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Abstract

The Hamiltonian formulation of the guiding centre drift orbits for three-
dimensional (3D) toroidal configurations with general time dependent electric
and magnetic field structures has been extended to cover relativistic particles.
For static 3D magnetic fields with nested magnetic surfaces, a mapping procedure
from the equilibrium to the canonical coordinates is outlined. This transforma-
tion is shown to be so complicated that it renders impractical most applications in
canonical coordinates. For magnetic coordinates, the transformation is straight-
forward. The relativistic guiding centre drift equations are explicitly derived with
a constrained perturbed magnetic field that allows these coordinates to adopt a

canonical structure.
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1. Introduction

The evaluation of the confinement of « particles in fusion reactor configurations, the applica-
tion of spectral, particle and other methods to investigate microinstabilities in plasmas and the
determination of diffusion coefficients of thermal particles require following individual particle
orbits over long time scales. For gyroradii that are small compared with the characteristic spa-
tial dimensions of a magnetic confinement system and for cyclotron frequencies that are large
compared with typical frequencies of oscillations of the fields, it is more efficient and effective to
follow the guiding centres rather than the exact particle orbits [1,2].

Previous research covering the subject has rather conclusively demonstrated that a Hamilto-
nian formalism of the guiding centre drift orbits in a coordinate system that displays canonical
properties constitutes the most transparent and compact approach for the investigation of this
problem [3-12]. The bulk of this work has concentrated on the application of magnetic coordi-
nates introduced by Boozer [13]. These coordinates possess canonical structure when the time
dependent perturbed magnetic field is constrained to have a specific representation [3].

The relativistic guiding centre drift orbit problem has been investigated by several authors
[4,6,12,14]. Northrop [14] has considered the relativistic drifts directly from the equations of
motion rather than from a Hamiltonian perspective. Littlejohn has applied a Hamiltonian
formulation first in noncanonical spatial coordinates [4] and subsequently outlined a scheme
to obtain the relativistic drifts in Boozer magnetic coordinates [6]. Boozer has considered this
problem in further detail [12] using the coordinates that he introduced [13] which retain a canon-
ical structure when a constrained class of perturbed time dependent magnetic fields of the form
6B = V X (TB) is used in toroidal plasmas [3] and has examined applications in magnetospheric
plasmas with vanishing toroidal magnetic flux. Meiss and Hazeltine have described a procedure
to define canonical coordinates that is valid for arbitrary time dependent electric and magnetic
fields [8] and applied it to the nonrelativistic case. We extend their formulation to relativistic
guiding centre drifts in this paper and derive the equations of motion. We demonstrate, however,
that these general canonical coordinates are rather impractical. The equations of motion that

describe the relativistic guiding centre drift orbits are then explicitly obtained in the Boozer

2



magnetic coordinate system (with a restricted representation of the perturbed magnetic field)
following the procedure indicated in [12] and carried out for the nonrelativistic case in [5].

The article is organised as follows. In section 2, we extend the Meiss and Hazeltine for-
mulation of the guiding centre drift orbits to relativistic particles in generalised fields adopting
the canonical coordinates they introduced. We consider the case of static three dimensional
(3D) magnetic fields with nested surfaces in section 3 and describe the mapping to straight
field line coordinates in section 4. The transformation from the equilibrium coordinates to the
canonical coordinates is investigated in section 5 for arbitrary aspect ratio. The cumbersome
nature associated with the mapping to canonical coordinates in general geometry suggests that
the magnetic coordinates, despite the constraints imposed on the magnetic field, may be more
practical for useful applications. The relativistic drift Hamiltonian presented in [6,12] is thus
applied in section 6 to derive the equations of motion that describe the guiding centre drifts
in Boozer coordinates. A direct determination of these drifts and convenient initial conditions
to follow the trajectories are also discussed. We conclude with a summary in section 7. These
relativistic formulations can treat runaway electron phenomena in toroidal plasmas and astro-
physical /geomagnetic plasmas.

