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Abstract

lon temperature gradient (ITG) -related instabilities are studied in tokamak-like plas-
mas with the help of a new global eigenvalue code. Ions are modeled in the frame of
gyrokinetic theory so that finite Larmor radius effects of these particles are retained to
all orders. Non-adiabatic trapped electron dynamics is taken into account through the
bounce-averaged drift kinetic equation. Assuming electrostatic perturbations, the sys-
tem is closed with the quasineutrality relation. Practical methods are presented which
make this global approach feasible. These include a non-standard wave decomposition
compatible with the curved geometry as well as adapting an efficient root finding al-
gorithm for computing the unstable spectrum. These techniques are applied to a low
pressure configuration given by a large aspect ratio torus with circular, concentric mag-
netic surfaces. Simulations from a linear, time evolution, particle in cell code provide a
useful benchmark. Comparisons with local ballooning calculations for different parameter
scans enable further validation while illustrating the limits of that representation at low
toroidal wave numbers or for non-interchange-like instabilities. The stabilizing effect of
negative magnetic shear is also considered, in which case the global results show not only
an attenuation of the growth rate but also a reduction of the radial extent induced by a
transition from the toroidal- to the slab-ITG mode. Contributions of trapped electrons
to the ITG instability as well as the possible coupling to the trapped electron mode are

clearly brought to the fore.
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Traduction de ’Abstract

Différentes instabilités liées au gradient de température ionique, notées GTI, sont
étudiées dans des plasmas de tokamak & l'aide d’un nouveau code global aux valeurs
propres. Les ions sont modélisés dans le cadre de la théorie gyrocinétique afin que les
effets du rayon fini de Larmor de ces particules soient retenus & tous les ordres. La dy-
namique non-adiabatique des électrons piégés est prise en compte & I’aide de I’équation
cinetique de dérive ('drift kinetic’), moyennée sur la période de piégage. Sous ’hypothese
de perturbations électrostatiques, le systéme est fermé par la relation de quasineutralité.
Cette approche globale a nécessité une décomposition ondulatoire non-standard qui est
compatible avec la géométrie curviligne, de méme que I'adaptation d’un algorithme de
recherche de zéros pour calculer le spectre instable. Ces techniques sont appliquées &
une configuration torique de grand rapport d’aspect, avec des surfaces magnétiques circu-
laires concentriques. Des simulations d’un code linéaire d’évolution temporelle du genre
'particle in cell’ fournissent un repere utile. La comparaison avec des calculs ’ballooning’
locaux pour différentes variations de parameétre, permettent d’effectuer une validation
supplémentaire, tout en illustrant les limites de cette représentation face & des nombres
d’onde toroidaux bas ainsi qu’a des instabilités qui ne sont pas du type ’interchange’.
L’effet stabilisant du cisaillement magnétique négatif est également considéré; dans ce
cas, les résultats globaux montrent non seulement une atténuation du taux de croissance
mais aussi une réduction de l’extension radiale, toutes deux induites par la transition
d'un mode GTI-torique a un mode GTI-plan. Les contributions des électrons piégés a
I'instabilité GTI, de méme que la possibilité d’un couplage entre I’instabilité GTT et le

mode propre a ces particules, sont clairement mis en évidence.
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Chapter 1

Introduction

1.1 A Brief History of Studies on ITG-Related Mi-
croinstabilities

Careful evaluation of energy losses in tokamak plasmas[1] has shown that they are usually
well above those predicted by collisional neoclassical rates[2). It is believed that microin-
stabilities, which subsist even when the most dangerous magnetohydrodynamic (MHD)
modes have been suppressed, provide an alternative channel through which the plasma
releases the extra amount of free energy associated with the spatial variations of physical
quantities, thus contributing at least partly to the transport enhancement. The term
microinstability refers to a whole class of low frequency destabilizing mechanisms arising
from the different behaviors of electrons and ions in an inhomogeneous magnetized plasma.
Due to the prominent role of average diamagnetic drifts in the presence of pressure gradi-
ents and the individual particle drifts related to gradients and curvature of the magnetic
field, which are examples of such charge dependent phenomena, microinstabilities are
often also called drift waves.

A particular type of drift wave is the ion temperature gradient (ITG) mode. The first
experimental indications that this instability might be correlated to anomalous transport
appeared in 1984 on the Alcator C tokamak[3]. Subsequent experiments confirm this

hypothesis. This has triggered a great effort to establish a theoretical basis supporting



the relevance of ITG-related instabilities to the transport anomaly.

The basic form of this instability appears in a straight magnetic system and therefore is
called slab-ITG. It is essentially a sound wave destabilized by ion temperature gradients
sufficiently steep with respect to the density variation. The possible existence of such
modes had already been predicted in the 1960s by Rudakov and Sagdeev[4].

In a tokamak plasma, the nature of this mode can however be greatly altered by
toroidal effects. At sufficiently high frequencies it will adopt the character of the more
unstable toroidal-ITG, first identified by Horton, Choi and Tang[5]. Contrary to its
slab counterpart, which is driven by the ion dynamics parallel to the magnetic field, the
toroidal-ITG aligns along the magnetic field lines and becomes driven by the perpendicular
drifts induced in such a curved system. These turn out to be destabilizing only when going
in the same direction as the ion diamagnetic drift, that is usually on the outer side of the
torus. As a consequence this mode tends to balloon so that it can localize in this so called
unfavorable curvature region. This mechanism is characteristic of an interchange-type
instability.

Another effect of toroidicity is the inevitable appearance of a local magnetic mirror in
this outer region, where particles with low parallel velocities compared with the transverse
ones become trapped. Their oscillating motion along the magnetic field line allows one
to define the so called bounce frequency. If the frequency of the ITG mode falls below
the ion bounce frequency, dynamics specific to these trapped particles become important
and the instability undergoes a transition to the trapped ion mode (TIM). A theory of
trapped particle modes was first established by Kadomtsev and Pogutse around 1966 [6, 7].
Only more recently has one realized the importance of trapped electrons, which due to
their high bounce frequency can affect the ITG instability over all regimes. Romanelli
and Briguglio have shown clearly the possible coupling between the toroidal-ITG and
the trapped electron mode (TEM)[8]. This tends to be confirmed by experimental results

revealing fluctuations propagating as well in the ion and electron diamagnetic directions[9].



Although a first rough understanding of these instabilities can be obtained with sim-
ple two fluid equations, these modes also comprise important microscopic features such
as wave-particle resonances and finite Larmor radius (FLR) effects, therefore requiring a
kinetic model for a full description. This is provided by the gyrokinetic equation (GKE)
which is derived from the Boltzmann or Vlasov equation considering appropriate scal-
ings: the time variation of the perturbation is slow compared with the gyrofrequency and
the characteristic length of equilibrium large compared with the Larmor radii, however
transverse wavelengths can take arbitrary values, leading to the mentioned FLR effects.
Pioneering work for establishing linear gyrokinetic equations was carried out by Ruther-
ford and Frieman[10] as well as Taylor and Hastie[11] in 1967, all employing a WKB
ansatz. A simpler mathematical formulation was given by Catto[12] in 1977. Non-linear
gyrokinetic equations were derived in the 1980s by Frieman and Chen[13] and using an
elegant action-variational Lie perturbation technique by Hahm[14].

Gyrokinetic theory and increasing numerical resources have allowed one to tackle al-
ways more complex systems. After acquiring basic understanding of the slab-ITG[4] and
the trapped particle modes|6, 7] by solving local dispersion relations, geometrical effects
such as magnetic shear were investigated in slab configurations[15, 16]. Cylindrical plas-
mas were other one-dimensional systems considered[17, 18].

An important contribution for analyzing the two-dimensional problem of linear pertur-
bations in an axisymmetric system was made by Connor, Hastie and Taylor around 1977
with the introduction of ballooning theory[19]. The associated representation enforces the
interchange-like character, i.e. the tendency of certain modes to align with the magnetic
field line, while at the same time satisfying the poloidal periodicity. Applying this ansatz
for high toroidal wave numbers allows one to separate the fast variation of the phase fac-
tor from the slow modulation. This leads in lowest order to a one-dimensional equation
for the envelope along the field line. First developed for studying MHD stability, it was

applied successfully by Horton et al.[5] for describing the toroidal-ITG in the frame of a



fluid model. Ballooning representation was then extensively used when solving the GKE
[20, 21, 22, 23, 24, 25]. Except for very few cases[20] these calculations do not include
a higher order WKB procedure for evaluating the radial structure. Hence, these results
usually stay local to a magnetic surface and there remains some questioning on the actual
radial extent of these modes.

For low toroidal wave numbers where the ballooning representation breaks down and
the full two-dimensional problem cannot be reduced, very little linear computation has
been carried out. This limit is of interest as it describes longer wavelength fluctuations
which could lead to higher turbulent transport. This is supported by empirical results from
certain non-dimensional transport scaling studies[26] indicating that Bohm-like trends
characteristic of long wavelength modes are more in evidence than the gyro-Bohm scaling
associated with shorter wavelength microinstabilities. Until recently the only published
results from true global, linear computations came from a spectral code by Marchand,
Tang and Rewoldt[27]. This model contains no FLR effects and is based on a second
order expansion with respect to the radial excursion of trapped particles which leads to
spurious modes[28] and thus to a difficult search of physical eigenfrequencies. The first
version of this code was written in 1979 but due to the lack of numerical power had
not been exploited at the time. Only ten years later, with the help of new generation
computers and a more efficient root finding method has it been run for realistic tokamak
parameters[28, 29]. But even in its optimized form this code is slow and difficult in use.

At present, computational power allows for non-linear gyrofluid[30, 31] and gyrokinetic
[32, 33, 34] simulations. These are however still limited to flux tubes (radially local) or
small configurations and the results from these different methods remain contradictory.
So even today linear studies are not outdated. A linear calculation is the first systematic
approach when considering additional physical effects such as non-adiabatic electrons,
toroidal flow, reversed magnetic shear or shaping of equilibrium. Furthermore they are

indispensable for defining marginal stability. Finally, for non-linear codes they allow



valuable benchmarking of the linear stage of evolution and can provide information on

possible channels of energy release and absorption.

1.2 Initial Goal and Present Status of this Work

The fact that very few full two-dimensional linear results are available in the potentially
important low toroidal wave number regime has prompted us to undertake the devel-
opment of a new, global, spectral gyrokinetic code. The aim was to keep FLR and
- finite radial orbit width effects to all orders which in particular would avoid generating
non-physical modes. This leads to a two-dimensional integral equation which requires
appropriate modeling and numerical methods to be solved. Starting in spring 1995, these
techniques were first devised and tested in a simple cylindrical system. Toroidal effects
were then introduced progressively. This allowed us a systematic introduction to the topic
of microinstabilities, new for the group at CRPP. At present, our model is still quite sim-
ple in some respects as it considers the approximation of electrostatic perturbations in a.
collisionless plasma idealized by a large aspect ratio torus with concentric circular mag-
netic surfaces and furthermore neglects the dynamics specific to trapped ions. However it
contains the full dynamics of circulating ions as well as non-adiabatic trapped electrons.

Parallel to the spectral approach a time evolution particle in cell (PIC) code has been
written by Fivaz [35, 36]. Except for FLR effects included only to second order it contains
full jon dynamics. Coupled to an MHD equilibrium code, it handles more realistic con-
figurations. Electrons however are still approximated by taking their adiabatic response.
In this way the eigenvalue and PIC methods are complementary. Comparisons[37] have
led the way to the correct approximations and have given a better understanding of our

results.



1.3 Outline

Chapter 2 provides an introduction to the physical concepts underlying this work. After
a summary of the different kinetic models which will be used here for describing non-
dissipative drift waves, a description of the slab-IT'G, toroidal-ITG and trapped particle
instabilities is given by solving local fluid and kinetic dispersion relations. The connection
and possible coupling between these modes are also discussed. This part has no claim
of completeness but can serve as an introductory guideline for someone new to the field
and intending to carry on with this work. A clear review article on anomalous transport
in general is given by Connor and Wilson([38]. A review specific to trapped particles,
including the basic theory of the associated instabilities, is the paper of Kadomtsev and
Pogutse[7].

The different techniques developed for solving the eigenvalue problem[39] are first
presented in chapter 3 in the simple case of a periodic cylindrical system. The key
elements are solving in the Fourier space relative to a particular mode decomposition and
adapting an efficient root finding method [40] for identifying the spectra. Some illustrative
results of slab-ITG modes in this configuration are also shown.

The methods devised in cylinder are applied to a first toroidal model which neglects
trapped particle dynamics of ions and electrons. This is the subject of chapter 4. Having
given the derivation of the corresponding eigenvalue equation and some details on its
numerical implementation, results of different parameter scans are discussed. These are
compared with those provided by PIC [34, 35] and ballooning[24, 41] calculations. The
transition from the slab- to the toroidal-ITG is given particular attention and in this
context the limits of the ballooning approximation are brought to the fore. Magnetic
shear scans down to negative values have been performed. Motivation for such studies
come from experimental evidence on TFTR[42], DIII-D[43, 44] and JT-60U[45] tokamaks

of the formation of a transport barrier in regions of shear reversal accompanied by a



reduction in core fluctuation amplitudes. Good confinement of such negative central shear
(NCS) scenarios together with a large bootstrap current fraction and favorable ideal-MHD
stability conditions had already been predicted by Kessel[46]. For peaked pressure profiles,
these regimes however seem to be limited by resistive interchange instabilities[43, 44, 47].

Chapter 5 explains how trapped electrons are added to the global code through the
bounce-averaged drift kinetic equation (DKE). Coupling of the TEM to the toroidal-ITG
is analyzed along similar scans as the ones shown in chapter 4. Results are also compared
with calculations from a local kinetic dispersion relation.

After the conclusions, three appendices have been written to ease the main text from
lengthy algebra. Hence, appendix A repeats the derivation of the linear GKE following
the procedure by Catto[12]. Appendix B explains how this equation can be solved in a
general toroidal configuration. As an illustration the circular, large aspect ratio geometry
is considered. Finally, the average toroidal precessional drift of trapped particles and the

bounce-averaged DKE are rederived in appendix C.



Chapter 2

Basic Concepts

The linear response of a system is entirely determined by the non-perturbed initial state.
We shall thus start by giving a brief overview of the properties of a stationary magnetically
confined system and in particular consider the case of tokamak-type plasmas. Appropriate
kinetic models for describing the different microinstabilities related to the ion temperature

gradient instability are then introduced.

2.1 Tokamak Configuration

Magnetohydrodynamics (MHD) is well suited for describing the equilibrium state of mag-

netically confined fusion type systems:

-+ =
Vp = 7 x B, (2.1)
- -+
VX B = poJ, (2.2)
V-B = 0, (2.3)

_).
where p is the plasma pressure, 7 the current density and § the self-consistent magnetic

field.

The tokamak configuration is idealized by an axisymmetric toroidal plasma. In cylin-
drical coordinates (r,¢,z) all physical quantities are then independent of the toroidal

angle . With this symmetry, (2.3) implies that the magnetic field must be of the form
]_§= Vi x Vo +rB,Vo,
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where 271 is the poloidal magnetic flux enclosed by a toroidal line:

1
P(r, 2) /( ) § do= rA,,
2(r,z

T om

A, being the toroidal component of the vector potential (1_3): V x Z) Even though in a
tokamak the toroidal field ]_E)Lp: rB,V is dominant, the poloidal field §p= Vi x Ve,
as will be shown, is essential for confinement. Since § Vi = 0, ¢p =const is a magnetic
surface. In turn, Eq.(2.1) shows that magnetic and current surfaces are identical and
given by p = p(t) =const. The current flux enclosed by any toroidal line lying on a given

magnetic surface is therefore constant so that by the poloidal component of Ampeére’s law

(2.2):

It

1 s S - o
Be= 57 frpm Bedlo= 50 [, 30 d3=
s 27 I(r,2) B(p dl ¢ 2 (r,z2) Tr do I("/)),

which in differential form reads:

1 1 d
;’;:—Vx];

4
o = ;;@(TBw) By -

The toroidal component of Ampere’slaw leads to the so-called Grad-Shafranov equation [48]:

—A*p = — (A - %g;) P = %%(rﬂpy + uorzj—z = [oTJe- (2.4)
Hence, the MHD equilibrium is entirely determined after choosing a pair of independent
profiles p = p(¢), B, = (rB,)(¢) and solving (2.4) for ¢ = ¢(r, 2).

By defining the generalized poloidal coordinate x = x(r, z) independent of ¢ and so
that r = r(3,x) and z = z(3, x) are 27 periodic in y, one obtains a new set of space
variables (¥, x, ), which suits the axial symmetry of the magnetic surfaces. Assuming
furthermore that x is chosen such that this system is right-hand oriented, the associated

Jacobian is given by

J =V x Vx)- V],

so that d 7= J dypdxdep. For the following it is also useful to define the local orthonormal



Figure 2.1: General toroidal geometry.

. - = =
coordinate systems (ey, e, €))):

o_ YV o B oo o oo
and(e_,)“%,g;):

- - -
€ =€, X €&y .

Fig.(2.1) illustrates these notations and shows how the combined effect of toroidal and
poloidal fields produce a twisting of the magnetic field lines around the magnetic surfaces.
The number of toroidal revolutions of such a line to complete one poloidal revolution is

given by the safety factor

qs(¥) 1 /0% dx

T o

de

dx

2r
_ Ly dE
27 Jo r
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Figure 2.2: Circular, large aspect ratio geometry.
2.1.1 Circular, Large Aspect Ratio Tokamak

For analytical purposes, it is of interest to have an explicit solution of the Grad-Shafranov

equation. A Solovev type[49] is obtained for r B, =const and p ~ 1):

P

Y= (Rap

1
(r)? + 707 = B (2.5)
where R stands for the major radius, @ for the minor radius and %, the poloidal flux
on the plasma surface. In the limit of a large aspect ratio R/a > 1, (2.5) reduces to

Y = 1py(p/a)?, i.e. magnetic surfaces have a circular cross-section, and the corresponding

magnetic field has the simple form

— R P
B= By (— Ra. e + &) : (2.6)

(p,0, ) being the standard toroidal variables (see Fig.2.2). In this limit the safety factor

gs = |pB,/RBy| is a constant. However, the magnetic shear

dln g,

din /4 [,

11
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Is an important element with respect to microinstabilities. As a model, (2.6) is therefore
considered with an ad-hoc profile g; = ¢s(p) and will be often referred to for obtaining
estimates valid in most tokamak configurations. But let us point out that such an equi-
librium contains no finite pressure effects such as the Shafranov shift or the digging of
a magnetic well through the diamagnetic behavior of the plasma, as well as no shaping
effects such as elongation or triangularity. When considering this circular, large aspect
ratio geometry, only lowest order terms in an expansion with respect to the inverse aspect
ratio A™' = p/R are kept so that for example the magnitude of the magnetic field is

approximated by

B = By(1 — A~ cos9), (2.7)
and the parallel unit vector by
A-1
q=-Agaa, 29

2.2  Guiding Center Theory

To get a better understanding of magnetic confinement, it is instructive to consider the
trajectory of a single independent particle. In a fusion-type plasma the magnetic field
is typically of the order B =~ 5Tesla so that the corresponding cyclotron frequencies

2 = ¢B/m for hydrogen ions and electrons are
0 ~5-10%s71, Q. ~9-10Ms71,

For a temperature T' o~ 10keV these particles have a thermal velocity vy, = \/T/_m:
veni = 10%m /s, Vihe == 4 - 107m/3,

and the average Larmor radius A\p, = vy, /Q is then respectively

i~ 2-10%m, Ao~ 4-10"%m.

