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I. INTRODUCTION.

For studying microinstabilities in tokamak-like plasmas, most linear kinetic studies were
carried out for high toroidal wave numbers using the ballooning representation [1]- [6] which
leads to a one-dimensional integral equation along the magnetic field lines. Except for very
few cases, these calculations do not include a higher order WKB procedure for determining
the radial structure. Thus these results usually stay local to a magnetic surface and there
remains some questioning on the actual radial extent of these modes. For low toroidal wave
numbers where the ballooning representation breaks down and the full two-dimensional
problem cannot be reduced, very little linear computation has been carried out. This limit is
of interest as it describes larger wavelength fluctuations which could lead to higher turbulent
transport. So even at the present state where non-linear simulations already exist [7] [8],
there remains a need for global linear studies.

Until recently, the only published results from true global, toroidal, linear computations
were based on the spectral code by Marchand, Tang and Rewoldt [9] [10], which is valid
to second order in the banana width and contains no finite Larmor radius (FLR) effects.
We have therefore undertaken the development of a new global spectral code with the goal
of keeping these effects to all orders. This leads to a two-dimensional integral equation
which requires appropriate modeling and numerical methods to be solved. Although such
toroidal results have already been obtained and benchmarked with a global linear time
evolution (particle in cell) code being developed simultaneously [13], we shall present here
the methods employed in the case of a simple cylindrical configuration. This system can be
considered as the limiting case of a stretched tokamak to a periodic cylindrical plasma with
remaining magnetic shear and realistic density and temperature profiles. A following paper
will discuss the toroidal model.

Kinetic equations have been solved in the past for spectral problems in cylindrical plas-
mas when studying mirror-like configurations confined by straight magnetic fields [11] [12].

Fourier representation appears naturally in gyrokinetic theory as it allows one to integrate



A. The Gyrokinetic Equation in Cylindrical Variables.

In fusion plasmas, the ion Larmor radius Ay is generally small compared with the char-

acteristic length a of equilibrium, one can therefore define the small parameter
€= Ap/a < 1. (1)

Furthermore, when studying microinstabilities, one can assume gyro-ordering:

k_l_AL ~ 60, (2)
ki
E €, (3)
s~ (4)

where (w, z) is a typical frequency-wave vector pair of perturbation and § the ion cyclotron
frequency. In this frame it is appropriate to describe the evolution of the ion distribution

function by the linearized gyrokinetic equation (GKE) [15] valid to order O(e):
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where §=f + edFpr/T; is the non-adiabatic part of the distribution function ;, < ¢ > the
gyroaveraged potential, and Fjs the local Maxwellian distribution function with temperature

T; = Ti(p) and density N = N(p):

N E
)= G (7))

Eq.(5) is written in gyrokinetic variables (R,E,p,a, sign(v))), with R=T + 7 x Eﬁ /S the
guiding center (GC), E = 1v? the kinetic energy, p = 2v? /B the magnetic moment, and
a the gyroangle. Although one solves for the particle distribution function, the GKE has
taken full advantage of guiding center theory as TDD—t’u.t.g. stands for the total time derivative

along the unperturbed trajectories of the GC. The GC velocity

— — —
Vo= 1) € + vgq,



is divided into parallel motion and drifts:

- 1

2
Vg= ) [v—“'-l—vﬁ] Eﬁ xVl1n B.

2

To be able to perform explicitly the gyroaveraging of the unknown potential, a plane wave

decomposition is usually considered:

—

8(7) = [k 57 6 (k). (6)

Gyroaveraging can then be performed analytically with no further approximation:
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using the integral representation of the Bessel function [16]. Thus Fourier space appears as
the natural representation for gyrokinetic theory.
Going back to particle variables (7,v) and keeping lowest order terms in €, one must

essentially replace the factor exp k- ﬁ by exp? P (_'r_" + v X Eﬂ /) so that
_a_+ v i g (;' v t) —_
at g a ? » -
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For a curved system, the plane wave decomposition (6), although exact [11] [12], leads
to relations that do not allow the simple numerical methods presented in Sec.IIl. For
comparison, these relations are established in the Appendix. Instead let us consider another
Fourier representation which will be referred to as the cylindrical wave decomposition, so

that in the above relations the following terms must be replaced by the corresponding right

hand side:

—_ T A A
/d ke*™ ¢(k)— Z/dn - (n)expi(np—}-m@—kn-}%).