2. Relativistic guiding centre drifts in canonical coordinates

The canonical momenta in the drift approximation are given by [12]
P=pb+eA, (1)

where b is the unit vector along the magnetic field lines, A is the vector potential and e is the

the electronic charge of a particle. The corresponding relativistic Hamiltonian is [6,12]

H = H(p,e,t) = \/pﬁc2 + 2pBmgc? + mict + ex(x, 1)
= ymgc® + ex(z,t) , (2)
where y is the magnetic moment, B is the magnitude of the magnetic field, x is the electrostatic

potential, mg is the rest mass of the particle, ¢ is the speed of light and + is the relativistic

gamma factor.



As pointed out by Meiss and Hazeltine [8], the basic trick to define canonical coordinates in a
toroidal domain with time dependent electric and magnetic fields that can be chaotic is to choose
a coordinate system (r, 8, (), where r is a radial variable, 6 is a poloidal angle and ( is a toroidal
angle, such that the vector potential and the magnetic field in the covariant representation have

vanishing radial components, that is

A = Ag(r,0,C,t)VO+ Ac(r,0,(,t)VC, (3)

B = B9(T7 0’ Cat)ve T B((T,Q, C,t)VC . (4)

Considering that B = V X A, we can thus write the magnetic field in the contravariant repre-

sentation as
B =V({(xV¢+VdxVh. (5)

The poloidal flux function ¥ = —A¢(r,0,(,t) and the toroidal flux function & = Ay(r,0,(,1)
are arbitrary functions of the spatial coordinates and of time which therefore can cause the
magnetic field lines to become chaotic. Consequently, we can express the canonical momenta in

the covariant representation as

Py = 6{p||Bo(7°, 0,(,t) + ®(r, 90, Cat)] (6)

and

Fe = e[pyBe(r,0,(,t) —(r,0,¢,1)] (7)

respectively. We have defined the parallel gyroradius as py = p;/(eB). We can formally invert
these relations to obtain r = r(Py, P, 0,(,t) and p; = py(Ps, P, 9,(,t), with the angles § and
¢ constituting the spatial canonical coordinates [8]. To realise this, we calculate the derivatives
of the canonical momenta with respect to each other which yields a system of linear equations

that we can invert to obtain [5]
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where the subscripts on the partial derivatives on the left hand side denote what quantities are
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The equations of motion in the drift approximation are obtained through the evaluation of [5]
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The evolution equations for the canonical momenta are derived in the Appendix. Using equations

(8)-(11), the equations of motion for the canonical angular variables are
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These two relationsitogether with the expressions P and Pc shown in the Appendix form the basis
of the guiding centre motion in the drift approximation in canonical coordinates. In practical
applications, however, it is more convenient to follow the evolution of the radial variable and the

parallel gyroradius instead of the canonical momenta. Therefore, we expand
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so after substitution, these forms reduce to
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respectively. In contrast with the relations for the evolution of the canonical momenta [equations
(56) and (57) in the Appendix], the coefficients that multiply the derivatives of r with respect
to the canonical angles vanish exactly in the corresponding expressions for 7 and gy [equations
(21) and (22)]. This is one important reason that makes following 7 and g more useful and
effective than Py and P;. Therefore, equations (17), (18), (21) and (22) constitute the set that
govern the relativistic guiding centre motion in the drift approximation.

3. Time independent magnetic fields with nested surfaces

3D magnetic fields with nested magnetic flux surfaces satisfy the condition B - Vs = 0,
where 0 < s < 1 is a radial variable that labels the surfaces. This condition and Maxwell’s

equation V « B = 0 imply that the magnetic field can be written in the Clebsch form
B =VaxViy, (23)

where 279(s) is the poloidal flux excluded from the surface and « is the field line label given by

a=(— Q(S)[a + A(s,6,0)] (24)



where 6 and ( are the poloidal and toroidal angular variables, A is a periodic function of the angles
and ¢(s) = d®/dy is the inverse rotational transform. In 3D equilibrium configurations with
nested magnetic flux surfaces, the force balance relation Vp = j X B with p = p(s) implies that
J » Vs =0 (the current lines lie on flux surfaces). Furthermore, charge conservation (V - 3 = 0)

and Ampere’s Law pog = V X B can be combined to express the magnetic field as

B=Vy+AVs, (25)

where
n= NO[J(S)H - [(S)C + Q(S’ 9, C)] ) (26)
g = NO[II(S)C - JI(3)0 - V(3>0a C)] s (27)

where 271(s) and 2w J(s) are the poloidal and toroidal current fluxes, respectively, Q(s,8,¢) and
v(s,0,¢) are periodic functions of § and (, the symbol prime (') denotes the derivative of a flux
surface quantity with respect to s and the permeability of free space is ug.