12



These values are orders of magnitude smaller then the characteristic length of equilibrium
such as the minor radius @ ~ 1m. Under these conditions a particle’s trajectory can be
decomposed over three time scales: The fast Larmor gyration, the slower motion parallel
to the magnetic field of the center of rotation, or guiding center (GC), and the even
slower GC drifts across the magnetic field. This situation is formulated rigorously by
guiding center theory which in its general form considers time varying electromagnetic
—
fields (ZTE (?,t), B (?, t)). The ordering applied for deriving the GC trajectories is given
in terms of a small parameter ¢. The assumption that the fields are slowly varying in
space and time reads
A L w
T~ ave
where L is either the characteristic length of static fields or the wavelength of time de-
pendent electromagnetic fields and w a characteristic frequency. Furthermore, the electric
force is considered small as compared with the magnetic force
_+
| E |
_).
vn| B |

'The GC is then well defined and its equation of motion, independent of the gyroangle a,

~ €.

1s given by the first order differential equations valid to order O(e) [50]

— — —
dR - E Xe 1 — -
7 = vl + B + Q e X [MVB + U|2| e (V e“)] , (2.9)
_).
de gdR - OB
= - 411 - 2.1
dt m ot F (2.10)

—
where R is the guiding center position and € = v?/2 the kinetic energy. The magnetic

moment y = v} /2B is the adiabatic invariant related to the periodic gyromotion so that

dy
— = 0.
dt
Relation (2.9) shows explicitly how the GC velocity is divided into a parallel motion of
order zero and perpendicular drifts of order e¢. These drifts are all of the form
s
f X ||
qB

U= , (2.11)

13



where j_g is either the electric force ]_f;: q E, or the force acting on the magnetic moment in
a gradient of the magnetic field ]7;: —muV B, or still the centrifugal force ]_”Zz —mvﬁ gﬁ
(V e_ﬂ) related to the curvature of the magnetic lines. Charge independent forces such
as ]?; and ]—‘Z induce drifts in opposite directions for electrons and ions. However charge
dependent forces such as J_”; induce charge independent drifts. Note furthermore that all
the considered forces and corresponding drifts are independent of mass on average.

When considering the GC orbits in the magnetostatic field of a plasma equilibrium

Rel.(2.9) reads
—
d 1 (]
_df -_—ggz vy 6_|>| +5 (% + U|2|) Eﬁ xVinB, (212)

where the drifts relative to gradients and curvature of the magnetic field have been com-
bined assuming a low pressure plasma and using the following relation easily derived from
MHD equilibrium:

1
B (V B) = V(5B + op).

In this case (2.10) simply states that kinetic energy is conserved.

2.3 Circulating and Trapped Particles

Let us now come back to the tokamak configuration. To lowest order a GC follows
the magnetic field line with velocity v = im. As the lines twist round the
magnetic surface due to the small poloidal component, the particles are brought from the
low field in the outside region of the torus towards the high field in the inside region.
Magnetic moment and kinetic energy being both conserved here, the parallel velocity
decreases in this process to the point that some particles are reflected and stay trapped
in the low field region, oscillating along the magnetic line. The other particles having
sufficiently small values of 1 overcome this barrier and continue following the line in
the same direction. In this context it is convenient to define the dimensionless variable

A = uBo/€ which is also a constant of motion and allows one to classify these two groups
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of particles:

circulating particles: 0 <\ <

trapped particles:

B(1, x) being the magnetic field at the point of interest, Biinmaez (1) the minimum re-
spectively maximum value on the considered magnetic surface and B, the value on the
magnetic axis taken as a normalization. For a trapped particle with a given value of X

the turning point angles x; and x, in the poloidal plane are solution of

B(¢a X1,2) .

1
By A
In the following all terms relative to circulating particles are labeled ’¢’, which stands for
‘transit’, all terms relative to trapped particles labeled ’b’ for ’bounce’.

The angle I' between the particle velocity ¥ and the field § is referred to as the pitch

angle and is related to A at a given point (¢, x) by

B(,x)

Sil’l2 F = _—BT—)\

The critical pitch angle I'; separating trapped from circulating particles therefore reads

B, x)

I'. = arcsin , | ———~+.

Binas()

Assuming an isotropic velocity distribution, one can then easily estimate the fraction o

of trapped particles at a given point in the plasma:

_ B(¥,x)

op |1 — ——~=

Binao(t)

From (2.7), Basmin = Bo(l = A™') so that in the low field region o, ~ v/2A-1. For an
aspect ratio A = 10 this corresponds to 45% of the particles.
When taking into account drifts, the GC travel across the magnetic surfaces. Indeed,

in most toroidal equilibria B is proportional to 1/r as illustrated by (2.6), so that drifts
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are essentially vertical:

T L (ﬁ + vﬁ) Lz (2.13)
However, in the absence of collisions the combined effect of poloidal rotation and vertical
drifts lead to closed trajectories in the poloidal plane. This can be proved by reminding
that due to the symmetry of the system ¢ is a cyclic variable and the conjugated momen-
tum 1o = ¢+ mruv,/q is also an invariant. The conservation of £, y and the gyroaveraged
momentum < o > entirely define the GC orbit in the poloidal plane, which is closed if
the magnetic surfaces are closed. Thus owing to the poloidal field and the symmetry of the
system, one can guarantee the existence of long time confined orbits. Fig.(2.3) illustrates
the different possible trajectories (dashed lines) for positively charged particles leaving
the same point P on a given magnetic surface (full line) with different velocities. Starting
with v > 0 respectively v < 0 the particles drift outward respectively inward and in both
cases can be either trapped or untrapped. Particles of the same mass but opposite electric
charge follow the same orbits but in opposite direction. Due to their characteristic shape
trapped orbits are also called banana orbits. For circulating particles to perform a full
revolution in the poloidal plane they must travel the distance 27 Rq, along the field line.
An estimate of the corresponding frequency w;, called transit frequency, is thus given by

Uth
Rqg,’

Wy ~

As the GC drifts are of order vy ~ v, A1,/ R, one obtains for the radial excursion

Ud
/\t ~ — )\qu.
Wi
In appendix B it is shown that the corresponding estimates for trapped particles must be

weighted by a factor vV A~!. Thus the bounce frequency is of the order

Vth
Wy ~ A—l ths y
and the banana width:
Ay~ L
A-1
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Figure 2.3: Trajectories in the poloidal plane of GC starting at point P with different velocities.
In the case of positively charged particles, trajectories 1 & 2 correspond to initial conditions

with v > 0 and trajectories 3 & 4 to v < 0. 1 & 3 are the orbits of circulating particles, 2 & 4
the banana orbits of trapped particles.

In fact after having completed a full orbit in the poloidal plane a trapped particle in
general does not return exactly to the same point along ¢. The toroidal drift <¢> which
results can be expressed in terms of the longitudinal adiabatic invariant Ly = $dlyy,
related to the periodic motion of the GC along the magnetic field line:

_m0lL/0¢

= ee

(2.14)

This relation is derived in appendix C and evaluated in the particular case of a circular,

large aspect ratio torus which allows one to give the rough estimate

. /\L gs qs
R <p>n~ 'Uthfz_—l ~

A1

Ud

which again is of the same order for electrons and ions. It is to be noted that this
precessional drift arises even in the absence of magnetic shear in which case positively
(resp. negatively) charged particles drift mainly against (resp. along) the toroidal field

ﬁw. This situation can be reversed in the case of a very negatively sheared field.
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2.4 Diamagnetic Drifts

A particular feature of a magnetized plasma is the presence of average drifts resulting from
the interplay between spatial inhomogeneities and the finiteness of the Larmor radius. One
must point out that these so-called diamagnetic drifts are not an effect of the individual
GC drifts discussed above. This can easily be illustrated by considering a plasma in a
uniform magnetic field ;é in which case particles are submitted to no drifts. Let us set
the orthonormal right handed system (é;me_;,a,:a,, Eﬁ) For the distribution function
F(?, ?) of a given species to be stationary it must be function of the constants of motion.

Hence, besides the € dependence, F' is chosen function of the GC position X = z + vy /0

along e, so as to obtain density and temperature inhomogeneities:

N(X) £

T () mr P T (X) (2.15)

—

F(7,0) = Fy(X,€) =

Thus to zero order in Larmor this form is a Maxwellian distribution with density N(X)

and temperature 7'(X). Expanding to first order in Larmor:

F= [1+”—y

dinN dT 0
Q

el 0 2
. + - 8T)] Fu(z, &) + O(€%).
Integrating to obtain the average velocity gives

L LdNT) 5 Vi el

- 1 .
%_N/dUFU—qBN dzx = N =~ ¢B’

(2.16)

—
Note that (2.16) is again of the form (2.11) but here f= —Vp/N is the macroscopic force

related to pressure gradients.

2.5 Kinetic Models for Microinstabilities

It will be shown in the following sections that although simple fluid limits can give a first
understanding of microinstabilities, these are affected by specifically kinetic mechanisms

such as Landau damping or finite Larmor radius (FLR) effects. For this reason, even with
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the sole aim of deriving the appropriate fluid equations, kinetic equations are necessary

as a starting point.

The basic equation for the kinetic description of a collisionless plasma is the Vlasov

equation:

—+ - 0

Do 0,50 ugiz g0
ov

= |z+ +L(E + f=0
Dt’ — |ot ar m o
where f (7, ?; t) is the distribution function of a given species of mass m and electric charge

q, and (Z)C (?,t), § (?,t)) the self-consistent electromagnetic fields. This implies that in
full generality one must solve over time the non-linear Vlasov-Maxwell system in the six-
dimensional phase space (?,3) This problem can naturally be reduced by restricting
our study to ITG-type microinstabilities and taking advantage of certain scaling relations

which then appear. Defining the small parameter

€= AL", (2.17)

a

where here AL; is specifically the ion Larmor radius and a again a characteristic length of

equilibrium, these relations are summarized by what is called gyro-ordering:

ﬁ ~ €, (218)
k||)\Lz‘ ~ 61, (2.19)
kl/\Li ~ 60, (2.20)

——)-
with (k,w) a typical wave vector-frequency pair. The justification for these relations

appears throughout the description of ITG-related instabilities.

2.5.1 Gyrokinetic Equation for Ions

Let us first consider the case of ions. Except for (2.20) gyro-ordering would be appropriate
for a direct application of guiding center theory. However this third relation states that
the considered modes can contain perpendicular wavelengths down to the scale of the

ion Larmor radius. The problem of considering this feature while at the same time
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taking advantage, as possible, of guiding center theory is solved by gyrokinetic theory. In
appendix A the linearized gyrokinetic equation (GKE) for electrostatic perturbations is

derived from the Vlasov equation [12]:

D
Dt

~ 0 0\~ 0 1

u.t.g.

Here 5-——} +qFym¢/T is the non-adiabatic part of the perturbed distribution function }J
and < ¢ > the gyroaveraged electrostatic potential. Fjs is the stationary distribution
function chosen as a local Maxwellian with density N and temperature 7' similar to
(2.15), i.e. to zero order in the Larmor radius Fj; must be constant on a magnetic
surface. In appendix A the proof is given for an axisymmetric system, but in fact this
equation is valid for other geometries. This equation is written in gyrokinetic variables
(E, €, 1, a,0 = sign(v))), with ]_%:? + 7 x Eﬁ /€ the guiding center, € the kinetic energy,
4 the magnetic moment and « the gyroangle defined by v= vy (cos a én +sina E;,) + ) e_ﬁ.
Although one solves for the particle distribution, the GKE has taken full advantage of

D

guiding center theory as & , stands for the total time derivative along the unperturbed
u.t.g.

trajectories of the GC, ng being given by (2.12). Using a plane wave decomposition:
= A
#(7) = [dR 574 (E),

the gyroaveraged potential can be written

k A
<é>(R,En) :/dZJo( Q) 1 (k).

Note the Bessel function having argument ~ k; Az, which is the central term taking into

account FLR effects.

2.5.2 Adiabatic Electrons

In first approximation the mobile electrons can be considered to respond adiabatically to

the low frequency microinstabilities and therefore follow a Boltzmann distribution:

n=NeXp—gT?:N(1—%i_,b-) + O(¢%).
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However, as already discussed, in the non trivial tokamak geometry the trapped particles
have a precessional drift which can become comparable to the phase velocity of the pertur-
bation. To take into account the resonances which may arise, a more detailed description

must be given for electrons.

2.5.3 Bounce-Averaged Drift Kinetic Equation for Trapped Elec-
trons

For similar temperatures the average electron Larmor radius Az. is smaller then \j;
by a factor /m./m; and therefore is usually negligible to all considered wavelengths.

For this reason, contrary to ioms, it is justified to identify these particles to their GC.

The corresponding equation to Vlasov for the GC is given by the drift kinetic equation

(DKE)[50]
9 dR 8 L dE D
(8t+ YRR as) fo=0, (222

fg(;z),é“,y;t) being the GC distribution function. With d R /dt and d€/dt given by
(2.9)- (2.10), this equation is in its non-linear form. It turns out that the perturbation
frequencies w are much smaller (again by a factor \/m) then the average bounce
frequency wy. of electrons. Thus, as the GKE and DKE have been derived to get rid of the
fast cyclotron time scale using gyroaveraging, a similar procedure can be undertaken with
respect to this second periodicity. This is performed in Appendix C where the bounce-

averaged drift kinetic equation linearized for electrostatic perturbations is obtained [51]:

1

] 0 0
(8t+ <50> 8@) ( FM@t VHFM—B—;V¢> < P >y, (2.23)

with 592}9 +qFme/T the non-adiabatic part of the perturbed guiding center distribution
function }g, <9> the toroidal precessional drift given by (2.14) and < ¢ >} the bounce-

averaged potential.
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2.5.4 Closure Through Quasineutrality

As we shall be essentially dealing with electrostatic instabilities the system must be closed

with one equation for ¢. In fusion type plasmas typical particle densities are of the order

N ~102m~23 so that
O L wp~6- 10113‘1, and ALy > Apx~l1- 10"4m,

where w) = Ne?/m.€ is the plasma frequency squared and A\p = wvy./w, the Debye

length. It then follows from gyro-ordering that microinstabilities verify
_)
wLwy, and |k|ApKL.

This scaling allows to replace Maxwell’s equations, which for electrostatic perturbations
reduce to the Poisson’s equation, by the quasineutrality condition. In other words, at

each point there appears essentially no internal charge displacement:
P (7,) = e (ni(T 1) — ne(7,1)) >0, (2.24)

ne and n; being respectively the electron and ion densities and assuming singly charged

ions. This is in particular true at equilibrium where both species have same density N (?)

2.6 Slab-ITG Instability

To get a first understanding of the destabilizing effects of ion temperature gradients (ITG),
the system is again simplified to a slab configuration, as the one already introduced in
Sec.2.4, so that all toroidal effects are put aside. By considering a single plane wave
component
AN
¢ :¢ ez(kd‘—wt)’
a local dispersion relation can be established. The GKE for ions is trivial to solve as the

GC trajectories reduce to the parallel motion:
x

~ e W — Ww; k'_LUJ_ A (D
= — Oy zJ MYl i(k-R—wt)
T Ry 0( Q )qbe ’

22



with

w*=w,(14+97T3/0T) and 75=dInT/dInN.

The diamagnetic drift frequencies related to density and temperature gradients are re-

spectively given by

T dln N 1 dT
— y and  wr =nw, = q_B-c?; Y-

“n = qB dzx

By analogy to the toroidal configuration, let us assume that in the standard case N and

T decrease along e,=e,, so that one defines the characteristic lengths

din N
dx

dlnT)_1
dzx '

L,=—( )Y, and Ly = —(

Going back to particle variables, that is replacing the factor expi z : j% by expi z (?

+ 0 X é_ﬁ /€2;), the ion density can be evaluated:

~ - Ne — k‘_[_’LJ_L w— Wwr FM,
2': P ]_— d 2 d .2
i [ 4377, Ti{ / UJO(Qi)w—k||v||N}¢’ (2:25)

with d v= 2mv, dv 1dv||, the integration over the gyroangle o having produced a second

Bessel function Jy. Note the term —Ng¢¢/T corresponding to the adiabatic response. The
integrals with respect to v) and v can be expressed in terms of the scaled modified Bessel
function A,(z) = e7*I,(x) and the plasma dispersion function W (z) [52]:

+oo 2

W(z) = \/12? [Ty, sm(s) > 0. (2.26)

Considering adiabatic electrons, the quasineutrality relation (2.24) gives the dispersion

relation

0 = l+1+(1—“’—?) (W —1)A (2.27)

T w

: . : 2
= l+1+{1~~°"’“( —@)] (W — 1)Ao — 22 | LW Ao + (W = 1)&(As — M),
T w 2 w 2

using the notations 7 = T./T; for the temperature ratio, A, = A,(&), W = W(z),

§ = (kLAr)?, and z = w/|kj|vp. Details of similar calculations are given in chapter 3.
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When normalizing the frequency with respect to v/ L, the independent parameters are
Ty Nis k'J_'—‘ kJ_/\L,' and k“: k”Ln.
Let us first consider cold ions. In this limit, with the help of the asymptotic expansion

W(z) = —1/2 —3/2* — 15/2°% — ... one can easily derive
(14 (ke 2g)?] w? — wne — (Kyes)? = 0, (2.28)

where ¢2 = T,/m; is the sound velocity squared and A} = ¢s/8; the ion Larmor radius
evaluated with the electron temperature. Note the perpendicular dispersion from the
polarization drift which is the remaining FLR effect of jons in this limit. For |kjcs| 3> |wne|

this relation yields
o (Kyes)®
L4 (kL)Y

which is the ion-acoustic or sound wave. For |kjjcs] < |wre| one of the two roots becomes
W Wre.

This is the electron drift mode which can be destabilized by non-adiabatic electron dy-
namics.

In the case of a finite, inhomogeneous ion temperature T; ~ T, an ion driven instability
can arise. This can be shown by first assuming 1/|z;| = |kjvmi/w| < 1 and retaining
in (2.27) terms up to second order in 1/|z|. Furthermore neglecting FLR effects and

considering a flat density profile gives

1 (M)Q (1 - ‘i’—T—) =0. (2.29)

w w
For [k“vth,-[ <K wr; this relation contains an unstable root w = w, + 1y, ¥ > 0 referred to

as the slab-1T'G instability or n;-instability:

w ™~

(1 4+ Z\/g) [(k”'vthi)zwﬂ] e

?

