resonant
harmonics Emnei(m9+”¢) with poloidal and toroidal wave numbers m,n sat-
isfying m + nq(,) = 0 at the resonant surfaces ¢ = %, in plasma, where
q(v) = 1/27 [ vdl is the safety factor. To study the behavior of the eigenfuc-
tions at a resonant surface one can consider the displacements localized near
the surface. Then the Rayleigh quotient of the reduced problem takes the form
[11]
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where y = (1) — 1,)/¢€, € = 0, &(y) is the lowest order in € of the £¥ resonant
harmonic,
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and the averaging is defined as

< f>= ;?//f\/gdﬂdqs.

The corresponding characteristic equation for £y = y* implies that
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where Dy is the expression for the Mercier criterion, Dys < 0 corresponds to
instability.

From (12) it follows that negative values of (Dp; — Gw?) correspond to noninte-
grable solutions giving rise to the continuous spectrum. The lower boundary of
the continuum is w? = wyr = Dpr/G. So if the configuration is Mercier stable,
Dyps > 0, then the boundary of the continuum shifts into the w? > 0 region.
This is in contrast with the full normalization problem where the Alfvén con-
tinuous spectrum boundary w? ~ ming(m +ng())? = 0 if a resonant surface
exists in the plasma.

Near the magnetic axis the asymptotic behavior of eigenfunctions can be de-
scribed in the frame of a cylindrical model. For any harmonic numbers m,n
the Euler equation of the reduced problem takes the following form

—y(y€') +m?(1 —w? /)¢ =0, (13)

where the derivatives are in y — minor radius coordinate, { = ¢¥, W% =
(Bg/y)*(m+nq)?/p, is the Alfvén frequency at the axis. This gives the asymp-
totic dependence

o = ml(1 - w2, €~y (14)

For a finite plasma density p, on axis the asymptotic behavior of the eigen-
functions of the reduced problem differs from that of the full problem where
&Y ~ y™l. From (14) also follows that in the reduced problem there exists
one more continuum spectrum branch w? > wy?. Depending on the value of
q on axis the value of wy? can be close to zero, again making the marginal
stability computations more difficult. To avoid it the density function p,(%)
can be chosen so that p,(1) ~ % near axis where ¢ is the normalized poloidal
flux vanishing near axis. Then wy? — oo and the additional continuum dis-
appears while eigenfunctions restore the asymptotic behavior &% ~ yl™l at

the axis. The choice p, ~ |V%]|? in the PEST-2 code [10] satisfies the above
requirements.



2.4 Resistive wall in vacuum

To include the effect of the resistive wall into the model it is sufficient to
rewrite the functional W, in the following form:

~

piy

W, = %/B’ 6B, - §) dS, (15)
Sp

where S, is the plasma—vacuum interface surface, 7@ is an external normal to
Sp. The problem (1) can be reduced to an eigenvalue problem (nonlinear in
general) for ¢ as soon as 6B, is known in terms of £¥ on Sp.

For axisymmetric n = 0 modes the following representations for §B, in the
vacuum can be used [12]:

6B, =Vyx x V¢ + a, Ve, (16)

with the boundary condition at the plasma surface S,

x = —¢*.

From V X §B, = 0 in the vacuum region follows the equation for :

v. (ﬂ) ~0, x| 0,7 = co. ()

r2

The equation (17) is supplemented with the boundary condition at the resistive
wall using the thin—wall approximation:

ﬂﬁWW%=%x, (18)

where [-] is the jump across the surface of the wall, n is the ratio of the wall
toroidal resistivity to the wall thickness. The relation between the value of
7t - Vx needed for the evaluation of (15) and x at the plasma boundary can
be found using a Green’s function technique. The value of a; can be expressed
directly in terms of £¥ at the plasma boundary:

27
a; = —tw (/ fwy de) /(zw / drrdz + npolg ) (19)
0 C

tor w




where v = —F,/g/r?, S, is the toroidal cross section between the plasma
and the wall, C,, is the wall contour in the plane ¢ = const and Npol 18 the
ratio of the wall poloidal resistivity and the wall thickness.