4. The mapping procedure to straight field line coordinates

Suppose an equilibrium state is known in some arbitrary coordinate system (s, u, v), typically
for example that used in the VMEC code [15]. In the transformation, we retain the radial variable
that identifies the flux contours but allow the angular variables to change. Thus we define the

transformation
0 = u+ h(s,u,v), (28)
¢ =v+k(s,u,v), (29)

where h and k are periodic functions of the angles poloidal and toroidal angles u and v, respec-

tively. A coordinate system with straight magnetic field lines satisfies the condition
A(s,0,()=0. (30)

The functions a, n and 3, being scalars, are invariant with respect to coordinate transformations.
Substituting the forms of § and ( into the expressions for o and 7 given by equations (24) and

(26), respectively, we obtain



_ Qv(sa u, U) — Q(S, 0’ O — q(S)I(S)A(Sa U,y U)
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Here the function Q(s, 0, () = Q[s,0(s, u,v), ((s,u,v)] must still be specified. Typical examples

k(s,u,v) = q(s) (32)

are the magnetic coordinates introduced by Boozer [13] where @ = Q4(s, 0, () = 0, the PEST-1
coordinates where the toroidal angle is invariant [16] yielding A(s, u,v) = A(s, u, v) which entails
@p» = Qu—J(s)A(s,u,v) or that where the poloidal angle is fixed and the toroidal angle is modified
to straighten the field lines, Qq = Q,—q(s)I(s)A(s, u, v) which implies k(s, u,v) = —q(8)A(s,u,v)
[17]. Other straight field line coordinates of interest have been proposed that specify the Jacobian
as some prescribed function, namely

_
V(s u,v)

The Hamada coordinates [15]constitute the best known example for which the Jacobian is unity.

VOIXV(-Vs = (33)

Substituting § and ¢ in (33) using equations (28) and (29), we have the relation

oh n Ok n Oh 0k Ohok 1 ! (34)
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The nonlinearity in this equation is only apparent as combining it with the expressions for h

and k given in equations (31) and (32), we obtain
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This constitutes a magnetic differential equation as the operator on the left hand side can be
readily identified as \/gB - V /4'(s). Therefore, all coordinate transformations that rely on the
specification of the Jacobian in 3D systems with nested magnetic surfaces are singular on mode
rational surfaces. This has already been specifically pointed out for Hamada coordinates [18].

5. The mapping to canonical coordinates

For time independent toroidal 3D magnetic fields with nested surfaces, the field lines in
canonical coordinates are straight [8]. Labelling the canonmical coordinates as (s,6.,(.), the
function @ = Q.(s, b, {.) is unknown. To solve for it, we must invoke the expression for 3

[equation (27)] to get



ve[s, 0.(s,u,v), (c(s,u,v)] = vy(s,u,v) + J'(s)h(s,u,v) — I'(s)k(s,u,v) , (36)

and combine it with the condition that the radial magnetic field component in the covariant

representation vanishes for general canonical coordinates, namely

By = —po |ve(s, bc, ¢c) + aaQsc fe,C ] =0 (37)
to obtain
0Q. J'(s) —q(s)I'(s) ., (5w J'(s) —q(s)I'(s) w o
ds 9c,cc+ J(s) — q(s)I(s) Qe =w(s,u,v)+ J(s)/—— q(s)I(s) Qulsu,v)
+ q(S)I (S)J(s) —J (S)I(S) )\(s,u,v) ) (38)
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The derivative of (). with respect to s is evaluated at fixed . and (.. Therefore, invoking the

transformation functions, we can write
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Performing a Fourier transformation leads a very complicated set of nonlinear ordinary differen-
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tial equations. Thus, we conclude that the canonical coordinates, though allowing a very elegant
and concise formulation of the guiding centre drift orbits, are impractical for most fundamental
applications because the transformation to these coordinates is so cumbersome to realise.