NGB

and at the limit of applicability of this result w, ~ 4 ~ wr;. In fact maximal growth rates

appear for longitudinal phase velocities of the order v;,; and perpendicular wavelengths
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Figure 2.4: Critical value of 7; as a function of k; Ar; for the slab-ITG instability.

of the order Ar; so that accurate results can only be obtained by solving the full kinetic
dispersion relation (2.27). At finite values of n; one can show that there are two conditions

of instability. One is on #; itself, which for arbitrary values of kj Ar,; reads [53]

2
14+ 2&(Ao — A1)/ Ao

N > Nie = or n; < 0, (2.30)

illustrated in Fig.2.4. The other condition as we have already seen is on Ky:

|kH| < k||lima
where for kA \p; < 1
1 2\ lwr| 1 ( 2)”2 ALi
Ejim==11— — e L 2.31
i 2 ( m) Vihi 2 ni |L7i| (2:31)

For |ky| > kiim the instability is suppressed by Landau damping. Notice that wr;/Q; ~
K imAL Nkj_ Ari/Lri ~ € so that gyro-ordering assumptions are verified. As shown
in Fig.2.5 and 2.6, v and kjjm are both maximum for k;Az; ~ 1. For even shorter
wavelengths the potential felt by the ions tends to be averaged out over their Larmor
gyration and the drive becomes less effective.

In the next section it is shown that if toroidicity effects are not too strong, these

slab-type instabilities, despite their name, can prevail in a tokamak geometry. One can
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value is near k;Ar; = 1. Here 7 = 1, Here r =1, n; = 4.

ni = 4 and k| was varied for maximum

growth rate.

get an idea of the structure of such an eigenmode by considering a circular cross-section
equilibrium of the form (2.6). Besides having a fixed toroidal mode number n due to the

symmetry of equilibrium, such a mode also contains a dominant poloidal mode number

m due to the weak toroidal coupling:

b = §(p)ei 7047,

The parallel wave number can then be obtained using (2.8):

1

ky(p) = m(nqs(p) —m).

o1
e—|>| Vo~ (ngs — m)p =

Ry,
As |kyj| < Kjj1im, such a mode tends to be localized around the corresponding mode rational
surface p = p, =const, where ¢,(p,) = m/n and thus kj(p,) = 0. At a distance Ap from
this surface |ky| = Ap|kq|/Ls, with L, = Rqs/g the shear length and ks = m/p the
poloidal mode number. From (2.31) and noticing that here wr = —Tk; [/qBoLT, one can

then estimate the radial extent of such a mode for &k, \;; < 1:

1 2\'? [,
Ap~—11—-— - A 7. .
g 2( m) Ly,"" (232)

k)
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The condition for two such modes with same toroidal wave number n and centered on

neighboring rational surfaces to overlap is then given in the fluid regime n; > Nic by

~ 1

Ap > - => €7 < kg qs,
ng!

with ez = Lt /R, and kg= kgAr;. Under this condition, for a fixed toroidal wave number,
many independent modes can form a fluctuating structure with a large radial extent

spanning the corresponding mode rational surfaces.

2.7 Toroidal-ITG Instability

As discussed in section (2.3), when going to a toroidal system the particles are mainly
affected in two ways. First, toroidicity induces a drift on all GC. Second, each species
is divided into circulating and trapped particles. Here we shall neglect the distinct wave
interaction in relation with trapped particle dynamics. The simplest way to model GC

drifts then consists in adding an external force of the form

of the same order and having similar velocity dependence as (2.13). This layout can
be identified to the local configuration in the outer (poloidal angle = 0) respectively
inner (poloidal angle & = ) region of a torus with major radius R, depending whether
the geometry factor 1/R is positive or negative. The GC still follow uniform rectilinear
trajectories, however slightly skew with the field lines due to drifts. The local dispersion

relation can again be easily derived:

1 = 19 kJ_'U_L W — Wk FMi
= = — : 2.33
0 7'+1 /dvjo(ﬂi)w—k”v“—wgi]v’ (2.33)
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with the GC drift frequency defined by
Wy ZZ . ’I_J)d .

With no approximation, the velocity integrals in (2.33) cannot be expressed in terms of
well-known special functions.
To get a first understanding one takes again a fluid limit by assuming lkyvmifw| < 1,
|wgi/w| < 1 and kLAp; < 1, so that for T, = T;[22][54]:
kyvens \ 2 i ni( 1+ 1
&_(”Uth) _<wg >:| (1_w ( +77)):0, (234)

Whi

1+

_+_

w w w w

where < wg; > is the average drift frequency:

2T k
<wy >= === = 2w,

qB R

using the definition ¢, = L,/R. For further purposes density gradients as well as ion

polarization drift have been retained. However, neglecting these terms for the time being

2
| l:(k”vthi) n < Wyq >} (1 _ wTi) —0,
w w w

which, contrary to (2.29), can provide an instability with finite growth rate down to

gives

k“ = 0. Indeed, for < wy; >< wr; this equation then has solutions
w = i(— < Wy > wTi)1/2,

which yields an instability if 1/R is positive. Note that this so-called toroidal-ITG insta-
bility and the slab-ITG are different limits of the same branch. If 1/R is negative, GC
drifts act in the opposite direction so that no instability appears around ky = 0. This
mechanism is characteristic of an interchange instability. Hence, in a tokamak plasma
these modes tend to balloon in the low-field region, also called unfavorable curvature re-
gion for this reason. In fact, as the corresponding envelope contains parallel wavelengths

of the order 2m Rq,, which is the distance along a magnetic field line to perform one
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poloidal rotation, the minimum value for |kl cannot be zero but 1/Rq,. An estimate
whether toroidicity is sufficiently strong for the transition from slab- to the toroidal-ITG

instability to occur, depends on the relative importance of

kjvu i

2
> < Wgi >
< ‘ o ’ (2.35)

w

w

appearing in (2.34). Testing the perturbing effect of toroidicity on the slab-ITG by taking
the typical frequency w >~ wr; and |ky| ~ 1/ Rg; in (2.35) gives the condition for transition
to the slab-ITG:

Jer, > ko gs. (2.36)

The solution to (2.34) for kj = 0, still neglecting polarization drift but taking into

account density gradients reads

1
w = 5 (< Wyi > —wm) + \/(< Wyi > —wm-)z -4 < Wy > wm‘(l + ni) ,

which leads to the following condition for stability
8en(1 +mi) < (26, — 1)2. (2.37)

Note that for €, < 1/2 the toroidal-ITG mode propagates in the electron diamagnetic
direction. These fluid results are naturally only of very qualitative value, especially near
marginal stability where drift resonances appearing in (2.33) become important. This is
shown in Fig.2.8 where condition (2.37) is compared to the marginal stability obtained by
solving numerically the kinetic dispersion relation (2.33) for 7 = 1, k=0 and kNL: 0.3.
As can be seen from (2.37), for flat density the condition for stability becomes a constraint
on er,. From the kinetic dispersion relation one obtains er, S 0.3 instead of er; > 2 coming
from the fluid condition. Fig.2.7 illustrates FLR effects and shows how the toroidal-ITG
has maximum growth rate for k1 Az; ~ 0.5, that is at definitely longer perpendicular

wavelengths then the slab-ITG.
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Figure 2.7: Real frequency (full line) and
growth rate (dashed line) of toroidal-ITG
instability as a function of k) Ar;. Maxi-
mum value of growth rate is near k A;; =
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Figure 2.8: Stability curve for toroidal-
ITG mode in plane (e,,7;). Full line is
obtained by numerical resolution of kinetic
dispersion relation with 7 = 1, ky = 0,
ki, Az = 0.3. Dashed line is the fluid result.

k) = 0. Note that for w,/w,. < 0 the
mode propagates in the ion diamagnetic di-
rection.

2.8 Ballooning Representation

The simple description of the toroidal-ITG instability given in the preceding section
showed that this mode is interchange-like and therefore tends to be aligned with the

magnetic field lines. In a general tokamak geometry, for a linear perturbation with fixed

toroidal wave number n, this implies

0 ~ ¢ -Vé
1 0 0 1 8 Byin
= E(V’?b X Vo +rB,Vy)- (VXEBC‘ + V‘szw = <_J—B—5; + _]_—3—7) ¢
A
= ¢ ¢ expinS(p,x, p), (2.38)

with

JB
S:/de 2 4.
0

T

As the mode has a finite radial extension and furthermore balloons in the unfavorable

A
curvature region, ¢ must provide a modulation in % and y. Such a form can be useful as
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an ansatz when considering toroidal-ITG instabilities in a true tokamak configuration. In
fact, as S(3, x + 27, ) = S(¥, x,¢) + 2mqs(¥), Rel.(2.38) is not periodic in x except on
mode rational surfaces where ng, = m is an integer. Therefore one actually chooses the

ansatz

> A
¢= D, ¢(,x+p27)expinS(¢, x + p2m, ), (2.39)

p=—o0
so that no periodicity has to be enforced on 9) whose x domain is the whole real axis. This
so-called ballooning representation was first proposed by Connor, Hastie and Taylor[19]
and put on a rigorous mathematical ground by Hazeltine and Newcomb[55] who have
shown that (2.39) defines a one to one transformation if 21\5 varies sufficiently slowly from
one mode rational surface to another. For high values of n let us assume that one can

distinguish a fast length scale relative to the phase factor:
/\L,InVS| ~ 60, (240)
from a slow length scale relative to the ballooning envelope:
A
)\Li|V111 d) | ~ 61. (2.41)

Adopting for g an equivalent form to (2.39) and inserting these relations in (2.21) leads

to the GKE in ballooning representation, which to lowest order in € is given by

d vy 0 - S5 n_la,. O ikp kivi\ A _
8t—JBaX+zk vd] g(¢aXat)_ I:TFMat+VnFMB JO 0 ¢(1/)7X1t)7

with the notation Z: nVS. Note that this equation is local to a magnetic surface. To
obtain the radial dependence 25 (¥) of the envelope one must work to higher order in
€[20]. Let us emphasize that this relation is valid only under the scaling (2.40)- (2.41)
which in particular breaks down for low n. Furthermore, independent of the value of n,
this representation is not adapted for instabilities having no interchange character. This

is the case for the slab-ITG, which has no tendency to balloon and although having long
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parallel wavelengths, never aligns along the magnetic field line (i.e. |ky/k.| < 1 but

As an illustration, let us consider the circular, large aspect ratio equilibrium. In this

case the gyrokinetic ballooning equation reads

2_ g—'kv (cosH—}-g@sinﬁ) §( ;1) =
gt~ Rq, 80 "7 P =

q 9, dFyr ik kiv, \ A )
. - — — -+ .
having used JB = Rg; and S = ¢,(p)0 + ¢ as well as k=~ k, e, +ky eg +n/R e, with
k, = kg 3 0, ks = ngs/p. This relation shows explicitly how ballooning representation

takes into account shear § which appears as well in the perpendicular wave number

ki ot \Jk3 + k2 = koy/1 + (5 0)2,

as in the GC drift frequency w, :Z . 04 The system of (2.42) together with the quasineu-
trality equation can again be considered in the fluid limit. The corresponding equation for

A
¢ can be directly obtained from the slab relation (2.34) using the following transcriptions:

: 1 0
Zk“ — V“ ~ _Rqs ET] (2.43)
ky, — kg (2.44)

2T k
<wg > — —q—BgEf(cos 0+ 5 0sin 6) (2.45)
so that
2
i\ & i
{(:;;qs) YT = u::, >(cos 0+ s fsin 6)
W+ Wy ~ 2 A A

LI (1 ¥ 2)] 0) =0, 9.46
w—wm(l-%-m)-l_ ’ T(£6))) ¢(6) (246)
where now < wy >= 2¢,wn, wn,r = —Tks/qBoL, . On the basis of this equation Horton,

Choi and Tang(5] first discussed the toroidal-ITG mode. This defines a one-dimensional

A
eigenvalue equation for ¢ () with a non-trivial dependence in the eigenfrequency w.
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2.9 Trapped Particle Instabilities

We will now consider how trapped particles may affect the basic ITG instabilities. If the
frequency w of a perturbation falls below the bounce frequency wj of a given species,
trapped particles can carry out complete banana orbits over a characteristic time of
evolution of the mode. The interaction of these particles with the wave can then be
fundamentally different from circulating particles: not only are they localized in the low
field region, but also their oscillating GC trajectories allow no parallel phase resonance.
However, so-called trapped particle instabilities, driven by their toroidal precessional drift
may appear[56].
It was shown that typical frequencies of the ITG-type modes are of the order

* Uth i
W~ W ~ W, Y —
g a

)

where a ~ L, 1, R is a characteristic length of equilibrium. This can be comparable with

the ion bounce frequency wy; ~ A~Yvy,/ Rgs. Estimating w < wy; with w = wyy yields
/;9 Qs < A-lter.

Under this condition the transition from the slab-ITG to the trapped ion mode (TIM)

occurs. Together with (2.36) one can then establish the rough picture

TIM l slab-ITG | toroidal-ITG ~
i I ¢ qs

vV A-1 €7; €T;

Note that when unbending the torus into a cylinder, carried out by increasing R while
holding Rgqs and ]go constant, the slab-ITG is indeed the only mode which remains. How-
ever, for sufficient toroidicity there may be a direct transition from the toroidal-ITG, with

frequency w ~< wy; >, to the TIM. This situation is then summarized by

TIM toroidal-ITG ~
I k@ 4ds




With respect to electrons however one always has w < wp. in a torus:

w 1 v 1 Me <1
Whe V A1 vy, V A1 m; .

As a consequence trapped electron dynamics can affect the ITG-instability over most
regimes.

To get a basic understanding of these mechanisms let us establish the contribution
of non-adiabatic trapped particles to the local dispersion relations discussed above. For
this purpose the bounce-averaged DKE (2.23) is suitable even for ions if FLR effects are
neglected. This equation is trivial to solve and yields the non-adiabatic part of the GC

distribution function of trapped particles:

~ g w—w*
g:—F — < b,
M T <e> ¢ >

where n is the fixed toroidal wave number. To obtain a zero-dimensional relation, let us

approximate
< P>y o.
This can be justified by assuming an interchange-like structure. From relation (C.7) of

appendix C the precessional drift frequency is given by
. E .
n<P>= —w,, with w,=w,e,G,
Uth
where the factor G ~ 1 is approximated to a constant, i.e. neglecting here its pitch angle
‘ a.

dependence. Thus calculating the non-adiabatic trapped particle density fluctuation ﬁ:

reduces to an integration over energy:

/d T= dray /d8\/26,

so that
~TLG. F —w*
n, = 47rosz%/d€ 28—]VM————W :90>¢
w—n
qg 1 ( 3 ) w 1
= - —-— — - = — Wyl | — > (24
zabNTc% [ w —wy(l 217) W(z) — wyn w(pW(Zb) + 5 ?, (2.47)
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where 2, = sign((.%)\/m . When deriving this relation one must be particularly careful
with causality. This is related to the fact that the wave can resonate with a given species
of trapped particles only if it propagates in the same direction as the precessional drift
of the corresponding bananas. This is in fact similar to the GC drift resonances affecting

the toroidal-ITG instability. Details of this calculation are given in chapter 5.

2.9.1 Trapped Ion Mode (TIM)

As mentioned above, this mode falls in the regime w < wy; < wp.. The corresponding
local dispersion relation is based as usual on the quasineutrality condition considering for
each species, besides its adiabatic response, the non-adiabatic trapped particle dynamics
through (2.47):

D o [ ) L (Zwe + )}

. w 2
electrons, ions ¢ v

Considering the limit |w,/w| < 1 and retaining lowest order terms leads to

iwni(1
0=1+a |14 SLenilltn)|
2 w?
having assumed equal temperature profiles for electrons and ions so that 7 = 1 and

ne = n; = n. This yields the trapped ion instability driven by precessional drift in the

presence of inhomogeneous temperature and density profiles[57]:

3
v \/Eabwwwm(l + n).
Similar to the toroidal-ITG instability driven by the vertical drifts of the GC, the trapped
ion instability requires that the banana orbits of each species drift in the corresponding

diamagnetic direction so that wyw, > 0. This is usually the case as the factor G is positive

except for very sheared fields.

2.9.2 Trapped Electron Mode (TEM)

This instability appears in the regime wy; < w < wy.. As will be shown below, this mode

can be strongly coupled to the toroidal-ITG instability. Therefore, to isolate the pure
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TEM, let us neglect parallel ion drive by taking kjvini = 0 as well as perpendicular ion

drive setting wy; = 0 so that from (2.25)

New,;

Ti w’

n,=

having also neglected all FLR effects. The appropriate dispersion relation then reads

112
0==+ -2

T T Wee

[(w (1 - gm) W (24e) — et (;:eW(zbe) + %)] Ty

Again assuming |wy./w| < 1, 7 =1 and retaining lowest order terms leads to

I

0=1+a [-1 4 Wne = 3wpe/2 | 3wyetne(l + ne)} _ Wne

2 w? w

giving an estimate of the trapped electron instability w = w, + i for 5, >> 1:

3
Wr ™ Wye, v~ \/iabwwwne(l + 7).

This result reveals a mode propagating in the electron diamagnetic direction and having

a similar driving mechanism as the TIM.

2.9.3 Coupling of the TEM to the ITG Instability

As already mentioned, trapped electron dynamics can potentially be effective throughout
all ITG-instability regimes. This can be studied by adding non-adiabatic trapped electron

dynamics to the dispersion relation (2.33)

1120 3 ) w 1
0 = - + T Woe l(w wne(l 2778) W(Zbe) WheTle <w(peW(Zbe) + 2)]
kivi \ Fi w — wr
_ d - 2 1Vl Mi [ ) 2.4
+o1 / v Jo ( Q; N w— k) — wg; (2.48)

Thus, depending on which drive is dominant, this dispersion relation yields an instability
having either an ITG or TEM character. In an intermediate state one obtains a hybrid
mode referred to as the trapped electron-n; instability[58]. For fixed electron parameters

this transition takes place near the marginal stability of the pure toroidal-ITG mode where
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Figure 2.9: Real frequency (full line) and growth rate (dashed line) as a function of 7;.
Circles label results with non-adiabatic trapped electron contribution. As a reference plain
lines represent results with only the adiabatic response of these particles. Here 7 = 1.0,
€, =0.3, o =032, G =1.0, n, = 0.1, k“ =0, ki1 Ap; =0.3.

25 T T T T T T T

1k

Figure 2.10: The same situation as in the previous figure except for 7, = 4.0. When consid-
ering non-adiabatic trapped electrons dynamics there is an interval in 7; were the perturbed
toroidal-ITG (circles) and trapped electron mode (stars) are present simultaneously. Plain
curves represent again results without trapped electrons.
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ion drive becomes weak. As already mentioned, a kinetic description is necessary in this
regime to take into account the resonant mechanisms. The numerical results obtained by
solving (2.48) are presented in the following figures. We will essentially discuss how the
toroidal-ITG is affected and therefore set k) = 0.