In particular one must reconsider:
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Note that the last relation is valid only to order O(e). The effect of this approximation will
be discussed further on. From Eq.(8) the local wave vector can be deduced

m — n o

k—> an—I—mVH-{—%Vz:né;—l—-p— ep —I-E e, .

As the system is homogeneous along 8, z and time, the poloidal and toroidal wave numbers

(m, n) can be fixed, as well as the frequency w:

#(7,1) = () expi(mb +n= — wt) (9)

Thus, the linear study becomes an effectively one dimensional problem along the radial
direction.
One can easily show that e, - V4= 0 so that the GC trajectories lie on magnetic surfaces

p =const. This leads to a trivial solving of the gyrokinetic equation:
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with kj = (ng, —m)/Rq., ke =m/p, ki = /&2 + k§, the different components of the wave
vector, and
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the guiding center and diamagnetic drift frequencies, 7 = dInT;/dIn N. In (10) Sm(w) is

taken positive to ensure causality.

B. The Eigenvalue Equation.

For the low frequency microinstabilities, the system can be closed invoking quasineutral-

ity:



int

0" = e(n; —mne) ~0, (11)

n; and n. being respectively the ion and electron densities. This relation must hold as well
for the stationary state as for the fluctuating parts. Hence, the perturbed ion density n; is

evaluated:

n: (p) = / f(p,9)d¥=

Ne N inp 1 o Jo(krvi /) exp(—v?/2v,;)
T [—¢(p)+(w—w)/dne ¢(E)W/dv LUL h

b
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where d v= 27v,dv 1dv)|, the integral over a having again been performed analytically. For

studying ITG instabilities, the perturbed electron density may be reduced to the adiabatic

response:

~ ep
e= 7 N.
ne= o

A
Inverting the Fourier representation by expressing ¢ («) in terms of ¢(p), the quasineutrality

equation now becomes :

— o™ (p) = /dp’iC(p, piw)p(p) =0, (12)

with
K(ospiw) =" (3 +1) 8= )~ Mo, (13)
N, i) = o [ drexplisnlp = 1) A (b, i), (14)

1 / d 5’ Jg(klvl/ﬂ) exp(_vz/zvtzhi) , (15)

N (p5w) = (w — )
K w) = (W — W) ———37
Py % (2mv, ;)32 w — k) — wy

all equilibrium quantities being evaluated at p and having defined 7 = T./T:. Eq(12) is an
eigenvalue equation, i.e. one must find the complex frequencies w for which there exists a
non trivial function ¢ verifying this relation.

In a first approximation, GC drifts are neglected in the resonant denominator so that
the velocity integrals can be separated and expressed in terms of the scaled modified Bessel

function Ay(z) = e~*I,(z) and the plasma dispersion function W(z) [L7]:

7
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with the definitions ¢ = (k1 Az)?, AL = vni/Q, 2z = w/|kj|veni and

Wie)= o= [ exp(-Zyds , Sm(z) >0
z—\/2_7r_°° o, (=), Sm(z :

When carrying out the derivative with respect to Tj:

*
Y 1

N (i) = (£ 1) W = 1)to (17)

w

[ (- 1) o] o - s 22 [";WAO (W = 1)¢(As — Ao)|,

using the notations W = W(z), A, = Ay(¢). The integral representation for the modified

Bessel function [16]

1 ™
I(z) = ;/0 e”“**¥ cos(pv)dv,

allows one to replace the integral over the infinite domain of « appearing in A by the integral

over the finite interval of the new variable v [18]:

*

N(p, prjw) = (%—1

) (W - 1)27r1AL /0” \/R%mx
P~ {(mp)‘ll)z (1 - cosv)+ <’02;‘L’0’)2 1 —:lcosul ’ (18)

This last step will be useful when performing numerical integration.

C. Properties of the integral equation.
1. Local dispersion relation.

The eigenvalue problem is formulated as a one-dimensional integral equation for the
radial dependence of the electrostatic potential. Notice that the only radial coupling comes
from finite Larmor radius (FLR) effects appearing in (17) through the argument ¢ and
explicitly brought forth in relation (18). By taking ¢ = (ksA1)? one neglects this coupling

and finds a local dispersion relation for each magnetic surface:
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lowest order in €. Let us write all equilibrium terms depending on the variable p as in the

following case for temperature :

_ p+p’> p—pdl’ _ (p+p’>
T(p)_T( 5 4+ 5 dp—}—...— 5 + O(e),

where we have used the fact that the radial coupling distance is of the order of the Larmor

radius (|p — p’| ~ Az). In this way and to order to which we work, one can verify (22).