For modes with n # 0 the perturbed magnetic field in the vacuum is repre-
sented by a scalar potential ®

§B,=V®, V=0,

with the boundary condition

o 7-ve 1 (o .
@ VYl rdl/d0(89+mV§ ’

at the plasma vacuum boundary contour [. At the ideally conducting wall the
boundary condition is

d®

— = 0.
dn

The jump of the potential A® across the resistive wall is related to the deriva-

tive at the wall through the boundary condition directly following from Fara-
day’s and Ohm’s laws for thin wall approximation [13]

4o , AD 1 a( r am)
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where rg = 0r/00, z5 = 0z/00. Using a Green'’s function technique the values
of ® at the plasma boundary can be expressed in terms of d®/dni at the
plasma~vacuum boundary.

3 Numerical method
3.1 Approzimation

The flux coordinates and hybrid finite elements [14] are used to ensure the
spectral convergence [9]. The main requirement here is to choose for the tan-
gential components ¢P, ¢8 basis functions one order lower in the flux variable
v than for the normal component ¢¥. The additional property of the hybrid



finite element method is the use of different basis functions not only for dif-
ferent displacement components but also for different derivatives of the same
unknown, thus making the approximation of all terms in the potential en-
ergy functional constant in a mesh cell. This choice of discretization helps to
decouple the different branches of the MHD spectrum.

Each subdomain with nested flux surfaces in doublet or divertor equilibrium
configurations can be treated in the same way as a single axis plasma. The
calculations of matrix elements are performed separately for each subdomain.
The connectivity conditions between the subdomains involve only the values of
the component ¢¥ at the separatrix. The connectivity condition at the x-point
of the separatrix is replaced by the regularity condition ¥ = 0 (the same as
at the magnetic axes). The remaining connectivity conditions are applied in
the matrix solver.

The minimization of the vacuum energy functional can be performed using the
Green’s function technique (boundary finite elements) [1,2]. This method can
be applied for a wide range of plasma and external conductor topologies. At
the same time the resistive wall effects can be included in the formulation in
a straightforward manner [12,13]. Another approach to the vacuum treatment
is the use of a special gauge of the perturbed vacuum field vector potential
A= fv X Bps with the ”pseudodisplacement” §v [15]). The vector field B,,s
should not coincide with the equilibrium vacuum magnetic field but ensure the
gauge correctness. The representation of B;,s in a form similar to (3) and the
use of the same displacement projections (2) lead to an approximation similar
to the plasma functional. This approach provides the same convergence order
as for plasma approximation and makes the convergence studies easier. Both
methods are implemented in different versions of the KINX code.

3.2 (Grid adapted to magnetic surfaces

The non-polluting spectrum approximation requires a special choice of the
basis functions in the flux coordinates. It requires a mapping of magnetic
surfaces which are level lines of the poloidal flux function . The poloidal §
variable can be fixed by prescribing the Jacobian to fulfil the straight mag-
netic field line condition for example [2]. Such a choice is however singular
at the x-point of the separatrix and is not suitable for our purpose. Another
choice is to define the Jacobian from the grid cell geometry and make the
approximation of the stability functionals (4) invariant against the choice of §
variable. The approximation of the metric coeflicients in the KINX code fulfils
this requirement.

The accurate mapping of magnetic surfaces is a complicated and time consum-



ing task. One of the efficient ways to do it simultaneously with the equilibrium
equation solution is to adapt the grid to magnetic surfaces [16,17]. The code
CAXE [18] has been developed to compute the MHD equilibrium on a grid
adapted to magnetic surfaces for single axis and doublet configurations. The
domain decomposition into four subdomains with nested flux surfaces is used
for doublet equilibria computations. The interface from the CAXE code to the
KINX code includes

- quasi—polar quadrangular grid adapted to nested magnetic surfaces in each
subdomain. The grid is described by a single function p;;:

Tii =Tmj + Pij(Thi — Tmj)s (20)

2ij =2mj + pij(2kj = Zmj),

where rp,;, Zzm; and 74, zi; are the coordinates of the inner and the outer
domain boundaries, 0 < p < 1. Magnetic surfaces are given by ¢ = const.
The representations implies j = const to be straight lines.