Fig.2.9 shows the real frequency (full line with circles) and growth rate (dashed line
with circles) of the instability as a function of n; for 7 = 1, ¢, = 0.3 and &k, \z; = 0.3.
Trapped electron parameters are oy, = 0.32, G = 1 and 7, = 0.1. The toroidal-ITG with
no trapped electrons is plotted as a reference with plain lines. For n; > n, ~ 1 the
instability is essentially the toroidal-ITG but with increased growth rate. However for
7 < 7ic, contrary to the pure toroidal-ITG, the hybrid mode remains unstable and starts
to propagate in the electron diamagnetic direction, revealing the transition to the TEM.

In fact for n. > 2/3 two instabilities can be present simultaneously[8][59]. This is
illustrated in Fig.(2.10) for the same parameters as above except 1, = 4.0. The lines with
circles represent a mode with toroidal-ITG character damped at 1; = ;. ~ 1, the lines
labeled with stars an instability with TEM character remaining unstable for i < Mic.
Hence, non-adiabatic electron dynamics can greatly alter the stability picture one had
from the pure toroidal-ITG.

Fig.2.11 and Fig.2.12 present the stability curves of the trapped electron-7; mode (full
line) in the plane (e,,n;) for n. = 0.1 and n, = 4.0 respectively. As a reference the
stability curve of the pure toroidal-ITG is added (dashed line). Note that in both cases
the n; threshold is only removed for low values of €,. This corresponds to the parameter
region where the toroidal-ITG starts to propagate in the electron diamagnetic direction,
therefore allowing a more effective coupling to the TEM.

Fig.2.13 shows for 5. = 4.0 the frequencies and growth rates of the two instabilities as a
function of the precessional amplitude G. The TEM-type instability vanishes for G < 0.
However for the toroidal-ITG-type instability, trapped electrons only have a damping

effect for G < —0.75. As shown by Fig.C.1 of appendix C this requires an unrealistic
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stable

Figure 2.11: Effect of non-adiabatic trapped electrons on stability curve (full line) in plane
(€nsmi). The 7; threshold is removed for low values of ¢,. Here 7 = 1.0, a = 0.32, G = 1.0,

me = 0.1, kjy = 0, kyAr; = 0.3. For comparison, the stability curve without trapped
electrons (dashed line) is also plotted.
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Figure 2.12: The same as in the previous figure except for 7, = 4.
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Figure 2.13: Dependence of real frequency (full line) and growth rate (dashed line) on
magnitude G of precessional drift. Here 7 = 1, ¢, = 0.3, 7, = 2, ap = 0.32, 7. = 4,
k| = 0, kpAp; = 0.3. The trapped electron instability (stars) disappears for G < 0, the
toroidal-ITG type mode (circles) however has maximum growth rate around G = 0. For
comparison, plain curves represent results without trapped electron dynamics.
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Figure 2.14: The same as in previous figure however varying k; Ar; and holding G = 1
fixed. The growth rate of the toroidal-ITG (circles) peaks at ki Ar; ~ 0.5 due to FLR effect
of ions, similar to the case without trapped electrons (plain). The TEM (stars) however is
unaffected by ion dynamics and its growth rate does not role over for these values of k; Ay ;.
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negative shear.

Finally, again for n. = 4.0, Fig.2.14 presents the variation of the frequencies and
growth rates with increasing perpendicular wave number. As in the absence of trapped
electrons, the toroidal-ITG starts to be stabilized beyond & Az,; ~ 0.5 due to FLR effects
of ions. The TEM, essentially insensible to ion dynamics, keeps on growing. Going to even

shorter wavelengths would ultimately require taking into account finite banana width and

finite Larmor width effects of electrons.
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Chapter 3

Global Gyrokinetic Model in
Cylinder

When keeping FLR and finite orbit width effects of ions to all orders the non-Hermitian
eigenvalue problem for the electrostatic potential appears in the form of an integral equa-
tion. Before considering the two-dimensional problem of a toroidal system, we have started
by developing methods for solving this eigenvalue equation in the case of a simple cylindri-
cal configuration[39]. This geometry can be considered as the limiting case of a stretched
tokamak to a periodic cylindrical plasma with remaining magnetic shear and realistic
density and temperature profiles.

Kinetic equations have been solved in the past for spectral problems in cylindrical
plasmas when studying mirror-like configurations confined by straight magnetic fields
[17] [18]. Fourier representation appears naturally in gyrokinetic theory as it allows one
to integrate explicitly the unknown perturbed fields along the trajectories of the particles.
Gyroaveraging, as already shown in chapter 2, is such an operation. In Refs [17][18], the
plane wave decomposition was considered as it enabled to perform these integrations ana-
lytically with no further approximation. However, in other then the simplest cases (slab,
cylinder), the plane wave decomposition is unsuited to the geometry of the system. In
a torus for instance, it is advantageous to choose a curved wave representation, compat-

ible with the magnetic surfaces. By defining these mode components to be propagating
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waves, gyroaveraging can still be carried out analytically but nevertheless becomes more
delicate as the wave vector is now local and varies between the particle and guiding center
(GC) position, especially near a geometrical singularity such as the magnetic axis. This
requires certain approximations which must be justified. For a test case this problem is
addressed here using a special cylindrical wave decomposition which is different from the
usual Bessel representation. Two methods for solving the final eigenvalue equation have
been tested. The first computes the perturbation in configuration space using a finite el-
ement method with well known convergence properties and has been crucial for verifying
and validating the second which consists of working directly in the Fourier space relative
to the non-standard cylindrical mode decomposition. Therefore both techniques shall be
presented here although the latter turns out to be the method of choice when going to
a toroidal geometry, as it is the only one which allows a straightforward generalization
to such a system. A numerical technique developed by Davies [40] turns out to be effi-
cient for locating the eigenfrequencies of the non-Hermitian eigenvalue problem. As an

illustration, results are shown for slab-like ITG instabilities.

3.1 Physical Model

A periodic cylindrical plasma of radius « and length 27 R is considered as the limiting

case of a stretched torus. The plasma is confined by a magnetic field of the form

- P - —
B= By |~ €p + ez) ,
0( Ray(p)

where (p, 8, z) are the cylindrical coordinates, and ¢, = ¢s(p) the safety factor profile such
that |Bs/B.| < 1. Magnetic surfaces are the cylinders p =const. Figure 3.1 illustrates
these notations. It is assumed that the plasma contains one species of singly charged
ions. For the derivations appearing in this chapter and the following we shall discard the
indice '3’ for most physical quantities relative to ions, so as to lighten notations. The

temperature T is an exception as it must be distinguished from the electron temperature
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Figure 3.1: Geometry of a cylindrical plasma.
T., which is the only relevant physical parameter for adiabatic electrons.

3.1.1 The Gyrokinetic Equation in Cylindrical Geometry

The evolution of the fluctuating part } of the ion distribution function is given by the
linearized GKE (2.21) written in gyrokinetic variables (7%), E,p,,0):

~ 0 - 0 ~ e 0 dFy1 -
g= (5%—{- v, 8}%) g= (T,-FMat-l_ i B €q -V) < ¢ >, (3.1)

D
Dt

u.t.g.

where ng + e¢Far/T; is the non-adiabatic part of the distribution function ]N‘, and Fiy

the local Maxwellian distribution function

Fu(p, €) N X =
- -————-— e — —_—
MAp, (27rT,/m2)3/2 p Tz/mz )
with temperature T; = T;(p) and density N = N(p) constant on a magnetic surface. The

GC velocity

— — —
V= Y| € + vy,
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is divided into parallel motion and drifts

= 2 (% 1 2) & xVin B
vd—ﬁ —2“|‘U” €| X np.
It will be shown here that these drifts, related to the finite safety factor, only have a very
weak effect and therefore are negligible in torus compared to the much stronger drifts
related to the toroidal curvature.

To be able to perform explicitly the gyroaveraging of the unknown potential, a plane

wave decomposition is usually considered:

o(7) = /dZ 5T G (7). (3.2)

= A 1 T
<> = /dZeM(p(Z)— [ do exp(—i L

using the integral representation of the Bessel function [60]. Thus Fourier space appears
as the natural representation for gyrokinetic theory.

Going back to particle variables (?, ?_))) and keeping lowest order terms in the small
parameter € (2.17) of gyro-ordering, one must essentially replace the factor exp i Z . ﬁ by

expt P (F 4+ 7 x Eﬁ /§1) so that

a J \ ~
(EJ“ 0, -8—?) g(7,v,1) = (3.3)
e  dFwl 2y (Fuon) 27 o7 DX A
(iFME—FTp*E €p V)/dk JO( Q )6 eXp(l k Q )¢(k’t)'

For a curved system, the plane wave decomposition (3.2), although exact [17][18], leads
to relations that do not allow the simple numerical methods presented in Sec.3.2. Instead
let us consider another Fourier representation which will be referred to as the cylindrical

wave decomposition, so that in the above relations the following terms must be replaced
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by the corresponding right hand side:

—*—» A
/dke’ o z — Z/d/{’(bm,n (&)expi(np-l—m@—i—n%).

In particular one must reconsider

= -
’U><6“

Q

- =
r

- = —
k*R = k- T+k-

(3.4)

Nt
— (K:p + mb + n%) + (/s;Vp +mVo+ %Vz) - % + O(€?).

Note that the last relation is valid only to order O(¢). The effect of this approximation
will be discussed further on. From Eq.(3.4) the local wave vector can be deduced:

%VZ:KE;-F?Z(;;‘I'EEL-

As the system is homogeneous along 0, z and time, the poloidal and toroidal wave numbers

Z——> kVp+mVl +

(m, n) can be fixed, as well as the frequency w:
&(7,t) = (p) expi(mb + n% — wt). (3.5)
Thus, the linear study becomes an effectively one dimensional problem along the radial
direction.
One can easily show that 5:, - U4= 0 so that the GC trajectories lie on the magnetic

surfaces p =const. This leads to a straightforward solution of the gyrokinetic equation:

[ (%)= %[~¢(p)FM

( — k‘_L’U iKp 7 U X 6“
+ /d Jo( a ) exp(i k -

w— knvn ~ Wy

)6 (x >} (3.6)

with ky = (ng, — m)/Rq,, kg = m/p, ki = 1/x? + kZ, the different components of the

wave vector, and

1 ko 1 1 d [ p?
“e = km:_ﬁ +v” R’ Ry Rq.dp \Rq,)’
0 T; dln N
- = LdhN,
“ (1+77T6T> “n=CB dp

the guiding center and diamagnetic drift frequencies, n = dInT;/dIn N. In (3.6) Sm(w)

is taken positive to ensure causality.
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3.1.2 The Eigenvalue Equation

The system is closed invoking quasineutrality (2.24):
oy = e(ni —n.) 0, (3.7)

n; and n. being respectively the ion and electron densities. This relation must hold as
well for the stationary state as for the fluctuating parts. Hence, the perturbed ion density

n; is evaluated:

p)=[ 7
Ne inp o JE(kLvy /) exp(—v?/203 )
T [ Ao+ = / dic™ (s )(27rvth )3/2/ v w — ko — wy ’

where d U= 2rv, dv 1dvyj, the integral over « having again been performed analytically.

Here the perturbed electron density may be reduced to the adiabatic response

c¢
—EN
T.

Ne=

A
Inverting the Fourier representation by expressing ¢ (k) in terms of ¢(p), the quasineu-

trality equation now becomes

—EZ’%) = /dp’iC(p,p’;w)qb(p’) =0, (3.8)
with
Ne? [/1
K(p,piw) = ; [<;+1> S(p—p) = N(p,pi;w)|, (3.9)
1 , A
Np,piw) = o= [drexplinlo—pl) A (o, 5;), (3.10)

A . 1 = J3(kLvy /) exp(—v?/20E ;)
N (p,5w) = (W*W)W/d” g &

. (3.11)

w — k”’U“ — Wy
all equilibrium quantities being evaluated at p and having defined = T./T;. Eq(3.8)

is an eigenvalue equation, i.e. one must find the complex frequencies w for which there

exists a non trivial function ¢ verifying this relation.

47



In a first approximation, GC drifts are neglected in the resonant denominator so that
the velocity integrals can be separated and expressed in terms of the scaled modified

Bessel function A,(z) = e7*[,(z) and the plasma dispersion function W(z) [52]:

- P Jg (kLvi /Q) exp(=v?/20},;) _ 1 N
(mghi)w/ d w — Ry Ao(6) =W (2) —1], (3.12)

with the definitions £ = (kyA\)%, A\ = v /Q, 2 = w/|kyj|veni and

2

? exp(~%)dm , Sm(z) > 0.

):\/12?/_:0;1:—2'

When carrying out the derivative with respect to T; one obtains

W(z

N (pymiw) = (w—*—l) (W —1)Ao (3.13)

w

= (1= D) - ek 2 [-Z;WAO (W = DE(A — Ao

using the notations W = W(z), A, = A,(£). The integral representation for the modified

Bessel function[60]:

1 g
I(z) = —/ e” " cos(pv)dv,
0

'

allows one to replace the integral over the infinite domain of x appearing in A by the

integral over the finite interval of the new variable v [61]:
* 1 ™ d
Nip,piw) = (S =) W —1)— | B,
w 2w AL Jo v/ 7(1 — cosv)

_|(m2e) ) )+(p_p')2 1 3.14
exp p cosv . ) T—com |’ (3.14)

This last step will be useful when performing numerical integration.

For comparison purposes let us still summarize here the derivation leading to the
eigenvalue equation in the case of plane wave decomposition. The decomposition in plane

waves in the poloidal plane for a perturbation of the form (3.5) is given by

A S 1 e N
é (k1) = (_27r—)2/d rog(r)eTtheT
1 +o0 27 :
N W/o pdpd(p) | - dfexpi(md — kypcos(6 — 6))
exptmb- 4o
- (—i)m% /0 " pdpd(0)Jm (kp), (3.15)
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where (k, 0;) are the polar coordinates of the poloidal component Z L of the plane wave
_).
vector k. Inserting this relation in Eq.(3.3) and carrying out the equivalent steps as for

the cylindrical wave decomposition leads to the following eigenvalue equation:

—0"(p) = / pdpK(p, p';w)é(p') = 0, (3.16)
Kip,piw) = [ G > (p—p)— (p,p’;w)], (3.17)

N(p,piw) = ( —) W =1) [ Budbs du(kup) (ko) Ael)  (315)

m dv
B <—_1> 271')\2 /0 (1 — cosv) 8

pp p—p\* 1
Am (2/\%(1—0031/)) exP l( 2AL ) 1—(:031/}' (3.19)

Eq.(3.18) shows that in cylindrical geometry the plane wave decomposition actually leads

to a Bessel representation instead of the handier Fourier transform appearing in (3.10).
This illustrates how in a more complex geometry the plane wave decomposition simply

becomes intractable.

3.1.3 Properties of the Integral Equation

Local Dispersion Relation

The eigenvalue problem is formulated as a one-dimensional integral equation for the radial
dependence of the electrostatic potential. Notice that the only radial coupling comes from
FLR effects appearing in (3.13) through the argument ¢ and explicitly brought forth in
relation (3.14). By taking £ = (k?+k7)A3; ~ (ko)1)? one neglects this coupling and finds

a local dispersion relation for each magnetic surface:
1 A
D(pyw)=—-4+1- N (p,x = 0;w) = 0. (3.20)
T

One must point out that (3.20) is equivalent to the local dispersion relation (2.27) of slab

geometry so that after neglecting drifts, all modes that appear in cylinder are of slab
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type. Solving this equation for fixed wave numbers (m,n) gives the frequency as a func-
tion of p at which the decoupled magnetic surfaces oscillate. This local analysis gives a

good initial estimation for the frequencies and radial localization of the global eigenmodes.

Energy Conservation, Power Response and Symmetry

of the Integral Operator

For an electrostatic perturbation, the time variation of the total kinetic energy E, =

%m [d Tdv v:f of the particles is given by
a int
a4 Ek / a7 " (3.21)

The time averaged power absorbed or released by the particles with a wave of frequency

w thus reads

d

P =< — B >= -———\Sm /d 7 g, (3.22)

Let us consider relation (3.22) with ¢i* written in its integral form (3.8):

_ _C\ % . ' )
P =53m [w/dppd> (p)/dplC(p,p,w)¢(p )] :
In the absence of dissipation (i.e. P = 0) related to the imaginary parts produced by the

resonant denominator w — kjv| — wy, one concludes that the kernel X must verify

pK(p; prsw) = pK(p', p;w). (3.23)
This functional form holds even in the presence of dissipation when X becomes complex.
In this sense the integral equation (3.8) is symmetric and not Hermitian. This does not
appear explicitly in Eqs.(3.8) -(3.11). However, one must not forget that X was established
only to lowest order in ¢. Let us write all equilibrium terms depending on the variable p

as in the following case for temperature:

_ p+p’> p—pdl <p+p>
T(p)—T< )t =T (5 v o,

where we have used the fact that the radial coupling distance is of the order of the Larmor

radius (|p — p'| ~ Az). In this way and to order to which we work, one can verify (3.23).
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Boundary Conditions

As the equation is of integral type, it already contains boundary conditions. Expressions

(3.8), (3.9) and (3.14) evidently show that the regularity condition at p = 0
bulp=0)=0 if m=#£0, (3.24)

is verified. However, we will see in the next point that the full regularity condition

expected:

Pum(p) ~ ™ as p— 0, (3.25)

is not exactly fulfilled. At the edge of the plasma, where the electron temperature falls

to zero, one has the condition at the boundary

bm(p =a) =0, (3.26)
for all values of m.

Fluid Limit
To get a better understanding of the behavior of Eq.(3.8) on the axis, the limiting case of
cold ions is considered, so that the integral equation becomes differential:

d2 m2
{w2 ll A (3/72 — ?)] — WWpe — (k”cs)z} $=0, (3.27)

with cz =T./m;, A} = ¢,/Q and w,. = —7w,. This is the equation for the electron drift
wave already discussed in its local form (2.28). Note that the only radial coupling, i.e.
the differential character of the equation, comes from the polarization drift.

The question is whether Eq.(3.27) still contains approximations related to gyro-ordering.
Had one intended to derive this relation from the basic set of fluid equations, that is the

linearized equation of motion for cold magnetized ions:

—
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the equation of continuity, the Boltzmann equation for electrons and invoking again
quasineutrality, would have led to[62]:
2
{w2 [1 — 7 (i—%p% — %)] — Wy, — (k”cs)z} ¢ = 0. (3.28)
Note the difference with Eq.(3.27). This can be traced back to the approximation in
relation (3.4) where the factor 1/|V6| = p, corresponding to the Jacobian in cylindrical
variables, was treated as a characteristic length of equilibrium. As a consequence, this

approximation leads to the following behavior on the axis:

m’ ' 1+\/1+4m2
¢m(p)Np y M = 9 ’

(3.29)

instead of (3.25). However, for large values of |m| this difference becomes negligible.

By considering Eqs(3.16)- (3.19) obtained with the plane wave decomposition, which
are exact in this respect, and applying the asymptotic relation for the modified Bessel
function

1 m?