3. Boundary conditions.

As the equation is of integral type, it already contains boundary conditions. Expressions

(12), (13) and (18) evidently show that the regularity condition at p = 0
Sm(p=0)=0 if m#0, (23)
is verified. However, we will see in the next point that the full regularity condition expected:

dm(p) ~ p™ as p— 0, (24)

is not exactly fulfilled. At the edge of the plasma, where the electron temperature falls to

zero, one has the boundary condition

¢m(P = a) =0, (25)

for all values of m.

4. Fluid limit

To get a better understanding of the behavior of Eq.(12) on the axis, the limiting case

of cold ions is considered, so that the integral equation becomes differential:

d> m?
{w2 [1 -2 (w - —p—;)l — WWwpe — kﬁcg} ¢ =0, (26)
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with 2 = T./mi, A% = ¢,/Q and wpe = —Tw,. Note that the only radial coupling, i.e.
the differential character of the equation, comes from the polarization drift, which is the
remaining FLR effect in the cold limit.

The question is whether Eq.(26) still contains approximations related to gyro-ordering.
Had one intended to derive this relation from the basic set of fluid equations, that is the

linearized equation of motion for cold magnetized ions:

m,-%%:e(?xﬁ—Vqﬁ),

the equation of continuity, the Boltzmann equation for electrons and invoking again
quasineutrality, would have obtained [20]:
{w2 [l — 25 (li i - m_zﬂ — WlWpe — klzlcf} ¢=0. (27)
pdp dp  p?
Note the difference with Eq.(26). This can be traced back to the approximation in relation
(8) where the factor 1/|V8| = p, corresponding to the Jacobian in cylindrical variables, was
treated as a characteristic length of equilibrium. As a consequence, this approximation leads

to the following behavior on the axis

m' i 1+ 1-|—4m2
bulp) = LA (28)

instead of (24). However, for large values of |m| this difference becomes negligible.
By considering Eqs(44)- (46) of the Appendix obtained with the plane wave decomposi-
tion, which are exact in this respect, and applying the asymptotic relation for the modified

Bessel function

1 m?

eXp—— as T —> 00
Vorz P 2z ’

Ap(z) —

which also improves for low arguments with increasing mode number m, one recovers Egs
(12), (13) and (18). Therefore, a few Larmor radii off the axis or for not too small poloidal
mode numbers, the discussed difference is negligible. This is the case in practice where the

linear instabilities are localized around the region of steepest gradients, i.e. usually around

11



mid-point between the magnetic axis and plasma edge. Furthermore, for ITG instabilities
k| =~ 0, so that m ~ ng, # 0 if the toroidal mode number n is non zero. Finally Eq.(43)
shows that in cylindrical geometry the plane wave decomposition actually leads to a Bessel
representation instead of the handier Fourier transform appearing in (14). This illustrates

how in a more complex geometry the plane wave decomposition simply becomes intractable.

III. NUMERICAL METHOD

The eigenvalue equation must be approximated by a finite set of simultaneous algebraic
linear equations. In a first approach one solves the equation for the potential ¢ = #(p)
in configuration space, as given by Eq.(12). In a second approach the equation for the
potential written in Fourier representation ;\5:9) (k) is solved. Although the first technique
cannot be directly generalized to a toroidal system due to the significantly more complicated
particle trajectories, it is a useful benchmark here for testing whether the Fourier method

is appropriate for a finite system.

A. Solving in configuration space

Equation (12) is classified as a linear homogeneous Fredholm equation of the second kind.
As can be seen in relation (18), its kernel N(p, p; w) exhibits a singularity at p = p* with a
characteristic length of the order of the ion Larmor radius. This is obviously related to the
radial coupling due to FLR effects. Integrating this singularity numerically over p* would
require a sufficient number of integration points in an interval of order A,. However, by using
a finite element method, this can actually be performed analytically. Let us approximate

¢(p) using a set of linearly independent basis functions {v;(p)},

46) = 3 beup) (29

For the purpose of solving the integral equation, it is sufficient to take constant elements:

12



1 pi pj p—p\2 1
e st o (52)
7 N (1—cosv) Jpiy p pi1 pexpl 2L, 1 —cosv

216 P
= -2 [\/7_r:n,-jerf(a:¢j)+e_z"j] .

-1 !