— flux grid and flux functions in each domain. The values {s;} of the function
s = (¥ — Yin)/(Yout — Yin), 0 < s <1 are used to mark the magnetic
surfaces. The flux functions p’ = dp/dy and F F' are given for s = s;.

3.8 FElimination of numerical destabilization and spectral shuft

Some further modifications of the approximation are used to improve the
convergence in the KINX code: the numerical destabilization correction [19]
and the spectral shift elimination [14].

The spectral convergence is ensured by the hybrid finite elements. However,
the marginal stability w? = 0 belongs to the MHD spectrum when rational
magnetic surfaces are present in plasma. The numerical destabilization means
convergence from the unstable side w? < 0 to the stability boundary w? = 0.
Without the correction of the destabilization the computations of the stability
index — the sign of the lowest eigenvalue — require convergence studies. In
[19] it was shown that the numerical destabilization was connected with a loss
of spectral convergence for the reduced problem with the norm (10) because of
the vanishing coefficient at the highest order derivative in equation (11). The
numerical destabilization correction makes possible a direct transformation
of the code into §W-code ensuring spectral convergence also for the reduced
problem. The correction term to the hybrid finite element approximation is
derived from the analysis of localized modes described by (11). The correction
lower estimate is given by the following additional term to the potential energy

10



functional approximation
1 h¥)? <8><T> <82\ [0e\?
=y _(A) ( + >)(£)d¢ (21)
2J <|BP/IVy[* > 4 8 I

where hY is the mesh step in .

It was shown in [14] that the exact equality (BV¢) = 0 at rational surfaces for
resonant harmonic can be fulfilled by a small correction of the toroidal wave
number n value. It was applied to eliminate the spectral shift in the ERATO
code where hybrid finite elements and straight magnetic field line coordinates
were used. The idea can be directly extended to any flux coordinate system:.

In the KINX code the use of hybrid finite elements in §-direction leads to the
following approximation of the operator (BV):

(B’Vé) ~ -%——éj + inl/j+1/2’; (22)

where h? is the mesh step in 6. To ensure its vanishing for resonant harmonic
at rational surfaces the toroidal wave number n should be replaced by

2

—— tan(nv; Re 2).
l/j+1/2h§+1/2 ( T J+1/2/ )

Njt1/2 =

Taking into account the relation
] g
Vj+1/2hj+1/2 = th+1/2
with 6 corresponding to straight field line coordinates, the expression (22) for
the harmonic % is

2 sin[({ + "‘1)h§+1/2/2]
h§+1/2 cos(lh§+1/2/2)cos(nqh§+1/2/2)

eilé_’j (23)
vanishing for [ + ng = 0.

3.4 FEigenvalue solver

The matrix solver is based on the package PAMERA [20]. The matrix of the
problem consists of banded blocks. Nonoverlapping blocks can be efficiently

11



inverted beforehand [21]. The resulting matrix structure is block 3-diagonal.
Then for each subdomain the block elimination is performed separately up
to the connectivity unknowns. The connectivity assembling consists of the
overlapping of the resulting full blocks with the proper numbering. The solver
performance is high if full matrix operations are performed with optimized
routines on a vector computer. The inverse iteration converges to the eigen-
value which is the nearest to an initial guess. Due to matrix symmetry an
additional information on the number of the eigenvalues less than the initial
guess is obtained during the matrix inversion.

A typical stability computation for a single axis plasma with grid dimensions
Ny = Ny = 128 requires about 800Mb of memory and takes 25s of the NEC
SX4 single CPU at the speed of 900Mflops. A doublet computation with NV, =
Ng = 96 in each of the two subdomains inside the separatrix and Ny, =
48, Ny = 192 in the subdomain outside the separatrix takes 35s with the same
resources and performance.