An(z) — ——exp—— as = — o0,
(z) 5= eXP — 5

which also improves for low arguments with increasing mode number m, one recovers Eqs
(3.8), (3.9) and (3.14). Therefore, a few Larmor radii off the axis or for not too small
poloidal mode numbers, the discussed difference is negligible. This is the case in practice
where the linear instabilities are localized around the region of steepest gradients, i.e.
usually around mid-point between the magnetic axis and plasma edge. Furthermore, for

ITG instabilities kj ~ 0, so that m ~ ng, # 0 if the toroidal mode number n is non zero.
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3.2 Numerical Methods

The eigenvalue equation must be approximated by a finite set of simultaneous algebraic
linear equations. In a first approach one solves the equation for the potential ¢ = é(p)
in configuration space, as given by Eq.(3.8). In a second approach the equation for the
potential written in Fourier representation g:g (k) is solved. It is not evident a priori
wether the radial decomposition over the interval 0 < p < a of the perturbation and the
non-periodic equilibrium quantities in terms of the components exp 7xp is practical. Thus,
although the first technique cannot be directly generalized to a toroidal system due to
the significantly more complicated particle trajectories in such a geometry, it has been

essential here for testing and gaining confidence in the non-standard Fourier method.

3.2.1 Solving in Configuration Space

Equation (3.8) is classified as a linear homogeneous Fredholm equation of the second kind.
As can be seen in relation (3.14), its kernel N'(p, p';w) exhibits a singularity at p = p
with a characteristic length of the order of the ion Larmor radius. This is obviously
related to the radial coupling due to FLR effects. Integrating this singularity numerically
over p' would require a sufficient number of integration points in an interval of order );.
However, by using a finite element method, this can actually be performed analytically.

Let us approximate ¢(p) using a set of linearly independent basis functions {Ti(p)}

1=1,...,np"

#lp) = i_}biri(p). (3.30)

For the purpose of solving the integral equation, it is sufficient to take constant elements:

0 else,

I if pig <p<p
Fi(l)):{ pit Sp<p

having defined a radial mesh {p;}._, n,» DO necessarily equidistant. Furthermore, let us
point out here that the radial computing domain {po = Ply P, = pu] need not be the whole

interval [0, a] but can be restricted to the sub-domain where the instability is localized.
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Substituting relation (3.30) in Eq.(3.8) and projecting on the same basis {I';} leads to a

system of linear equations for the components {¢;}:

iMij(w)¢j =0 Li=1...,n, (3.31)
Mij(w) = /dﬂpri(/})/dP’IC(p,P’;w)Fj(P’)- (3.32)

The symmetry property of the kernel given by relation (3.23) translates to the complex

matrix M

Mij = Mji s Z,] = 1,. EEALTY (333)

The elements {I';} must be able to resolve the radial wavelength, which implies under the

gyro-ordering assumption (2.20) that

Api = |pi = pica| ~ AL,

and thus by (2.17) that the equilibrium quantities can be considered constant over the
corresponding interval. Using this approximation when evaluating the matrix element

M;; and commuting the integral over v in relation (3.14) with those over p and p:

Ne? _
Mi(w) =

~+1
-

1 w* 1 ™ dv
Pi ( )Ap,w?;—(—»—l) W-1 X
Tion { ! w ( )27">‘L/0 /(1 — cosv)

PR iy [ dperp |y
exp[ (mAr/ pi)*(1 cosr/)}/p dp_/pwdpexp (ZAL)I——COSV ,

1—1 §—

where all equilibrium quantities are evaluated at p =p;= (p; + p;_1)/2. The integration
over p and p has now been brought down to the term giving rise to the actual radial

coupling and to the above mentioned singularity:

1 Pi PR3 p —_ p1 2 1
o= e d dp’ — ( )
i A3 (1 — cosv) ‘/Pi—l P pi—1 prexp [ 2)r1, 1 —cosv

= —2[Vrzgerf(zy) + €] o

i—1

. ’
7—1

where z;; = (pi — p;)/ (2 p/T — cos v) and erf(z) = (2/+/7) ¢ e **dt is the error function.
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Finally, performing the derivative with respect to temperature contained in w* gives

Net _ /1
My = T Pi [(;—I-l) Ap; &

Wn

«{[wn(l_ﬁ)_l}(w 1)+—n2w}0 c%nmun ] (3.34)

Cij = / dm/ oSy eXp —(mAz/ pi)*(1 — cos 1/)] iy (3.35)
/ 1 —cosv
Ci = Tinmo— 8Tm Cij = / diy |~ (3.36)

Y
exp |— (mT)\L) (1 —cosv) (mT)\L) (1 —cosv)I;; + e_”?jl‘

pi i 1—1

j—1

The integrals over v in the definitions of the coupling matrices C;; and C;j are computed
using an extended trapezoidal rule. These matrices are sparse band as two elements T;
and I'; are coupled only if they are contained in the same interval of a few Larmor radii.

The significant off-diagonal terms are therefore such that

Cij,Cyy 70 <= |pi — pj| < IAr,

where typically [ ~ 8. In addition, note that these matrices are independent of w and can

therefore be precalculated.

The analytic continuation of the dispersion function to the whole complex plane can

be expressed as
W(z)=1+ i\/gz e [1 + erf(iz)],

where the complex error function can be computed efficiently using an algorithm by

W.Gautschi [63].

3.2.2 Solving in Fourier Space

By performing a Fourier transform of Eq.(3.8), one obtains an equivalent equation for
¢ (k). Because the radial domain is finite, one can actually perform a Fourier series

instead of a Fourier transform. This alternative is of interest as the equation then becomes
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naturally discrete with no singularity to be integrated:

40 A A
Z M (w) P = Z ICk Bk ¢k’— (3.37)
K=—c0
$(p) = Z b, expzk—A P, (3.38)
k=-00

A 1 Ne 1 A w 2T
Ky (w) = A—p/m dP—TZ*" lT +1-N (p,r = K2 A 0| exp —ik vid

where Ap = p, —p; is the width of the considered radial interval. To compute the elements

A
Kyre (w), an equidistant mesh {p;},_ was taken so that fast Fourier transform

0yeeymip
algorithms could be applied. This gives rise to n, non-zero elements I% Wiy =2 < k' <
n,/2, ie. ]\/\4 is a band matrix with ~ n,/2 sub- and super-diagonals. As opposed to
the required mesh density when solving in configuration space, note that here the radial
mesh need only resolve equilibrium quantities. Therefore, the number of off-diagonals in
]\/>[ increases with the inhomogeneity of equilibrium. However, the sums over & and k' in

Eq.(3.37) and (3.38) related to the Fourier series of the perturbing electrostatic potential

are truncated at 4+k,,,, such that

2
kmaz_ ~ 1, .
v AL ~ 1 (3.39)

in agreement with gyro-ordering.
When solving over the whole radial interval [0, a], note that the boundary conditions

(3.24) and (3.26) are still contained in Eq.(3.37) but in Fourier representation now read
. D . 2m :
h_r)%z ¢, exp zk———p =0, if m#D0,
hmz qbk expzk p = 0.

Unlike the approach in configuration space (in particular to obtain Rel.(3.14)), no as-
sumption has yet been made concerning drifts. Although this requires two additional
velocity integrals, and for typical physical values leads only to minor corrections of ITG-

instabilities, drifts can be considered here with no further difficulty. Keeping these terms
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and defining the dimensionless velocity variable V=1 /v, Eq.(3.37) has to be solved

with j<\/ given by

A +oo 2
N (p,kw) = /0 dvyv, J2 (\//@2 + kg/\LvJ_> eVi x

W, 2 2
1 /+°° P L1 [1+3 (v +v2 - 3)] e (340)
Vot J-oo I Z =V _(-()g(V“,VJ_)/|k”|'Uthi

The Gaussian velocity distribution allows one to approximate the integration boundaries
at oo by finite values 3v,,,q, 1 ~ 5. Extended trapezoidal rules are applied for these
numerical quadratures. One must still point out that unless performing an integration
along a contour in the complex v plane, so as to avoid, in agreement with causality, the
poles related to the resonant denominator, relation (3.40) is only valid for frequencies such
that Sm(w) > 0. This is assumed here, as it greatly simplifies the velocity integration,
however it restricts the study to unstable modes.

Some details on the computer implementation itself appear in the next chapter where

the more general toroidal system is considered.

3.2.3 Searching for the Eigenfrequencies

Once the eigenvalue equation has been cast in one of the matrix forms (3.31) or (3.37),

the problem of finding the eigenfrequencies can be written:
D(w) = det M(w) = 0. (3.41)

This equation was first solved by sampling the determinant over a Cartesian mesh
grid in the complex frequency plane and obtaining approximate intersection points of the

contours
ReD(w) = 0,
SmD(w) = 0.

These results were then refined using Newton’s root finding method. This approach is

time consuming as it requires a two-dimensional scan.
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Solving (3.41) was greatly optimized by applying a practical method proposed by
Davies [40], which takes advantage of the fact that D(w) is analytic. Suppose h(z) is an
analytic function inside a closed positively oriented contour C. Having determined the
number N of enclosed zeros {a;}i=1,. v using the principle of argument, the method is

then based on the evaluation of an equivalent number of integrals:

1 h'(z)
= — " d =1,...,N, 42
27rz/cz h(z) ¢ " (3:42)
which have the property
N
Sp=>al n=1,...,N. (3.43)
i=1

The set of equations (3.43) is then solved finding the roots of the associated polynomial

defined by
N

Py(z)=T](z — &) = Z AN, (3.44)

1=1
A recursive relation enables to calculate the coefficients A, from S,,:
Sl + Al = O
52 + A151 +2A2 = 0
S + A1Sp_1 +ASk o+ ...+ kAL, =0 k‘=1,...,N.
The numerical technique by Davies is developed for circular contours. We have generalized
this algorithm to allow for more elongated curves in the frequency plane. This is achieved

by applying the above method along a unit circle to the function D(z) = D(w(z)) with

w(z) being a conformal transformation of the unit disc at origin. We chose
w(z) =W +rz(Ez2 + 1), (3.45)

transforming the unit circle in the z-plane to a more oval-shaped curve in the w-plane
centered at & with average radius r. The elongation and orientation are defined by the

complex parameter E (|E| < 0.1).
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The advantage of this method lies in the fact that the determinant must only be
evaluated along a contour. Furthermore, up to ten roots inside a single curve with usually
more than four significant digits can directly be obtained, so that no further refinement
is necessary. To achieve this accuracy the number of sampling points, equidistant along
the unit circle, is increased until the maximum jump in the argument of D(w(z)) is less
then 7 /2.

Having identified an eigenfrequency w;, the corresponding eigenmode is computed by
considering an inhomogeneous right hand side in (3.31) or (3.37) with w = w; then solving
for ¢. The initial right hand side is chosen as a first guess of the eigenvector structure.
This process is then repeated iteratively until convergence is attained. This approach is
inspired by the inverse iterative method for solving standard eigenvalue problems.

Let us still point out that when considering FLR effects to all orders, i.e. solving the

integral equation, the spectrum contains no spurious modes.

3.3 Results

As an illustration, a hydrogen plasma with the following parameters is considered: major
radius R = 1 m, minor radius ¢ = 0.2m, magnetic field on axis By = 2 Tesla, safety factor
profile ¢,(s) = 1 4 2s?, density profile N(s)/No = 1 — s?, electron temperature profile
Te(s)/Teo = (1 — s?)?, ion temperature profile Ti(s)/Tio = (1 — s?)?, temperatures on axis
Teo = Tio = 2 keV. Here s = p/a stands for the normalized radial variable. The average
lon Larmor radius is Ap; o 1.5-107°m so that € = Ap;/a ~ 7.5-1073. In the frame
of our model, the plasma can exhibit slab-like ITG instabilities. As seen in section 2.6,
for fixed mode numbers (m,n) the plasma is locally unstable if 7; > 7;. ~ 1 around the
corresponding mode rational surface. Thus the plasma considered here is unstable at any
mode rational surface as 7;(s) = 3.

Fig.3.2 shows the unstable spectrum in the complex frequency plane for mode numbers

(m = 8,n = 5). All frequencies are normalized with respect t0 wyorm = Tio/(eBoa?) =

59



Y / Onorm

” = =2 r 0
Figure 3.2: Spectrum in complex frequency plane of highest growing global modes (m =
8,n = 5). Circles are results obtained solving in configuration space, stars and crosses were
computed in Fourier space with and without considering GC drifts respectively. A typical
path for sampling the determinant of the system is drawn in full line. The solution to the

local dispersion relation, parameterized by the radial variable s, is plotted with a dashed
line.
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Figure 3.3: Convergence of growth rate for the most unstable mode (m = 8, n = 5) versus
1/n§ obtained by the method in configuration space.
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2.510%s7!. Results obtained with the numerical method in configuration space are repre-
sented with circles, results computed with the Fourier approach without considering GC
drifts are plotted with crosses. The slight differences result essentially from the fact that
in the first technique the symmetry (3.23) has been enforced as it translates easily to the
corresponding matrix as shown by relation (3.33). This has not been carried out for the
second technique where this property appears less explicitly. The spectrum found by the
Fourier method when taking into account GC drifts is reproduced with stars. Neglecting
the GC drifts is indeed a good approximation, however their effect is always destabilizing
as the magnetic curvature in a cylindrical geometry is everywhere unfavorable.  The
solution to the local dispersion relation (3.20), parameterized with respect to the radial
variable s, is drawn with a dashed line. An oval-shaped path defined by the conformal
transformation (3.45) of the unit disc with © [Wnorm = —2.1 + 1.3%, 7/wporm = 1.2,
E = 0.1, allowing one to localize simultaneously the three most unstable modes, appears
in full line. The radial computation domain is taken 0.4 < s < 0.7, so as to be centered
on the mode rational surface s = 0.548 (g,(so) = m/n). When solving in configuration
space, typically n, = 100 finite elements are needed and n, = 50 points for the v in-
tegrations appearing in the coupling elements, to obtain good convergence (accuracy of
~ 1%) of the most unstable mode. Fig.3.3 shows the convergence of the growth rate of
the most unstable mode. Fig.3.4 a) depicts the corresponding mode computed in radial
Fourier space, Fig.3.4 b) the same field transformed to configuration space and Fig.3.4
c) the poloidal structure. When solving in Fourier space, equilibrium is sampled with
typically n, = 64 points and the perturbation is represented with 2k,.., + 1 = 121 radial
Fourier components. Considering GC drifts, the velocity integrals were performed using
10-20 points per thermal velocity. When approaching marginal stability the number of
points must be increased so as to integrate correctly the resonant denominator.

In Fig.3.5 the mode numbers (m,n) are increased proportionally so as to hold the

ratio m/n = 1.6 unchanged and the mode localized around the same rational surface.

61



to(k,) |

" wssneassnssansnssend

20 40 60

y/a0
(=]
T

-1+

Figure 3.4: a) Radial Fourier representation of the most unstable mode (m=8, n=>5). b)
The same field transformed to configuration space. Full and dashed lines are respectively

real and imaginary part. ¢) Corresponding poloidal structure. These results were obtained
using the method in Fourier space.
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Figure 3.5: a) Normalized frequency and growth rate of the most unstable mode with respect
to m holding m/n = 1.6 fixed. b) Average value of k;Ar;. c) Radial width normalized to
AL;. These results were obtained with the method in configuration space and checked with the
Fourier approach.



Figure 3.6: a) Growth rate of the most unstable mode with respect to m holding successively

m/n = 1.2,1.6,2.0 fixed. b) Corresponding mixing length estimate Dpsr, = v/k? for diffusion
coefficient.

Fig.3.5 a) shows the normalized frequency and growth rate as a function of m. The
perpendicular wave number normalized with respect to the ion Larmor radius is averaged
over the eigenfunction of the most unstable mode and plotted in Fig.3.5 b). The growth
rate peaks as < k;Ar; > goes through 1, typical for slab-ITG instabilities. The root
mean squared width, normalized with respect to Az;, is given in Fig.3.5 c). Similar scans
were repeated for two other rational surfaces so = 0.316 (m/n = 1.2) and sy = 0.707
(m/n = 2.0). The growth rates of the most unstable modes are plotted in Fig.3.6 a) and
the diffusion coefficient Dpsr = /k?} based on the mixing length estimate[64] in Fig.3.6
b). All these values were computed in configuration space and checked by the Fourier

space method.
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Chapter 4

Going to Torus

The goal of this chapter is to show how the methods developed in cylinder can be gener-
alized to a toroidal model. Trapped particles are neglected here so that the only toroidal
effect retained are the drifts induced on the GC trajectories of circulating particles. This
defines an appropriate model for studying the transition from slab- to toroidal-ITG in-
stabilities. Numerical results are benchmarked with a global, linear, time evolution code
and compared with parameter scans obtained using a ballooning representation approxi-

mation.

4.1 A Simple Model for Toroidal-ITG Instabilities

Let us consider the large aspect ratio equilibrium with circular cross-section (2.6). Fur-
thermore the modulation of the magnetic field along the GC trajectories is neglected here,
so that the velocity components (v, v, ) remain constant. Thus trapped particles are not
taken into account and the only remaining toroidal effect are the toroidal GC drifts which
are essentially vertical:
U= —16 (% + 'vﬁ) % &= v, e,

the cyclotron frequency Q = qBoy/m being evaluated with the magnetic field on axis. The
much smaller drifts related to the finite safety factor profile are neglected.

The eigenvalue equation for the electrostatic potential will again be formulated through
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the quasineutrality relation

~ ~

Ne=n;, (4.1)
and the electron contribution reduced to the adiabatic response:

e
—N.
T.

Ne=

Non-adiabatic electron dynamics will be considered in the next chapter. The perturbed

ion density, derived from the GKE and expressed in terms of the propagator P, is given

by Eq.(A.13):

~ € _)i—'.?/\_) *\ -
= 7 [~No— [a R FT G (R) [aF B P (-t iP]

defining 1, = kv, /Q.
As in cylinder, the plane wave decomposition of qb(?) is transcribed to a representation

more adapted to the magnetic geometry. Thus, a toroidal wave decomposition is chosen:
— .k.w) AR A .
/d ket ¢ (k) — 3 bm expilip +mb +np), (4.2)
(k,m)

where the toroidal wave number n can be fixed due to axisymmetry. In view of solving
the final eigenvalue equation in Fourier space, a Fourier series in the radial direction is
chosen from the start instead of a Fourier transform. The local wave vector therefore

reads:

Z—> kVp+mVl +nVe =« E:, +kg ep +k, e_;,

with & = k27 /Ap, Ap = p, — p; being the width of the considered interval, ky = m/p and

k, = n/R. What remains to be evaluated is the propagator Eq.(A.10):
0 I N
P =/ dtexpi [k (R' — R) —wt| .
When calculating the phase
¢
EAR (0= — [ d'k -, (R (@),
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the drifts U4 appearing in the GC velocity ?g: Y| Eﬂ + Uy are at first neglected, so that
the trajectories follow the magnetic field lines. In toroidal coordinates these lowest order

trajectories are trivial to integrate as v is assumed constant:

po=p

0 = 0—uwt (4.3)
- a

¢ = o+ Rt

where w; = v/ Rq, is the transit frequency. The contribution to the phase factor coming

from drifts is then evaluated iteratively by integrating along (4.3):

a1

=
[

i
Il

t A ¢ / /
k”l)nt—{-‘/0 dt' | - vg= k'”v”t—/o dt'k, ve, COS(H —}—(9;:)

kot +

klvdz . ’ .
" [sm(@ + 97;) — sin(f + 07;)] ,

having used

k. = —(xsinf + kg cos0) = —k, cos(8 + 0-), (4.4)

with &) = (ng, — m)/Rqs, ki = /6% + k} and 97: such that

ka K
cosf+ = —, sinf+ = ——
k k, k kL

The drift term gives rise to the actual finite orbit width (FOW) effects as it is proportional
to 2y = kiva,Jwy ~ ki, with \; = ¢, A1 the average radial GC excursion. These effects

induce poloidal mode number coupling as well as radial coupling related respectively to

the 0 and « dependence in (4.4). With the help of relation [60]:

exp(izsind) Z Jp(2)e??,

p=—00
the propagator can be integrated:

° y . ! .