71

where z;; = (p; — p;)/(221+/T — cosv) and erf(z) = (2/+/7) [Z e~ dt is the error function.

Finally, performing the derivative with respect to temperature contained in w* gives

Ne? _ /1
Mij=§,j§-p¢ [(—-I-l) Ap; by

_{[ (1__)_1] )+ﬂnzW}0— (W—l)cu}, (32)

Cij = / \/ i exp —(mAs/ pi)*(1 — cos 1/)] i) (33)
) /1 —cos vV

]
1)1

The integrals over v in the definitions of the coupling matrices C;; and C’,{j were computed

2

exp [— (m_)‘L) (1 — cos u)} [(m/\l') (1 —cosv)L;j + e =%
Pi P:

11—

using an extended trapezoidal rule. These matrices are sparse band as two elements +; and
v; are coupled only if they are contained in the same interval of a few Larmor radii. The

significant off-diagonal terms are therefore such that

C,'j,CEJ- #0 <= 2 [y,

pi — Pj
where typically [ ~ 8. In addition, note that these matrices are independent of w and can
therefore be precalculated.

The analytic continuation of the dispersion function to the whole complex plane can be

expressed as

Wi(z) =1+ i\/gz e [ + erf(iz)]

where the complex error function can be computed efficiently using an algorithm by

W.Gautschi [21].
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B. Solving in Fourier space

By performing a Fourier transform of Eq.(12), one obtains an equivalent equation for
A
# (k). Because the radial domain is finite, one can actually perform a Fourier series instead
of a Fourier transform. This alternative is of interest as the equation then becomes naturally

discrete with no singularity to be integrated:

too \ A T A A ‘
Y My W)y = Z Krr g (W) =0, (35)
k'=—o0 kK=
$(p) = Z b, expz—k(p po); (36)
k=—00

A 1 e Neé?[1
bew @ =55 [ o (L1 A i =K ] exp 2K (o o),

where Ap = p,, — po is the width of the considered radial interval. To compute the elements
I%k" & (w), an equidistant mesh {p;}, , . was taken so that fast Fourier transform algo-
rithms could be applied. This gives rise to n, non-zero elements }% KKy — T2 <k <n, /2,
ie. ]\//if is a band matrix with ~ n,/2 sub- and super-diagonals. As opposed to the required
mesh density when solving in configuration space, note that here the radial mesh need only
resolve equilibrium quantities. Therefore, the number of off-diagonals in J\//if increases with
the inhomogeneity of equilibrium. However, the sums over k and k' in Eq.(35) and (36)
related to the Fourier series of the perturbing electrostatic potential are truncated at +k,,.,
such that

27
kmaz—AL ~ 1,
Ap L

in agreement with gyro-ordering.
When solving over the whole radial interval [0, a], note that the boundary conditions

(23) and (25) still are contained in Eq.(35) but in Fourier representation now read

hmZ ¢ke =0, if m#£0,



Unlike the approach in configuration space, no assumption has yet been made concerning
drifts. Although this requires two additional velocity integrals, and for typical physical
values leads only to minor corrections of ITG-instabilities, drifts can be considered here with
no further difficulty. Keeping these terms and defining the dimensionless velocity variable

v=v /vtni, Eq.(35) has to be solved with ,/C/' given by:

A +o0 2
N (p, k;w) =/0 dvyvy J? (\/nz + kgALvJ_> e V1 x

. /+°°dv Z—Iﬁ; [l-l—g(vﬁ—l-Vﬁ_—?))]e_vﬁ (37)
V2 J-o TNz = vy = wy vy, v1) /Ty vens |

The Gaussian velocity distribution allows one to approximate the integration boundaries at

to0 by finite values £Vp,q), 1 ~ 5. Extended trapezoidal rules are applied for these numerical
quadratures. One must still point out that unless performing an integration along a contour
in the complex v| plane, so as to avoid, in agreement with causality, the poles related to
the resonant denominator, relation (37) is only valid for frequencies such that Sm(w) > 0.
This is assumed here, as it greatly simplifies the velocity integration, however it restricts

the study to unstable modes.