6. Relativistic guiding centre drifts in magnetic coordinates

The Boozer magnetic coordinates [13] are applicable to 3D plasma confinement systems in
which the unperturbed magnetic field forms perfect toroidal surfaces. Then ¢ = ¥(s) and
® = ®(s). We shall label these coordinates in this section with (s, 9, ¢), where the Boozer angle
¥ is different and should not be confused with the canonical poloidal angle 8 defined in section
2. The specification of this coordinate system, however, allows the introduction of a magnetic

field perturbation of the form



6B = VX[Y(s,9,¢,t)B], (40)

which can cause ergodic behaviour, but is not completely general in nature [3,5]. Nevertheless,
it is adequate to accurately describe the radial component of any perturbed magnetic field.
The other components only introduce nonresonant contributions and thus are less important.
This approximation allows the magnetic coordinates to constitute canonical coordinates. The
unperturbed magnetic field in the contravariant representation is given by equations (23) and

(24) with A = 0 and in the covariant representation by equations (25)-(27) with @ = 0. The

vector potential in the Boozer coordinates is
A=0()VI—9¢(s)Vo + T(s,9,0,t)B . (41)

To first order in gyroradius, the canonical momenta are Py = e[®(s) + popoJ(s)] and Py =
—e[t(s) + pepol(s)] where the effective gyroradius [5] valid for a relativistic particle is p, =
p/(eB)+ Y. From these relations we see that s = s(Py, Py) and p. = pc(Ps, Py). Following the
same procedure outlined in section 2, we derive the derivatives of s and p, with respect to the
canonical momenta. These correspond to equations (8)-(11) with s replacing r and p, replacing

py|, respectively. The denominator D acquires the form

J(s)I'(s) — I(S)J'(S)] . (42)

P'(s)J(s) — ®(s)I(s)

The equations of motion described in (13)-(16) can be straightforwardly analysed to obtain

D = Dy = poly(5)9(s) ~ #I(S)1 + pop.

Po= —e g—i; Y %<% ;—B;pﬁ) %g s,¢—e’YB”2?[())” %%’; s"ﬁ’t] ’ (43)
2
Py= —c¢ % vy i(g %ﬁ) (?)_g s,ﬂ_fg’iﬂ% s”"”t] ’ (44)
9= — %[W(s) + (o + Thpol'(s) + NOI(S)%_: 19,¢,t]
b= — ;nB;—zpD“b [‘I"(S) + (o) + Dot (s) + MOJ(S)%_I 19,¢,t]
B EODJ—?) [% 8,1 %@ + ;—ip ﬁ) 66_1: M] ’ 0
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respectively. Rather than follow the evolution of the canonical momenta, it is more convenient

to evaluate $ and pj|, namely

Js Js .
§ = —— o P, , 47
s 0Py Py, K 0Py \Py0,6,t ¢ (47)
and with p) = p. — T,
) . dT
Pl = Pe™ F
Op. . dpe oY aT oY oY
= P, Py, — — - —— - — , 48
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respectively. Therefore, the set of equations (45), (46), (49) and (50) constitute the governing

system for the guiding centre drift motion in Boozer magnetic coordinates. Their structure is

quite similar to those derived in the general canonical coordinates described in section 2. In the

nonrelativistic limit, they recover the forms derived by White and Chance [5] when the different

normalisation they applied is taken into account.

6.1. Direct determination of the guiding centre drifts

The guiding centre drift velocity expressed in a form that retains the relevant components

to second order in the gyroradius [2] that it satisfies Louisville’s theorem and conservation laws

in symmetric systems [3] valid for relativistic particles can be written as

Sl

Vg = "
* ™ ymo[l + (p + T)puoj - B/ B

{B+Vx[(p+7T)B]}. (51)
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A direct evaluation of the guiding centre drifts follows from § = wvg+ Vs, ¢ = vq- VY,
¢ = vg+ V¢ and p|| = va * Vp) [20]. The analysis is simplified by noting that p=py(B, x).
Expanding

pog + B polJ()I'(s) = I(s)J'(s)] + I(s) 5 + J(s)
B P'(s)J(s) — ®'(s)I(s ’

(52)

we arrive at the conclusion that the resulting expression for § recovers equation (49) if we ignore
the derivatives of B, in the numerator of (52), which are formally of higher order as B, is
proportional to the pressure gradient (hence to the ratio of kinetic to magnetic pressures). This
constitutes an alternative manner to derive the guiding centre drifts and is helpful to verify the
accuracy of the expressions obtained. Similarly, the direct evaluation of 19, qﬁ and pj recover
the corresponding relations obtained from the Hamiltonian formulation if the additional higher
order terms containing B, that appear are neglected.