P = /_oo dtexpi [(k”v“ —w)t + 2, (sm((‘) + 07;) —sin(0 + 0?))] (4.5)
B Jp(@e) () .
p\t)Yp t '

= . expi(p — 0+ 6-). 4.6
p,pg-oo i(kyoy = por —w) T (b =#)(0+03) (4.6)
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The resonances now appear explicitly. A particle will resonate with a wave component
(z,w) if its motion along the magnetic line is in phase or if it feels a Doppler shifted
frequency equal to a harmonic of the transit frequency w;. This is comparable to cyclotron
harmonic resonances at the level of the Larmor rotation, except that here one is dealing
with the large scale periodic motion of the GC in the poloidal plane. In appendix B, (4.6)
is rederived from the general relation for the propagator obtained by solving Eq.(A.12) in
an arbitrary toroidal system.

It was shown in the previous chapter that solving the eigenvalue equation in Fourier
instead of configuration space has various advantages. This choice is even more crucial
here due to the more complicated trajectories. Hence, writing the quasineutrality condi-
tion in this representation after having inserted (4.6) or (4.5) in n; leads to the eigenvalue

equation
A
> Mitm), (k) () S =0, (4.7)
(k' ,m")

where the matrix elements M (1, m), (k" m") are either given by

M, rmny (W) = L™ gpeite [(L 1) 5 (4.8)
(kym),(k',m') Ap o P T m .

i(m—m")0_, = 19, FM x Foo Jp(xg)Jp::p_m_i_m/(:v;)
+ e k /d v JO(:EL) N ((—U w ) klllv” — pwy — w 9

p=—00

when using the harmonic decomposition, or by

M k' m! (W) = _1—— a dpe—‘i(ﬂ_nl)p I:(l + 1) 5ml (49)
(k,m),(k'\m") A,O o T m
ilme—m! _}I__;g_ ) 0 . F - . t
. e( )(9k )z /_oo die zwt/d ‘v* Jg(wjl)WM(w — w*) cos(k” 'U”t)t]m—m'(m{twtt smc;—;)] y

when keeping the time integration. The following definitions have been used, 7 = T,/T;,
k= [ngs — (m +m')/2] / Rq, and sinc(z) = sin(rz)/nz.

When unbending the torus in order to recover the cylindrical system of chapter 3, the
major radius I is increased while holding

Rqs = const, % =const and @ = const,
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as well as all other equilibrium profiles. As expected, the FOW )\; = ¢,Ar vanishes so
that the poloidal coupling disappears and relation (4.7) reduces to (3.37) for each poloidal

mode number m.

4.2 Numerical Method

Equation (4.7) defines a two-dimensional eigenvalue equation in Fourier space (k,m).
Owing to the Fourier series decomposition, the system is already discretized and cast in
matrix form. One must however still reduce this infinite system by identifying the finite
number of significant matrix elements M km) (1 m)-

The numerical implementation of the time integration form (4.9) is delicate as it must
produce all the resonances that appear explicitly in (4.8). For computation we shall
therefore choose the harmonic decomposition although relation (4.9) will be useful for

interpretation as it is more transparent in other respects.

Radial Mode Components

Concerning the significant radial Fourier components and their coupling, the situation is
basically the same as in cylinder (see Sect.3.2.2). However, k... can often be reduced
from condition (3.39) when computing for toroidal-ITG instabilities as they usually have
a smoother radial dependence then slab-ITG. The numerical integration over p is again

performed on an equidistant mesh using an FFT algorithm.

Poloidal Mode Components

As |kl < 1 for both the slab- and toroidal-ITG instability, the significant poloidal
mode components are those for which the corresponding mode rational surface p = p,,
(¢s(pm) = m/n), lies inside the unstable region. A good estimate of this radial interval is
obtained on the basis of the local stability conditions discussed in chapter 2. The coupling

between a poloidal mode component and its neighboring values appears explicitly in (4.9)
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where the FOW effects are gathered compactly in the form of a single Bessel function of
order m — m' and average argument ~ k; \;. Hence, the poloidal coupling is dominant

between mode numbers m and m' such that
|m — m/| < k1A,

since Jp(z) is a decreasing function of p for p > z. Convergence studies have shown that

one should typically retain matrix elements with |m — m/| < Ampe, = 4k, A
Harmonics of Transit Frequency

To determine which orders of the harmonic decomposition must be taken into account, one
must not only consider the resonant denominators but also the weight of the numerators
corresponding to the bulk response. A particle with average parallel velocity < v >~

ovy; will resonate with the harmonic of order

Wy
< w; >

pP=Dpr—0 +1,

using the fact that kj ~ £1/Rq, for toroidal ITG-instabilities and the notations < w; >=
vinhi/ Rqs for the average transit frequency and w, = Re(w). The estimate w, ~ w* ~
Vinikg AL/ L leads to |p,| ~ kyApiRqs/L, L being a characteristic length of equilibrium.

The numerators however are dominant for
|p| <k J_)\t.

Combining these two conditions, one typically considers the harmonics

Wy
< Wwg >

min (——a — APesira, —4kl)\t> < p < max (—O‘ wr + Apmm,4kl)\t>
< w; >

for particles with sign(v“) = 0, the term Apersrq ~ 3 chosen so as to ensure convergence.

Velocity Integrals

Tackling the velocity integrals, the infinite domain is again reduced to a sphere v <

Vinaz ~ 9, with V=1 [¢hi, and an extended trapezoidal rule is applied in both the parallel
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and perpendicular direction. Note that when v tends to zero for finite v, , the Bessel
functions J,(z;) oscillate rapidly. Although the parallel velocity integral is well defined
in this limit, as shown clearly by Eq.(4.9), it makes numerical implementation more
difficult. To avoid this problem, only the actual circulating particles are considered so
that v > va, where B(p, 0) is replaced by its surface averaged value By, and
Braz(p)/Bo = (1 + A7) is the maximum field on the considered surface. Consequently,

the adiabatic response must be weighted by the fraction of circulating particles:

o = 1 = /1~ Bo/Braa(p)-

Final Numerical Form

Taking into account the above, the matrix elements are evaluated as follows:

Mk m),(k,my (W) =

1 Pu T 1 ' i(m=—m"o_, 1 Vmae _Lly2
L dpe=i(s=r")p a(——|—1)6m+e P / dvje 271 x
X /p dp { 1 m =2 I

o=+1

A A
pmfa) @ = wn (14 n(vf = 3)/2)] To(p, ) = wan Ta(p, ') /2
<w > (ng, —m' — p)ov —w

, (4.10)
p=pmin(0') p'=p—m+m’
all equilibrium quantities being function of p. As the perpendicular velocity integrals are

independent of frequency, they can be precalculated:

~ I

A k / . VJ.maa:(P) 2n+1d ——;— 2J2 ! J ! J / 4.1
In (@ kpsovy,p,0) = | Vi dvy e e g (2 ) () Jp(2h),  (4.11)

~ 1 ~ 1 Vﬁ_ )
! !
xp = ki vy, Ty =ky go— | =+ v,
aVv||

Vimar = IIllIl(V“/ v A_I,V ma:l:)a
with k= kyAp.
The eigenvalues and corresponding eigenvectors of Eq.(4.7), using (4.10), are obtained

applying the same methods which have first been tested in the cylindrical geometry (see
section 3.2.3).
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4.3 Computer Implementation

The central coding is written in FORTRAN 77. The NAG library provides subroutines
for performing FFT and for evaluating most special functions. The LAPACK library is
used for factorizing and evaluating the determinant of M (w), considered as a full matrix,
as well as for solving the corresponding linear system when computing the eigenvectors.
Carrying out a frequency scan to determine the eigenvalues involves first precalculating
the perpendicular velocity integrals (4.11) followed by building the matrix and calculating
the corresponding determinant at each point. With respect to the main parameters the
number of operations, and thus on a scalar machine the time spent for building the matrix,
scales approximately as

~ NpnENm(2Am + Dngn,,,

and for evaluating the determinant

~ (nknm) s
with

n,: F# of radial points for sampling equilibrium,

ng: # of radial Fourier components for representing ¢,
nm: # of poloidal Fourier components,

Am: coupling width between poloidal mode numbers,
np: # of harmonics of transit frequency,

ny: # of parallel velocity points for integration.

Presently the code is run on a Silicon Graphics Indigo 2 with a R10000 processor operating
at 175 MHz. A typical toroidal run with n, = 64, ny = 50, n, = 15, A, = 5, n, = 8,
ny, = 60 takes ~ 25s cpu time for computing the matrix and ~ 10s for evaluating the

determinant. To identify a full spectrum this must be repeated for tens to hundreds of
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frequency points, so that heavy runs can last a few hours. It follows from the above
scalings that in a cylindrical case these numbers can be divided by a factor ~ 500.

In toroidal cases the time spent for precalculating the perpendicular velocity integrals
}n, n = 0,1 is of the same order as building M(w) and calculating detM(w) at one
frequency point and therefore becomes negligible over such a scan. As shown in relation
(4.11), the values of these integrals can be stored in a table parameterized by (qs,kNJ_
,v,p,P'). This table is then read using a zero order interpolation rule with respect to
qs and kNJ_. Some evident symmetry properties of ?n such as the invariance under the
permutation of p and p’ or others related to the parity of the Bessel function allow one to
reduce the number of values to be calculated and stored. Nevertheless, they occupy the
main part of the memory required, followed by the space needed for storing the matrix
itself so that altogether typically ~ 100Mbytes must be available.

The raw data provided by the central code is analyzed and visualized using the

MATLAB application.

4.4 Results

4.4.1 Benchmarking with Time Evolution PIC Codes

As already mentioned, the spectral method presented here is being developed simultane-
ously with another global linear code, which uses a time evolution, particle in cell (PIC)
approach[35]. The starting equations for these two techniques are basically the same: a
gyrokinetic equation for ions, assuming at this stage of the discussion adiabatic electrons
and closure with the quasineutrality condition. This has been useful for benchmarking.
The frequency, growth rate and field structure given by the time evolution code must
match, asymptotically in time, the eigenfrequency with the highest growth rate of the
spectrum as well as the corresponding eigenmode. However these comparisons must be

carried out carefully as for practical reasons different approximations have been made.
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The PIC code contains trapped ion dynamics, which are neglected in the spectral ap-
proach. This naturally leads to disagreements at frequencies near or below the average
ion bounce frequency. On the other hand the eigenvalue code retains all FLR effects of
ions while the time evolution approach only retains these terms to second order. This
simplification is reasonable for a toroidal-ITG instability whose growth rate peaks at
kiAri ~ 0.5 but becomes marginal for a slab-ITG peaking at k; A;; ~ 1. Nevertheless,
there is a large common range of parameters within these different approximations. Some
of these comparisons will be shown in the following results, more details are given in
reference[37].

In one particular case results of the linear stage of the non-linear PIC code written
by Sydora, Decyk and Dawson[34, 33] containing full ion dynamics are also presented.
For the sake of the comparisons appearing in this chapter non-adiabatic trapped electron

dynamics, usually contained in these simulations, have been suppressed.

4.4.2 Comparing with Local Ballooning results

Results by Dong et al. in references [24] and [41] are useful as they have considered locally
on a magnetic surface - applying the ballooning approximation - the same model as we do,
that is a large aspect ratio torus, neglecting trapped ions as well as the modulation of the
parallel velocity of circulating ions. As will be shown, comparisons with their parameter
scans have allowed further validation of our global results but also bring to the fore the
limits of the ballooning approximation. By normalizing the frequency with respect to
Vihi/ Ln, these ballooning results can be parameterized by the six independent parameters
Gs, ./S\, 7=1T./T;, €, = Ln/R, 7; = L,/ Lt, and gg: ngsAri/po (see Eq.(2.46)), emphasizing
that all these quantities are evaluated locally on a magnetic surface p = p, =const.
However a global mode simulation, by the choice of the different profiles, has infinite
degrees of freedom. Indeed, (4.10) shows that such a spectrum is determined by fixing

the magnetic geometry with the major radius R, the minor radius a, the safety factor
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profile gs(s), by giving density and temperature profiles N(s), T.(s), Ti(s) and finally by
fixing the toroidal mode number n. Note that once the frequency has been normalized for
instance with respect to vy 0/a, where vy o is the ion temperature at a point of reference,
varying the magnetic field on axis By is equivalent to varying the amplitude of the ion
temperature and therefore is not an additional independent parameter. For comparison
these profiles must match the local ballooning parameters at p = py. Furthermore for
the local results to be relevant, the global modes must actually be localized around this
magnetic surface[20]. This is obtained by peaking the n; profile in this region. Ideally
one would compare the most unstable global eigenmode and eigenfrequency with a set
of ballooning results relative to different radial positions, which may give a better idea

of how these local results must be interpreted. This has not yet been done as it would

require specific results from such a code.

4.4.3 Equilibrium Profiles

The profiles defined here have been used for all results presented in this chapter and the
following.

For density and temperature the same type of dependence is chosen:

N(s) als, 5 — So
N, - exp ( I tanh A ) , (4.12)
T(s) ( alAst s— 30)
— = — t .
T exp Tro anh, Aor ) (4.13)

where s = p/a is the normalized radial variable and As the radial width over which these
profiles vary. Lo stands for the characteristic length of variation at s = sg, as shown

explicitly in the case of density by

din N\ , 5 — S0
( dp ) —»-"-Ln()COSh A—sn

The n dependence thus is given by

_dInT Lo cosh® £
~ dInN "~ Lgo cosh® 520

n(s)
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which peaks at s if As, > Asp. Examples of such profiles are given in Fig.4.14.

For the safety factor a fourth order polynomial of the form
4s(8) = ¢5(0) 4 as® + bs® + cs*,

gives a good fit for many cases including central negative shear scenarios. It allows for
instance fixing the safety factor on axis ¢;(0), on the edge ¢,(1) as well as its value qs(s0)

and shear § (s0) at an intermediate point sp as shown in Fig.4.19.

4.4.4 Analyzing Mode Structures

As already illustrated in cylinder, it is of interest to evaluate different physical values

averaged over the eigenmode structure ¢(p,8). This is naturally done as follows:
<O >=< ¢|0¢ >,

where O is an appropriate operator, possibly Hermitian with respect to the scalar product
< | >, and ¢ normalized so that < ¢|¢ >= 1.

In this way the average perpendicular wavelength is defined as

<ky>=[<k, >4 < kg >?,

with
1 9?

82
<k,>=< ¢|a—p2q5 >, and <ky>P=< ¢Ip_25[9”2“¢ >,

using the scalar product
Pu 2m
<flg>= ["dp [" oy,
Pl 0

consistent with the approximation discussed in sec.3.1.3.

However the average guiding center drift frequency

<wy >=< Pl—5==5-¢ >,
q g
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is calculated with the usual scalar product

Pu 2
<f|g>:/p pdp/o o f*g. (4.14)
4

In this last case one can also separate the contribution from the radial and poloidal

wavelengths:
Wy >=< Wy >+ < wgp >,

but one must take

2T 1sinf 0O
= Re<g|- LS00
2T 1cosf1 O
Wy > = §R€<¢I—q—B‘;—RT‘;%¢>,

as these last operators, taken separately, are not Hermitian with respect to (4.14).

4.4.5 Aspect Ratio Scan

To make the connection with the results presented in the previous chapter let us show how
the global eigenmodes transform when going from cylinder to torus. Our reference case
1s a toroidal plasma with inverse aspect ratio A™! = a/R = 0.18, its magnetic geometry

being given by
By = 1.Tesla, R =1.19m, a=021lm, gs(s) = 1.25 + 3s2.
Density and electron temperatures are flat, the ion temperature is of the form (4.13) with
Tio =T, = 1.keV, Lo =0.16m, Ast, = 0.31, S0 = 0.5.

At s = sg, where the modes tend to be localized, one thus has the local values

g=2, 5=075, 7=1, en=013, 5 =00, ke=kshr;=n-0.06, —Ai = 65.
L

Here frequencies are normalized with respect to

T 1
=2 —9297.10%s!,

Wnorm =
G_Bo a?
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The ion transit and bounce frequency estimates at s = sg are then of the order wy ~
6 Wnorm and wy ~ 2wWperm. This configuration which we call full torus is unbent into
a cylinder by increasing R and holding Rg,, n/R and a constant as well as all other
equilibrium profiles. Two particular intermediate states labeled half torus and quarter
torus have respectively half and quarter inverse aspect ratio of full torus.

Real frequency w, and growth rate v of the most unstable eigenmodes are plotted in
Fig.4.1 as a function of the inverse aspect ratio and labeled by the value of the toroidal
mode number n in full torus. Here n = 4,7,10 are considered. All parameter scans
are performed by first computing the full unstable spectrum for the initial, final and
a limited number of intermediate values of the parameter. This allows us to identify
which eigenmode is the most unstable in each of the so-defined intervals. Two spectra
can then be linked by slowly incrementing the parameter and following the eigenvalues
of interest with Newton’s root finding method. For the scan considered here the full
spectra at the four particular aspect ratios mentioned above are recorded in Fig.4.2 for the
different toroidal mode numbers. One must in fact specify what is meant by full unstable
spectrum. As already mentioned, an increasing number of velocity points are required
for integrating the resonant denominator as one approaches marginal stability. Therefore
one usually only considers growth rates down to y/|kj|vs: ~ 1/20 which corresponds here
for |kj| = 1/Rqs to ¥ =~ 0.3wporm. Starting in cylinder the set of slab-ITG instabilities,
localized on the different mode rational surfaces, have similar growth rates and form a
well packed spectrum (small circles). With toroidicity these modes couple together and
for all n there appears an isolated eigenmode whose growth rate increases faster then
all other values. Simultaneously some eigenfrequencies already start to be damped. The
prominence of this mode corresponds to the transition to the toroidal-ITG instability.
As can be seen in Fig.4.2 this occurs after quarter torus for n = 4, contrary ton = 7
and n = 10 which have already undergone transition at this point. This is confirmed by

applying the rough estimate (2.36) to the parameters considered here, which would have
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Figure 4.1: Real frequency w, and growth rate v of highest growing eigenmode going from
torus to cylinder. At inverse aspect ratio a/R = 0.18 called *full torus’ toroidal mode numbers
n = 4,7,10 have been considered. In the case n = 4, the line segment from ’cylinder’ to ’1/4
torus’ labeled with circles corresponds to a first eigenmode whose growth rate at a/R ~ 0.05
is taken over by a second eigenmode corresponding to the segment labeled with crosses. For
n = 7,10 the most unstable eigenmode remains the same throughout the scan. ’+’ represent
results from the linear PIC code in the case n = 4. Here wyopm = 2.27 - 104571,
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Figure 4.2: Evolution of unstable spectra with varying aspect ratio. Starting in cylinder (small
circles) the slab-like eigenmodes couple together with increasing toroidicity. At the transition to
the toroidal-ITG instability a particular eigenmode is singled out and is the only one to remain
in full torus (large crossed circles). This is observed in all cases n = 4,7,10. Intermediate
spectra are ’quarter torus’ (diamonds) and ’half torus’ (stars).
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predicted this conversion to occur at A™' = 0.10, 0.03, 0.02 for n = 4, 7, 10 respectively
as shown in Fig.4.5. In all the cases the highest growth rate is reached near half torus.
With even stronger curvature the unstable spectra are limited to the single toroidal-ITG
eigenmode whose growth rate also begins to decrease. This is illustrated in Fig.4.2 with
the single crossed circle for the full torus state spectra.