C. Searching for the eigenfrequencies.

Once the eigenvalue equation has been cast in one of the matrix forms (30) or (35), the

problem of finding the eigenfrequencies can be written:
D(w) = det M(w) = 0. (38)

Taking advantage of the fact that D(w) is analytic, a practical method proposed by Davies
[14] was applied for solving (38). Suppose h(z) is an analytic function inside a closed
positively oriented contour C. Having determined the number N of enclosed zeros {ai}i=1,..N
using the principle of argument, the method is then based on the evaluation of an equivalent

number of integrals:

S e () _
"_27ri/cz h(z)dz n=1,...,N, (39)
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which have the property

1

N
Sn=>_a? n=1,...,N. (40)
1=1

The set of equations (40) is then solved finding the roots of the associated polynomial defined
by

N N

Py(z) = H(z —a;) =

=1 1=0

!
]
2

N
i

(41)
A recursive relation enables to calculate the coefficients A,, from S,:

S1-|—A1=0
Sa+ A151+24, =0

S+ A1Sk_1 + A2Sko+ ...+ kAL =0 k=1,...,N.

The numerical technique by Davies is developed for circular contours. We have generalized
this algorithm to allow for more elongated curves in the frequency plane. This is achieved
by applying the above method along a unitary circle to the function D(z) = D(w(z)) with

w(z) being a conformal transformation of the unit disc at origin. We chose
w(z) =@ +r2(Ez? + 1), (42)

transforming the unit circle in the z-plane to a more oval-shaped curve in the w-plane
centered at w with average radius r. The elongation and orientation are defined by the
complex parameter E (|E| < 0.1).

The sampling points along the contour are increased until the maximum jump in the
argument of D(w(z)) is less then 7/2. Accuracy is usually given with more than four
significant digits and allows one to consider up to ten roots inside a single curve.

Having identified an eigenfrequency w;, the corresponding eigenmode is computed by
considering an inhomogeneous right hand side in (30) or (35) with w = w; then solving for
¢. The initial right hand side is chosen as a first guess of the eigenvector structure. This
process is then repeated iteratively until convergence is attained. This approach is inspired

by the inverse iterative method for solving standard eigenvalue problems.
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Let us still point out that when considering FLR effects to all orders, i.e. solving the

integral equation, the spectrum contains no spurious modes.

IV. RESULTS

As an illustration, a hydrogen plasma with the following parameters is considered: major
radius R = 1.m, minor radius @ = 0.2m, magnetic field on axis By = 2.Tesla, safety factor
profile g,(s) = 1 + 2s%, density profile N(s)/No = 1 — s?, electron temperature profile
T.(s)/Teo = (1 — s%)?, ion temperature profile T;(s)/Ti = (1 — s?)3, temperatures on axis
Teo = Tio = 2.keV. Here s = p/a stands for the normalized radial variable. The average
ion Larmor radius is Ay, = 1.5107%m so that € = Ar/a = 7.51073. In the frame of our
model, the plasma can exhibit slab-like ITG instabilities. For fixed mode numbers (m,n)
the plasma is locally unstable if 7 > 5, = 1 around the mode rational surface, i.e. where
Ky / ke < Ar/Lr, Lt = |dInT;/dp|™" being the characteristic length of temperature [19].
Thus the plasma considered here is unstable at any mode rational surface as 7(s) = 3.

Fig.1 shows the unstable spectrum in the complex frequency plane for mode numbers
(m = 8,n = 5). All frequencies are normalized with respect t0 wnorm = Tio/(eBoa?) =
2.510%s7*. Results obtained with the numerical method in configuration space are repre-
sented with circles, results computed with the Fourier approach with and without considering
GC drifts are plotted with stars and crosses respectively. The solution to the local dispersion
relation (19) parameterized with respect to the radial variable s, is drawn with a dashed line.
An oval-shaped path defined by the conformal transformation (42) of the unitary disc with
W [Wnorm = —2.1+1.33, 7 [Wnorm = 1.2, E = 0.1, allowing one to localize simultaneously the
three most unstable modes, appears in full line. Neglecting the GC drifts is indeed a good
approximation, however their effect is always destabilizing as the magnetic curvature in a
cylindrical geometry is everywhere unfavorable. The radial computation domain is taken
0.4 <5< 0.7, so as to be centered on the mode rational surface so = 0.548 (g,(so) = m/n).