4 Examples of stability computations

Optimization of tokamak fusion reactors requires the value of 8 = 2ug < p >
/B? to be maximized. Here < p > is the pressure averaged over the plasma
volume and B, is the vacuum toroidal magnetic field taken at the plasma
center. The stability of external kink modes sets the limit to the plasma pres-
sure. The limiting (-values were found to be proportional to the normalized
plasma current Iy = I[MA]/(a[m]B.[T]) [22], giving for conventional toka-
maks the scaling 3 = ¢gln, where I is the plasma current and a is the plasma
minor radius. The computations with the KINX code make possible further
investigations of the tokamak MHD stability limits.

4.1 Kink modes in single null plasma with separatriz at the boundary

Stability computations of the plasma with a separatrix at the boundary are
possible with the KINX code. An example of n = 1 external pressure driven
kink mode calculation is given below. The plasma profiles (Fig.1) correspond to
an ITER H-mode equilibrium [23]. The normalized value of ¢ = 8/Iy = 6.4%

is above the external kink pressure limit.

The separatrix geometry was computed with the free boundary code for given
ITER poloidal field coil currents. More detailed equilibrium computations were

performed with a prescribed separatrix as a plasma boundary with the fixed
boundary equilibrium code CAXE [18].

12



The eigenfunction structure is presented in Fig.2. Fig.3 show the convergence
of the eigenvalues normalized by the Alfvén frequency at the plasma center
w} with equal numbers of radial and poloidal grid points Ny, = Ny = N. Both
the eigenvalues of the problem with kinetic energy normalization and the §W
normalization (10) with p, = 1 are given. The growth rate for the equilibrium
with the separatrix at the boundary is lower than for the equilibrium with the
plasma boundary truncated at the value of normalized poloidal flux 1 = 0.95.
The convergence rate is 1/N? in both cases and the slopes of the convergence
curves are close to each other.

The B limit studies in ITER [23] performed with the KINX code showed that
the limiting values of ¢ are higher in the configuration with the separatrix
at the boundary than in one with the ¢ = 0.95 boundary by a factor of
approximately 1.1. Moreover, no drops in the § values corresponding to the
rational values of the safety factor ¢, at the boundary and no peeling mode
instability were found with the separatrix at the boundary.

4.2 Kink modes in doublets

The external kink B limit for doublet configurations with pressureless and
currentless mantle outside the separatrix were found to be very close to the
single axis plasma limits [24]. Finite equilibrium current and pressure gradient
outside the separatrix give rise to instabilities with different properties.

One of the examples is the outer peeling mode driven by the finite current den-
sity at the plasma edge outside the separatrix [25]. The corresponding doublet
equilibria were computed by the CAXE code with the fixed boundary fitted
into the TCV vacuum chamber. The plasma profiles, with pressure gradient
having a maximum at the separatrix and finite separatrix current density, were
prescribed by

I'=1-(1-1)Y", p =pp™, Iinside separatrix (24)
I"=T1,1 -4, p' =po(1 —¢), outside separatrix

where I* is the surface averaged toroidal current density, 0 < ™% < 1 are
the normalized poloidal fluxes inside and outside the separatrix, respectively,
I, is the value of the current density at the separatrix, py is the maximal value
of the pressure gradient at the separatrix. The value of the safety factor at
the magnetic axis is go = 1.05.

Equilibria with finite current density at the boundary can be generated by
removing the outer magnetic surfaces from the plasma boundary. The peeling
mode structure for the value of the normalized left flux outside the separatrix
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Y, = 0.374 is given in Fig.4 for a force-free equilibrium with I, = 0.1. The
conducting wall is assumed to be far from the plasma boundary. The corre-
sponding eigenvalue —w?/w, convergence is shown in Fig.5 for numbers of
grid points inside the separatrix Ny, = Ny = N and outside the separatrix
Ny = N/4, Ny = 2N.