For n = 4 results of the comparison with the linear PIC[35] code have been plotted
in Fig.4.1 with "4’ symbols. The two methods agree perfectly on the real part of the
frequency, even in cylinder where k; A; > 1. Differences in the growth rate of the order
20% appearing in the toroidal-ITG stage are discussed to some extent in the next study.

Notice that for n = 7, which is most unstable for all aspect ratios, the scan has
been pushed beyond full torus so as to obtain an estimate of the marginal value ey, ~
0.18, which is somewhat lower then the value er,. ~ 0.3 obtained with the local kinetic
dispersion relation in section 2.7 with Fig.2.8.

Plots on the left of Fig.4.3 represent for n = 4 the radial dependence of the poloidal
Fourier components with increasing toroidicity. Also indicated are the positions of the
mode rational surfaces. Plots on the right-hand side give the corresponding structure in
configuration space. The dash-dotted lines are the magnetic surfaces s = 0.2,0.4,...,1.
In cylinder the most unstable eigenmode turns out to have poloidal mode number m = 7.
Quarter torus is the onset of transition where the poloidal modes are already coupled by
pairs. At this stage a second eigenmode takes over and gives rise to the true toroidal-ITG
instability of half and full torus, nicely centered at s = sy = 0.5. Coherent radial structures
called "fingers’ have now appeared in the unfavorable curvature region where the mode
balloons. Their twisting can easily be explained by the increasing of the safety factor
towards the edge and using the constant phase relation gs(s)0 =const from ballooning
representation. Fig.4.4 shows how in cylinder the perpendicular wave number of the order
kiAp; ~ 1.5 is essentially determined by the narrow radial width of the slab-ITG and

decreases as one goes to torus where the radial structure becomes broader and smoother.
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Cylinder. The highest
growing mode has poloidal
wave number m = 7 and is
centered on the correspond-
ing mode rational surface.

Quarter Torus. The
poloidal Fourier components
couple by pairs between
the corresponding rational
surfaces. In configuration
space this leads to a broader
but very corrugated radial
dependence of the eigen-
mode.

Half Torus. Higher or-
der coupling between the
poloidal Fourier components
leads to more coherent struc-
tures of the eigenmode called
fingers’. The mode bal-
loons in the unfavorable cur-
vature region. These are the
signatures of a toroidal-ITG
mode.

Full torus. The toroidal-
ITG characters are con-
firmed.

Figure 4.3: Comparing poloidal mode decomposition and mode structures in poloidal plane for
toroidicity scan, starting in cylinder and ending in full torus.
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Figure 4.4: Average value of k} Ar,; as a function of the inverse aspect ratio a/R (full line).
Also plotted are the average components k,\y; (dotted line) and kgAr; (dashed line). These
results are for toroidal wave number n = 4 in full torus. As in Fig.4.1 the segments labeled
with circles and crosses correspond to two different eigenmodes.
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Figure 4.5: Estimate for the transition from slab- to toroidal-ITG instability using the
1/

relation e/ 2 =ky g, for varying inverse aspect ratio /R and different toroidal wave numbers
n in full torus.
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The average poloidal mode number is m ~ ng,(sp) = 8 throughout the scan so that the

average poloidal component kyAr; remains approximately constant.

4.4.6 Toroidal Wave Number Scan

Let us first complete the scan in the toroidal wave number for the full torus configuration
considered in section 4.4.5. The real frequencies and growth rates from the global spectral
code are represented in Fig.4.6 with diamonds. The dotted lines are the least mean
square parabolic fits. The growth rate indeed peaks for n = 7 where the perpendicular
wave number recorded in Fig.4.7 is of the order k; Ar; ~ 0.5. For higher toroidal mode
numbers k; increases this time essentially as the poloidal component ks ~ m = nqs(So)-
The corresponding FLR effects suppress the instability for » > 11. This is confirmed
by the PIC results labeled with '+’ symbols for the linear code[35] and circles for the
linear stage of the non-linear code[34, 33]. For n = 3, which from the estimate given in
Fig.4.5 corresponds to the transition to the slab-ITG, the spectral calculation resolved no
instability. However PIC results measure a growth rate down to n = 2. This mismatch
for low n may be explained by the appearance of trapped ion effects as the real frequency
Wy ~ w,; ~ n approaches the ion bounce frequency wy;, even though at n = 4 one still
has w, ~ Swy.  The eigenmodes for n = 4, 7, 10 are depicted in Fig.4.8. Again the
ballooning structure is confirmed as one moves upward from the transition value n = 3:
the instability is always more localized in the unfavorable curvature region and the radial
corrugation indicating the position of the mode rational surfaces, still apparent for n=4,
disappears. The set of poloidal Fourier components are then contained under a smooth
envelope with decreasing radial width.

A second toroidal wave number scan has been performed with the main goal of illus-
trating the limits of the local ballooning approximation. For this the kyp* scan of Fig.3
from reference [24] with parameters ¢, = 2, 5= I, =1, ¢, = 0.2, 5, = 2 was cho-

sen. Mind the different normalizations: kgp* = \/27kyAr;. To perform this comparison a
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Figure 4.7: Average value of k; Ar; (full line) as a function of the toroidal wave number n in

the full torus configuration. Also plotted are the average components k,Ar; (dotted line) and
kﬁ/\Li (dashed line).

plasma with dimensions similar to DIII-D and matching the local ballooning parameters

at s = so = 0.6 is defined. Thus the following magnetic geometry is chosen:
By = 1.Tesla, R =2.m, a=0.5m, (4.15)
with a safety factor profile
¢s(s) = 1.25 + 0.67s* + 2.385° — 0.06s*,

which besides verifying ¢;(so) = 2, s (s0) = 1 has values ¢,(0) = 1.25 on the axis and

¢s(1) = 4.25 on the edge. The density profile is determined by

Lno = 0.4m, As, = 0.35, s0 = 0.6,
and the identical electron and ion temperature variations by

L1o =0.2m, Asp = 0.2, 8o = 0.6.

In fact two values of temperature at sy are considered:

a/Api = 56.5
a/)\Li =113.0

at s = sg.

high temperature : T.q = T; = 7.5keV
low temperature : T, = T = 1.875keV

so that {
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For instance the high temperature scenario with n = 6 and the low temperature case
with n = 12 both lead to ks)p; = ngsArifas = 0.35 at so and thus represent two iso-
dynamical states in the frame of the local ballooning approximation. Real frequency and
growth rate, normalized with respect t0 wn, /kpAr; = Tvss; /L, evaluated at s, are plotted
in Fig.4.9, circles and stars corresponding respectively to the high and low temperature.
This notation holds for all the following graphs. Again the growth rate peaks around
kgAr; ~ 0.5. One must point out here that the abscissa stands for kphp; = ngsAri/as at
$ = sp which may slightly differ from its average value. Ballooning results are reproduced
with a dashed line. The solution to the local kinetic dispersion relation (2.33) with 7 = 1,
€ = 0.2, p;, = 2.0, k~||: kyLn =~ €,/qs(s0) = 0.1, kNL: ki) 2];9 is represented with a
dotted line. This shows how useful this simple calculation can be, although it contains
no magnetic shear effects, for estimating the position in the complex frequency plane of
the global mode spectrum. As expected the global results and the ballooning solution
agree for sufficiently high values of the toroidal mode number (n > 10), 1.e. kpAr; ~ 0.6
(respectively kgAr; ~ 0.3) at high (respectively low) temperature, which corresponds to
nq,Asta > 10 mode rational surfaces inside the region of temperature variation. Near the
transition to the slab-ITG at kgAr; = 0.15, in good agreement with estimate (2.36), the
global and ballooning results are qualitatively different especially concerning the growth
rate, showing clearly that the latter approach is inadequate in this regime. Fig.4.10
illustrates the effect of this transition on the average value of k;Ar;. For kgAp; < 0.15
there is an abrupt increase of the perpendicular wave number towards the typical slab-ITG
value k3 Ar; >~ 1. For kgAr; > 0.15 the dependence is approximatively linear and applying
the ballooning relation kAl:kNg 1+ (§ 0)? one obtains a slowly decreasing average poloidal
angle width of the order 6 ~ 7 /4. The mixing length estimate for the diffusion coefficient
Darr, = /K% [64], normalized with respect to wpeA2,/kgdr; = Tou A2,/ Ly, evaluated at
S0, 18 given in Fig.4.11 and peaks for both temperatures at 12:92 0.3, 1.e. for definitely longer

wavelengths then the most unstable mode. In this regime the ballooning approximation

89



14 T T 1 T T T T T T
12 i

o

* x ©
1+ * fo} J
O
O
_, osf 0 1
< o ©
- o}
X =3
06 fo) * |
* O Q *
* % ¥
04} o : global with a /AL =56.5 -
* : global with a /AL =113.0

0.2 N

0 1 I 1 L 1 | 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k
[*] ?\'L
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Figure 4.12: Average position < s > (full line) and the limits of the double root mean squared
width 2As (dashed line) as a function of kgAr;. Results for a/Ar; = 56.5 are labeled with
circles, and those for a/Ar; = 113.0 with stars.

is still valid for the low temperature scenario, however it has broken down for the high
temperature case yielding a difference of 25%. This gives an idea of the error which can be
made using ballooning results beyond their applicability. Fig.4.12 represents in full line
the average radial position and with dashed lines the double root mean squared width of
the global modes as a function of kg)z;. Note how the toroidal-ITG modes are centered
at s >~ 0.57, which is somewhat off the intended position s = s; = 0.6. This may in
part explain the small differences still remaining with the ballooning approach even for
high toroidal wave numbers. Again the toroidal-ITG becomes narrower with decreasing
wavelength.

Some eigenmode structures are presented in Fig.4.13. The modes n = 6 (frame b.)
and n = 3 (frame d.) as well as n = 12 (frame c.) and n = 6 (frame e.) for the
cases a/Ar; = 113.0 and a/Ar; = 56.5 respectively, which would be iso-dynamical in
ballooning approximation, are arranged one above the other. Notice that their envelopes
indeed exhibit similarities. The mode n = 3 at low temperature illustrates a typical

slab-ITG instability with fluctuations localized on the mode rational surfaces relative to
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Figure 4.14: Profiles for 7; scan.

m = ngs(s-) = 5, 6, 7. The high temperature modes n = 6 (frame e.) and n = 9 (frame
f.) correspond respectively to the highest mixing length estimate and growth rate for
that scenario. For the same temperature mode n = 15 (frame g.) shows explicitly the

pronounced ballooning and narrowing of the radial extent at high toroidal wave numbers.

4.4.7 n; Scan

Carrying on with the high temperature scenario of the DIII-D type configuration defined in
the previous section, the toroidal wave number is now fixed to n = 9 so that kg Az ; = 0.53
at so. The characteristic lengths Lo = Lr.0 of ion and electron temperatures are however
varied so as to find the critical value of n; = L,/ Lz, relative to marginal stability. The
previous study showed that n = 9 is near the limit of applicability of the ballooning
approximation for 7; = 2. The temperature dependence for different gradients at s = sg
and the corresponding 7 profiles are plotted in Fig.4.14 as well as the fixed density profile.
n; is always peaked at so so that when approaching marginal state, this point remains
the last to be unstable. The global results for the real frequency w, and growth rate 7,
normalized this time with respect to wye = Tv:ke L/ Ly at so, are presented in Fig.4.15

with full lines. The local ballooning results from Fig.1 of reference [24] are reproduced
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relation with dotted line.
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Figure 4.16: Evolution of mode structure along the #; scan. Nearing the critical value n; =
Mic = 1.17 the mode becomes less ballooned and radial corrugation appears.

with dashed lines. There is perfect agreement between the global and ballooning results
at the critical gradient and for this configuration give n;. = 1.17, showing that a global
mode appears as soon as the plasma is unstable locally on a magnetic surface. The
solution to the local dispersion relation (2.33) for 7 = 1, ¢, = 0.2, kj_ﬁl:g: 0.53 and
l;h: kyLn >~ €,/qs(s0) = 0.1 is plotted with dotted lines and provides a weaker stability
threshold 7;. = 0.82. For increasing growth rates the global and ballooning approaches
diverge slightly by approximately 10%, which can again in part be explained by the fact
that the average position of the global modes drifts off the intended value s = sq = 0.6
as the radial unstable region broadens, so that for n; = 3.5 the eigenmode is centered at
s = 0.53. This appears explicitly on the mode structures relative to 7; = 1.2 and n; = 3.5
given in Fig.4.16 and n; = 2. appearing as case {.) in Fig.4.13. At the limit of stability
the envelope of the mode becomes less ballooned and corrugation appears. As an effect
the average radial component k, of the wave vector increases to the point that & Aj,; > 1
as shown in Fig.4.17. Thus full FLR effects are necessary to resolve such a marginal
state correctly. Notice also how the average poloidal component kg)\y,; departs from its

intended value kgAr; = 0.53 with increasing n; so as to reach kgAr; = 0.6 at n; = 3.5.
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the average components k,Ar,; (dotted line)
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Finally Fig.4.18 plots |2| = |w/kjvssi| as a function of n;, where |kyj|veni is averaged over

the mode. Near 7;. one has |z| ~ 1, illustrating the necessity of a kinetic model in this

regime.
4.4.8 Magnetic Shear Scan

This scan is carried out taking again a DIII-D type plasma (4.15). The local parameters
are however fixed this time at sy = 0.4 which enables realistic safety factor profiles to
give rise to many different values of shear at this point. The safety factor itself is held at
gs(so) = 1.5. Positive shear cases up to A (s0) = +1 are obtained by convex combinations

gs = zq*1 + (1 — 2)q¥#?, 0 < & < 1 of profiles:

g S(s0) =41, qulse) =15, q(0)=1.05 q(1)=6.5
q*? S (se) =0, gs(s0) = 1.5, g,(0) =22,  g,(1)=6.0.
Negative shear configurations down to 5= —1 are modeled by convex combinations of ¢#*2

and ¢#3:

g 1 5(s0) =1, qu(so) =15, g,(0)=25, g(l)=6.5.
These three profiles are plotted in Fig.4.19 with respectively dashed, full and dash-dotted
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Figure 4.19: Safety factor profiles with fixed value g5 = 1.5 and shear 8= +1 (dashed line),
5= 0 (full line), 5= —1 (dash-dotted line) at so = 0.4.

lines. Density as well as equal electron and ion temperature dependences are given by

Lo = 0.5m, As, = 0.35, 50 = 0.4,
LTO = 02m, AST = 02, Sp = 04, TeO = ﬂo = 213]96‘/,

so that again n; peaks at so. Furthermore, fixing the toroidal wave number to n = 10, the

different local ballooning parameters take the values
=15 r1=1, € =025 n=25 k=035

which are the same as for the shear scan in Fig.7 of reference [41].

Real frequency and growth rate, normalized with respect to wy,. evaluated at s = 30,
of the different unstable eigenmodes computed with the global code are represented in
Fig.4.20 with full lines. The growth rate from the local ballooning approximation is drawn
with a dashed line. The evolution of this spectrum can be mainly explained through
relation (2.42), which shows in the frame of ballooning representation how shear affects

the GC drift frequency:
Wy = Wy + wyp = —kgvg.(cos 0+ 5 0sin 8).

Thus for a mode which is not too localized around 6 = 0, decreasing shear partly sup-

presses this toroidal drive. In this respect a shear scan is similar to the toroidicity scan
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Figure 4.20: Real frequencies w, and growth rates v as a function of shear 5. With decreasing
shear the toroidal mode (1) becomes slab-like and new instabilities (2), (3), (4) appear. Growth
rate of the local ballooning approximation results are reproduced with a dashed line.
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presented in section 4.4.5. Hence, for 5< 0.5 the growth rate of the unstable eigenmode
decreases when lowering shear to the point where at 5= —0.5 the average value of wy; is
msufficient to sustain the toroidal-ITG instability and the transition to a slab-like regime
is induced. Typical for such a state, a whole set of new unstable eigenmodes appear
with growth rates of the same order. Mode 2 actually takes over mode 1 for the interval
—0.7 <5< —0.3. The roll over of ~ at 5= 0.5 results in part from toroidal drive which
has become too strong, as in Fig.4.1 for configurations with too low aspect ratio. This
is confirmed by Fig.4.21 which shows how the average radial contribution wy;,, varying
linearly, cancels the total GC drift frequency wy; while the poloidal contribution wy;g re-
mains approximately constant. However, as plotted in Fig.4.22, 5= 0.5 also corresponds
to the point where kNL’;' 0.5 is reached, that is the typical value at which the growth rate of
the toroidal-ITG maximizes. This is an additional effect of shear as k; = \/m with
the variation of the radial component being given in the toroidal-ITG regime by the bal-
looning relation k, = ky 5 0. In the slab-ITC regime, i.e. for 5< —0.5, the perpendicular
wave number blows up to the typical value k), Ar; ~ 1.

As the safety factor profile varies from ¢#* to ¢#? its minimum value simultaneously
increases while moving from the magnetic axis towards sp = 0.4. Consequently mode
rational surfaces disappear inside the unstable region, which leads to a periodic rear-
rangement of the instability over the remaining resonant surfaces, avoiding the gap left
around the shear-less point. This mechanism explains the bumpy behavior of the growth
rate for 0 <5< 0.75 and the discrepancy with the ballooning result which does not contain
such a non-local effect.