When solving in configuration space, typically n, = 100 finite elements are needed and

18



ny = 50 points for the v integrations appearing in the coupling elements, to obtain good
convergence (accuracy of ~ 1%) of the most unstable mode. Fig.2 shows the convergence
of the growth rate of the most unstable mode. Fig.3 a) depicts the corresponding mode
computed in radial Fourier space, Fig.3 b) the same field transformed to configuration space
and Fig.3 c) the poloidal structure. When solving in Fourier space, equilibrium is sampled
with typically n, = 64 points and the perturbation is represented with 2kmer + 1 = 121
radial Fourier components. Considering GC drifts, the velocity integrals were performed
using 10-20 points per thermal velocity. When approaching marginal stability the number
of points must be increased so as to integrate correctly the resonant denominator.

In Fig.4 the mode numbers (m,n) are increased proportionally so as to hold the ratio
m/n = 1.6 unchanged and the mode localized around the same rational surface. Fig.4 a)
shows the normalized frequency and growth rate as a function of m. The perpendicular wave
number normalized with respect to the ion Larmor radius is averaged over the eigenmode
of the most unstable mode and plotted in Fig.4 b). The growth rate peaks as < kA >
goes through 1, typical for slab-ITG instabilities. The root mean squared width, normalized
with respect to Ar, is given in Fig.4 ¢). Similar scans were repeated for two other rational
surfaces sp = 0.316 (m/n = 1.2) and so = 0.707 (m/n = 2.0). The growth rates of the most
unstable modes are plotted in Fig.5 a) and the diffusion coefficient based on the mixing
length etimate [22] in Fig.5 b). All these values were computed in configuration space and

checked by the Fourier space method.
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V. CONCLUSIONS

When solving the linearized gyrokinetic problem in a curved system, a wave decomposi-
tion into basic modes compatible with the magnetic surfaces turns out to be more practical
then the commonly used plane wave decomposition. The difficulties arising with such a
representation on the magnetic axis are negligible for a linear study. Numerical methods for
inverting the final integral equation in configuration and Fourier space have been presented.
The second approach is advantageous in many respects, even when considering realistic
equilibrium profiles. An elaborated Niquist technique proves to be efficient for localizing
the unstable spectrum in the complex frequency plane. In a following publication we shall

present how these methods have been applied successfully to a true toroidal system.
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APPENDIX

We summarize here the derivation leading to the eigenvalue equation in the case of plane

wave decomposition.

The decomposition in plane waves in the poloidal plane for a perturbation of the form

(9) is given by

$(5) = s [ 47 (F)e®e?

ima

€

400
= (=" /0 pdpd(p)Jom (k1 p), (43)

where (ky,a) are the polar coordinates of the poloidal component 79. 1 of the plane wave
vector k. Inserting this relation in Eq.(7) and carrying out the equivalent steps as for the

cylindrical wave decomposition leads to the following eigenvalue equation:
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— é(p) = [ pdpK(p, p50)(p) = (), (44)

Kloriw) = |5 (2 +1) 8- 2) - N0 iv), (45)
Noypsw) = (2 = 1) W =1) [7 badby Jn(bs V() hole)
= (% B 1) (W - 1)27r1)\% /ow 1 —d:os )
(e |(58) e @
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Figure Captions

FIG. 1. Spectrum in complex frequency plane of highest growing global modes (m =
8,n = 5). Circles are results obtained solving in configuration space, stars and crosses were
computed in Fourier space with and without considering GC drifts respectively. A typical
path for sampling the determinant of the system is drawn in full line. The solution to the
local dispersion relation parameterized by the radial variable s is plotted with a dashed line.

FIG. 2. Convergence of growth rate for the most unstable mode (m = 8,n = 5) versus
1/n? obtained by the method in configuration space.

FIG. 3. a) Radial Fourier representation of the most unstable mode (m=8, n=5). b)
The same field transformed to configuration space. Full and dashed lines are respectively
real and imaginary part. c) Corresponding poloidal structure. These results were obtained
using the method in Fourier space.

FIG. 4. a) Normalized frequency and growth rate of the most unstable mode with
respect to m holding m/n = 1.6 fixed. b) Average value of k) M. c) Radial width normalized
to Ar. These results were obtained with the method in configuration space and checked with
the Fourier approach.

FIG. 5. a) Growth rate of the most unstable mode with respect to m holding succes-
sively m/n = 1.2,1.6,2.0 fixed. b) Corresponding mixing length estimate Dprp, = v/k2 for

diffusion coefficient.
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FIG.2 Brunner
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FIG.4 a), b), ¢) Brunner
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FIG.5 a), b) Brunner
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