The coupling between the regions inside and outside the separatrix is char-
acteristic for the n = 1 pressure driven external kink mode at finite value of
g = 2.4% (Fig.6 and Fig.7). Having finite current density and pressure gradient
in the plasma outside separatrix reduces the limiting value of g from ¢ = 1.8%
(when the outside plasma is replaced by vacuum) to ¢ = 1.6% despite the
finite current density at the plasma boundary in the first case. The difference
is bigger if the pressure profile outside the separatrix is steeper. Note that the
values of g for the doublet plasma should be doubled to be compared with the
corresponding single axis plasma values, because the plasma current in the
doublet is about twice that in each of the domains inside the separatrix.

4.8 Resistive wall azisymmetric modes in doublet and divertor configurations

The axisymmetric mode growth rate in doublet configurations is close to that
of the single axis plasma inside the separatrix and therefore much lower than
that of a single axis plasma with the same overall elongation [24].

Fig.8 presents the mode structure of the two unstable modes for the force-
free equilibrium (24) with I, = 0. The resistive wall is taken to coincide
with the TCV vacuum chamber having the cross section averaged resistance
4.4 - 10~°[Ohm]. The growth rate convergence curves are given in Fig.9.

The most unstable mode has up-down symmetric and the second mode has
antisymmetric normal displacement component. Stabilizing perturbed surface
current at the plasma boundary is present only for up-down nonsymmetric
single axis plasma and vanishes in the up-down symmetric case [26]. In dou-
blets the surface current perturbation has a stabilizing influence on the most
unstable mode due to its symmetric structure. The growth rate of the most
unstable mode increases from 240[s~!] up to 630[s~!] when the outside plasma
is replaced by vacuum while the growth rate of the second mode remains un-
changed.

Divertor equilibrium configurations can also be treated by the KINX code.
One of the important questions is a choice of the boundary conditions at the
open equilibrium field lines. The vanishing displacement condition ensures the
variational principle existence [26,25].

In Fig.10 the n = 0 mode structure for the divertor equilibrium with the

14



boundary and profiles corresponding to the above doublet equilibrium is pre-
sented. The convergence of the corresponding growth rate is shown in Fig.11.
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Figure captions

Fig.1. Profiles of the safety factor ¢ (top), the parallel current density < j-B >
(middle) and pressure profile p’ (bottom) for an ITER H-mode equilibrium.
The pressure gradient profile locally optimized against ballooning mode sta-
bility is shown by a dashed line.

Fig.2. External kink mode structure for the ITER H-mode equilibrium with
the separatrix at the boundary. Normal displacement level lines (left) and dis-
placement arrow plot (right). :

Fig.3. Convergence of the external kink mode eigenvalues —w?/w? for the
ITER H-mode equilibrium. Kinetic energy (a,b) and §W (c,d) normalizations.
Two curves at each plot correspond to the equilibrium with ¢ = 0.95 bound-
ary (a,c) and the equilibrium with the separatrix at the boundary (b,d).

Fig.4. Peeling mode structure for the doublet equilibrium with finite current
density at the boundary. Normal displacement level lines (left) and displace-
ment arrow plot (right).

Fig.5. Convergence of the peeling mode eigenvalues w?/w? for the doublet
equilibrium. Kinetic energy normalization.

Fig.6. External pressure driven kink mode structure for the doublet equi-
librium. Normal displacement level lines (left) and displacement arrow plot

(right).

Fig.7. Convergence of the external kink mode eigenvalues w?/w?} for the dou-
blet equilibrium. Kinetic energy normalization.

Fig.8. Axisymmetric n = 0 resistive wall mode structure for the doublet equi-
librium. Normal displacement level lines (left) and displacement arrow plot
(right). The TCV vacuum chamber is shown.

a) most unstable mode b) second unstable mode
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Fig.9. Convergence of the axisymmetric n = 0 resistive modes growth rates
4[s~!] for the doublet equilibrium.
a) most unstable mode b) second unstable mode

Fig.10. Axisymmetric n = 0 resistive wall mode structure for the divertor
equilibrium. Normal displacement level lines (left) and displacement arrow
plot (right).

Fig.11. Convergence of the axisymmetric n = 0 resistive mode growth rates
v[s~*] for the divertor equilibrium.
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