6.2. Initial conditions

In order to follow the guiding centre drift trajectories, it is necessary to provide the positions
in real space and two momentum variables as initial conditions. Thus the starting values of
the spatial coordinates (s,,¢) for the guiding centre orbit of each particle must be specified.
One convenient velocity space variable is the initial relativistic gamma factor 4; from which the
particle energy ¢,; = y;moc? is obtained. A second convenient variable to specify is the initial
pitch angle given by p;/p (the ratio of the parallel to the total particle momemtum). The initial
particle momentum is related to v; through p; = \/(fyT—_l_)moc, whence we obtain the initial
values of p and of the gyroradius. The determination of the perpendicular component of the
momentum p,; follows. This permits us to obtain the magnetic moment p = p% /(2moB) which
is a constant of the motion.

7. Summary

We have extended the elegant formulation of the guiding centre drift orbits in the canonical
coordinates proposed by Meiss and Hazeltine [8] which can treat trajectories in completely
arbitrary time dependent magnetic fields that can even be chaotic to relativistic particles. We

have explicitly derived the equations for the evolution of the spatial coordinates and of the
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parallel gyroradius that govern the guiding centre drift motion. We have considered the case of
a 3D equilibrium with nested magnetic flux surfaces and have developed the mapping procedure
from the coordinates of the equilibrium state to the general canonical coordinates. We have
demonstrated, however, that the equations that describe the transformation to the canonical
coordinates are much too complicated for fundamental practical applications.

In contrast, the transformation to Boozer magnetic coordinates are straightforward to imple-
ment as outlined in section 4 and previously described also in [19,21]. Thus, we have formulated
the guiding centre drift orbits for relativistic particles in magnetic coordinates as well. However,
for the magnetic coordinates to have a canonical structure, the perturbed magnetic field must
be constrained to have the form é B = V X(T B) which, nevertheless, adequately captures the
essential features of the radial component of any arbitrary field [3,5]. The evolution equations for
the spatial coordinates and for the parallel gyroradius are explicitly derived in these coordinates.
When the electric and magnetic fields are independent of time, the equation of motion for the
parallel gyroradius is redundant because the particle energy becomes a constant of the motion.
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Appendix

The derivatives of the Hamiltonian with respect to the canonical angles require knowing
the corresponding derivatives of the parallel gyroradius. These are calculated by examining the
derivatives of the canonical momenta with respect to the canonical angles (which by definition
vanish). Furthermore, the derivatives of H and pj with respect to the canonical angles require
the evaluation of the derivatives of B, By, B¢, ®, ¢ and x with respect to 6 and { at fixed P
and Pr. However, these quantities are functions of r, 8, ( and ¢{. We note, however, that for any

function K(r,8,(,t), we have

oK
00

0K
r,,t or

or
8,(,t 00

_ oK

Pg,Pg,C,t_ _8_9— (53)

P97P(1C1t

A corresponding relation applies for the derivative with respect to (. Then, the derivatives of
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interest of the parallel gyroradius are

?ﬁﬂ _ [a_lﬁ _ BBC n <a¢ _ 6B< ) or ] (54)
00 Pg,PC,C,t— Bg 00 r,,t (lwr 08 r,¢,t or 8,¢,t P ar or 6,¢,t 06 Py, Pr .t ’
Opy| [6@ dB, <8¢> 0By ) Or ]
- = — — | — - — = , 55
0C |py,p 0t By LO¢ r,e,t+p“ ¢ r,6’,t+ or 0,(,t+p” or lo¢,t/ 0C|py P 0.8 (55)
respectively. Consequently, the equations of motion for the canonical momenta become
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