The attenuation of 4 by a factor ~ 4.5 between $= 0.5 and = —1.0 observed for the
global results is significantly more important then the factor ~ 2.5 over the same interval
from the ballooning results. This is not astonishing as the local ballooning approxima-
tion is inappropriate for describing the slab-ITG regime at negative shear and tends to

overestimate the instability. The effect of reversed shear is emphasized in Fig.4.23 giving
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Figure 4.21: Average GC drift frequency w, (full line) split into the radial contribution
wyp (dotted line) and the poloidal contribution wye (dashed line). With decreasing shear
wg, finally inverts the sign of w, which stabilizes the toroidal-ITG instability.
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Figure 4.22: Average value of k3 Ar; (full line) as a function of shear. Also plotted are the
average values of k,Ar; (dotted line) and kgAr; (dashed line).
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Figure 4.23: Mixing length estimate Dy, of diffusion coefficient normalized with respect to
wreA?; as a function of shear.

the mixing length estimate of the diffusion coefficient. Fig.4.24 illustrates the evolution of
the structure of the most unstable eigenmode when varying shear from §= +1. to §= —1.
at s = s = 0.4. Notice how the radial structures start to twist in the opposite direction
as the reversed shear enters the unstable region. At 5= —1.,—0.5 the structure has es-
sentially lost its ballooning envelope and its radial extent is much diminished indicating

a slab-like character.
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Figure 4.24: Mode structure of most unstable mode along shear scan S=41....—1.
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Chapter 5

Adding Trapped Electrons

Trapped electron dynamics is modeled with a bounce-averaged kinetic equation and im-
plemented in the global toroidal code. This improved model allows us to study how these
particles affect the ITG-type instabilities including the possible transition to the trapped

electron mode.

5.1 Bounce-Averaged Model for Trapped Electrons

In this section the non-adiabatic contribution of trapped electrons to the eigenvalue equa-
tion cast in Fourier representation (4.7) is calculated. From the solution (C.8) to the
bounce-averaged DKE derived in appendix C, one can evaluate the non-adiabatic contri-
bution to the density fluctuation of trapped electrons:

~n.a. e w — w*
n, =-—— PoFyje——— < ¢ >y 5.1
€ Te trap ew —n <P>. ’ ( )

where the integration over velocity space is limited to trapped particles. For the circular,

large aspect ratio torus considered here, the bounce averaged potential is given by

< ¢ >b — é ein(W'l‘QSg)’

- V2AA-L b 1 ing.6
Plod) = 4_1{()6/91 de\/l—/\(l — Al cos&)(b(p)e)e ’

having used the definition §, = —0; = 2arcsin /X for the turning point angles, X =
(1 = ABpin/Bo)/2AA™! and relation (C.6) for the bounce period. Inserting the toroidal
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wave decomposition (4.2) leads to the definition of the coefficients C.,:

2K Z bmye"™C

(km
Ol X) = [ dp-<2m = 19)0
m \/X sin? 0/2)

Note that Eq.(5.1) is local to a magnetic surface as finite banana width effects have been

neglected for electrons. Adding this term to the left hand side of the quasineutrality
equation (4.1) and projecting on the Fourier component expi(xp 4 mf +ne) provides the
contribution of trapped electrons to the matrix (4.8):

n.a. 1
e(kym),(k'm!) = A,O o

[ 1 ™ ; 1 FM W — CU* Cor
d —i(k—r"Yp / do —i(m—ng,)@ d3 € m )
pe 21 Jx ¢ trap T N w—n <p>,2K(X)

Working with velocity variables (€, X) so that

B 1 A2
d*v = 2r A7 — / dX ————
trap BO 0_;1 sin? 4/2 /1 — )\B/Bo 0

and permuting the integrals with respect to § and X:

” deV3E, (5.2)

1 ne 1
Mn.a..m Loy = —— d e —i(k—k')p %
e(kym),(k',m’) Ap N P -

sl cmmc nCmw e L

V27T‘/ vthe w_n<sb>e’

having approximated B/B, ~ 1 in the numerator of (5.2). Let us rewrite the result (C.7)

obtained for the toroidal drift:

<p>, = ie <P>0,
<P>e (p,X) = ”éhfflzzjzm{ [(X—l)+%}+%[%%—%]}.

The integrals with respect to £ = £/v? . can actually be expressed in terms of the

dispersion function (2.26), being careful with causality:

1 0o e—E _y /2
—_ [Y4BveE = /
\/271'/0 E—w/n <>y V2m Jo (y'f'z )y —2)

= \/z—wf (y-l— T _32> = W),
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having performed the change of variable E = y?/2 and defined z = sign(n<®>0)1/2w/n <@>..

In the same way

1 / CABVIE— T 9
V2 Jo E—w/n<P>n n<P>e

1
5
Finally, the non-adiabatic contribution of trapped electrons reads

1 Pu . n, 11 1
Mo R d —i(k—x)p = = / dXA V2 A1
e(k,m),(k',m’) Ap Jp, pe T 21 Jo *

Cn Cor
n <S.0>80 K

o7 o=t = 3ra] W) - [ 2w 5]

5.2 Numerical Solution.

The computation of these matrix elements is quite straightforward.
The coeflicients Cn(p, X) are independent of frequency and can therefore be precal-
culated. The corresponding integration with respect to ¢ has an inverse square root

singularity at the boundary 6 = 6,, which is removed through the change of variable
v =+/8 — 0,, so that the form

cos(m — ngs)0
VX —sin?0/2|_,

is actually implemented using an extended midpoint rule [65] with 100 mesh points. In

Vo,
Cnlp, X) = 2/0 dvv

the limit of deeply trapped particles (X = 0) the integration domain vanishes while the

integrand diverges resulting in a finite value of these coefficients:

Xh_}r&_ Cn(p, X) = Xh—%+ 2K(X) = .

To avoid this particular evaluation as well as the logarithmic singularity from Cp,, Cypr / K (X)
for X — 1 (barely trapped), the integration with respect to X is reduced to the interval
0 < X < sin?0,,4,/2 and carried out using an extended midpoint rule with typically

50 mesh points. 0p,, represents the maximum considered turning point angle. With
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Omae = 0.957, more then 99% of the trapped particles are taken into account. The inte-
gration over p is again performed with an FFT algorithm. The evaluation of the dispersion

function W (z) was already explained in chapter 3.

5.3 Results

In the following the first calculations performed with this extended version of the global
code are commented. We shall essentially reconsider certain scans presented in the previ-

ous chapter so as to clearly illustrate the effect of non-adiabatic trapped electron dynamics.

5.3.1 1n; Scan

Except for the characteristic lengths Ly, and Ly,0, which will be varied independently
here, all other profile parameters are held constant and are identical to the high tem-
perature DIII-D type scenario of section 4.4.7. The toroidal wave number considered is
again n = 9, giving a local value kgAr; = 0.53 at the reference point s = s = 0.6 where
mi(s) and n(s) peak. In fact the electron temperature profile will be fixed by taking
Lt,0 = 0.2m so that n.(sq) = 2=const.

Frequencies and growth rates from the local kinetic dispersion relation (2.48) with
parameters taking the local values at s = 59, i.e. 7 =1.0, ¢, = 0.2, a = V24! = 55%,
ne=2,G=12, kNL: ki Ap; =0.53 and kN”: kL >~ €,/qs = 0.1 (the value for G is taken
from Fig.C.1 with A~!(sq) = 0.15 and 5= 1), are plotted in Fig.5.1 with dotted lines.
As already shown in chapter 2, for 5, > 2/3 and sufficiently low e, the local dispersion
relation reveals two instabilities over a certain range of n;. This is the case here from
n: ~ 1 up to 7; =~ 5 (not included in Fig.5.1). Over and above this interval the solution
labeled with circles, which will be designated as mode 1, propagates in the ion diamagnetic
direction and corresponds essentially to the toroidal-ITG perturbed by trapped electrons.
Mode 2, labeled with stars, propagates essentially in the electron diamagnetic direction.

In this case, contrary to the situation presented in Fig.2.10, it is actually mode 2 which
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Figure 5.1: Real frequencies w, and growth rates v as a function of ; holding 7, = 2 =const.
The eigenfrequencies of the most unstable eigenmodes computed with the global code are plotted
with full lines and the solution to the local dispersion relation with dotted lines. The local
analysis predicts a transformation of the toroidal-ITG to a predominantly TEM (mode 1),
thus removing the threshold on 7;. This mechanism is confirmed by the global results as well
as the presence, over a limited 7; interval, of a weaker instability propagating essentially in
the electron diamagnetic direction (mode 2). For comparison the global results with only the
adiabatic electron response are reproduced with dashed lines.
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is stabilized for 7; < 1 while mode 1 undergoes a transition to the TEM and thus starts
to propagate in the electron diamagnetic direction with increasing growth rate.

Concerning the global calculations, the highest growing eigenmode propagating in the
lon diamagnetic direction as well as the most unstable one propagating in the electron
diamagnetic direction were first identified at n; = 3.5. The corresponding eigenfrequencies
were then followed decreasing 7; down to 0.1 (Lz,o = 0.11m — 4.0m) and are given in
Fig.5.1 with full lines and labeled using the same notations as for the local solutions.
Computing the spectra at intermediate values showed that these modes remain the most
unstable for each direction of propagation. Except for w, of mode 2, which remains
positive with the global calculations down to the marginal state n; = 1.25, frequencies
and growth rates vary as predicted by the local analysis, in fact there is an astonishingly
good quantitative agreement. Hence, for flat ion temperature profiles the global spectra
only contains TEM-type eigenmodes propagating in the electron diamagnetic direction
while it includes both positive and negative frequencies immediately above n; ~ 1 as the
toroidal-ITG appears. As a reference the global results with only the adiabatic electron
response are reproduced in Ilig.5.1 with a dashed line. The growth rate of the toroidal-
ITG instability at n; = 3.5 shows an increase by a factor ~ 2 due to non-adiabatic trapped
electron dynamics.

Structures in the poloidal plane of eigenmodes 1 and 2 are displayed in Fig.5.2 for
n; = 0.1,2.0,3.5. The envelope of mode 1 stays nearly unchanged, contrary to the toroidal-
ITG computed with adiabatic electrons and shown in Fig.4.16 which lost most of its
ballooning feature near marginal stability at 7; = 1.2. As mode 1 undergoes transition
from the toroidal-ITG (frame c. of Fig.5.2) to the TEM (frame a.) the non-twisted *finger’
moves from the poloidal position 8y ~ 7/4 to 6y ~ —m/4, at the same time the average
radial position shifts slightly outward where the fraction a ~ v/2A~! of trapped particles
is larger. At n; = 2.0 eigenmode 2 (frame e.) exhibits simultaneously these TEM and

toroidal-ITG features giving rise to a radially large but less coherent structure, which is
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Figure 5.2: Evolution of eigenmodes 1 & 2 for varying #;, holding 7, = 2.0 =const.
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probably related to the fact that this instability remains marginal. Approaching the lower
marginal state at ; = 1.25, the average radial position of this mode has drifted to s = 0.73,
Le. significantly off the reference surface s = sg, thus explaining the disagreement in this
region on w, with the local results. For n; = 3.5 (frame f.), where this mode nears the
upper marginal state, a very narrow radial extent and wavelength are measured giving
an average value ki Ap; ~ 5. In such a regime ion dynamics naturally becomes quite
weak through FLR effects, however they still provide the only radial coupling as finite
banana widths of electrons have been neglected in our model. This approximation may

be questioned here.

5.3.2 Magnetic Shear Scan

Let us now study the contribution of trapped electrons when varying magnetic shear. For
this purpose the equilibria is transformed exactly as in section 4.4.8 and the toroidal wave
number is again fixed to n = 10. This leads to a local value kg\;; = 0.35 at the reference
surface s = so = 0.4 where the 7;(s) = 7.(s) and €,(s) profiles reach there maximum
value n; = 7. = 2.5 and €, = 0.25 respectively. A fraction o, = 45% of trapped particles
is found at the low field side of this magnetic surface.

The spectrum at §= +1.0 is represented in Fig.5.3. The high number of eigenfre-
quencies is in contrast with the single unstable toroidal-ITG eigenmode appearing in
Fig.4.20 for the same value of shear. In particular the spectrum contains a set of very
densely packed points for the modes propagating in the electron diamagnetic direction.
Their identification becomes tedious as the root finding method can handle at most ten
eigenvalues inside a single sampling curve. The complex frequency plane must therefore
be paved with many such paths. For this reason, this part of the spectrum was only
computed for v/wp. S 0.25. Additional eigenmodes are also found propagating in the
ion diamagnetic direction. Their growth rates are however such that the most unstable

toroidal-ITG-type instability stays well isolated. For each direction of propagation, only
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Figure 5.3: Spectrum for 5= +1.0. The eigenfrequencies which have been followed along the
shear scan are labeled with the same numbers as in Fig.5.4. The high density of eigenfrequen-
cies relative to modes propagating in the electron diamagnetic direction (w, > 0) makes the

identification of this part of the spectrum difficult and is therefore limited to 7 /wy, S 0.25.

the eigenmodes which turn out to dictate the highest growth rate during one part or the
other of the scan have been followed. These are labeled in Fig.5.3 with the same numbers
as in Fig.5.4 where the real and imaginary part of their eigenfrequencies are plotted for
varying shear.

The TEM-type eigenmodes (essentially mode 4 & 5) are progressively damped when
going to negative shear so that no positive frequency is found at 5= —1.0. This can
naturally be explained by the decrease of the average amplitude of the toroidal precessional
drift which drives these instabilities, from G ~ 1.2 at 5= +1. to G ~ 0.2 at $= —1.0
(estimates from Fig.C.1).

Throughout the scan the highest growth rate over all eigenvalues is always determined
by the ITG-type instabilities (mode 1, 2 & 3). Except for the fact that more then one
of these eigenmodes are already present at 5= +1.0, the qualitative behavior of this part
of the spectrum along the scan is quite analogous to the one in Fig.4.20. Quantitative

comparison shows that trapped electron dynamics increases the maximum growth rate
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Figure 5.4: Real frequencies w, and growth rates v as a function of shear 5. For $= +1.0

the unstable spectrum contains simultaneously positive and negative frequencies. At 8= —1.0
only the ITG-type modes remain destabilized, however with a significantly reduced growth rate

compared with the highest one around ./s\: +0.5.
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Figure 5.6: Average GC drift frequency w, (full line) split into the radial contribution
wgp (dotted line) and the poloidal contribution wyy (dashed line). Due to the increased
ballooning of the eigenmodes in the unfavorable curvature region, w, is less sensitive to
shear then in Fig.4.21 where only the adiabatic response of electrons is considered. wg thus

. . A . . .
remains negative down to s= —1.0, allowing a more effective ion drive.
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for all values of shear. An enhancement factor of ~ 3.0 (respectively ~ 3.4) is measured
at 5= +1.0 (respectively 5= —1.0) so that in relative values these particles have a slightly
more destabilizing effect at negative shear. Thus the attenuation factor of v through
negative shear between S~ 0.5 and 5= —1.0 is ~ 4.0 instead of ~ 4.5 with adiabatic
electrons. These observations can in part be explained by the local analysis in Fig.2.13
illustrating how the toroidal ITG instability is destabilized for all positive values of the
precessional drift amplitude but mostly for G ~ 0, corresponding to negative shear cases.

An additional, non-local effect of trapped electrons is the increased ballooning of the
eigenmode in the unfavorable curvature region where these particles are localized, clearly
visible by comparing the mode structures in Fig.5.5 with those in Fig.4.24. This leads
to an average GC drift frequency w, (plotted in Fig.5.6) which is less sensitive to shear
then in the absence of trapped electrons (see Fig.4.21) and thus remains negative even
for 8= —1.0. In this way non-adiabatic electrons enhance the ion drive so that the
eigenmodes never undergo a full transition to the more stable slab-like ITG instability.

This is illustrated by comparing frames d.) and e.) of Fig.5.5 to those in Fig.4.24.

5.3.3 Toroidal Wave Number Scan

In a last study we have recomputed the n scan for the high temperature DIII-D type
equilibrium with identical parameters as in section 4.4.6. Let us recall that these are the
same conditions as for the 7; scan of section 4.4.7 and 5.3.1 except that the temperature
profiles are fixed so that 7, =, = 2.0 at s = 59 = 0.6.

The values of w, and v are plotted in Fig.5.7 as a function of kgh;; = ngsALi/as
evaluated at s = so. The global results including trapped electron dynamics are given
with full lines. Circles and stars identify the modes with dominant toroidal-ITG and
TEM-type character respectively. The solutions from the local kinetic dispersion relation
with input parameters 7 = 1.0, ¢, = 0.2, n; = . = 2.0, o = 55%, G = 1.2, and kN“: 0.1

are again represented with dotted lines. The growth rate from the global calculations

114



04 T T T T T T
02
[} o
c
8
~
1
<
o ~02r
X
3_
—0-: mode 1, global
~04F ..0..:mode 1, local b
—*—: mode 2, global
.*..rmode 2, local 0.,
-0.61 ' -
—-: global, adiabatic
L L L L . )
0 0.2 0.4 0.6 0.8 1 1.2
0 L
T T T T T T
04r 1
0.3 4
[}
<
38
~
! 0.2 .
< Lk
==
4
> e
0.4} i
of 4
1 1 1 1 1 1
0 0.2 0.4 . 0.8 1 1.2

0.6
ke AL
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Figure 5.8: Average value of k; Af; as a function of kgAr; for modes 1 & 2.

with the adiabatic electron approximation is reported from Fig.4.9 with a dashed line.
As shown clearly in Fig.5.1 for kpAr; = 0.53, (e, = 0.2,7; = 2.0) corresponds to a
relatively marginal state for the toroidal-ITG without trapped electrons, while the same
mode including their dynamics remains well destabilized before conversion to the TEM.
This explains why the effect of non-adiabatic electrons is very much emphasized along
this n scan. The peak of the growth rate, reached here for n = 7 (kgAri = 0.41), thus is
enhanced by a factor ~ 4. The roll over of v for values of n > 8 (keAr: S 0.5), reveals that
the character of mode 1 is still predominantly determined by ions even though its growth
rate is significantly increased by electrons. However for low toroidal wave numbers the
mode slows down to the point where for n =1 (koAr i = 0.06) it starts propagating in the
electron diamagnetic direction, showing a tendency to convert to a TEM-type instability
instead of a slab-ITG. Structures of mode 1 appear in frames a.), b.), and c.) of Fig.5.9
for n = 1,7 and 15 respectively, n = 7 being the most unstable. Note the ballooning and
radially large coherent structures which are maintained down to n = 1 in contrast with
the slab-like structure in frame d.) of Fig.4.13 when trapped electrons are neglected.
Mode 2, always propagating in the electron diamagnetic direction, is not attenuated

by FLR effects of ions and its growth rate therefore keeps increasing up to the range
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keAri ~ 1 considered here, confirming its TEM-type character. In this regime k| Ar, =
mku\“ < 1, so that the drift kinetic approximation for electrons is still perfectly
justified. For n = 15 (ksAr; = 0.89) mode 2 in fact becomes more unstable then the
toroidal-ITG. The corresponding structure is shown in frame f.) of Fig.5.9 with an average

radial position shifted to s = 0.7 > so and a short radial wavelength leading toky Ap; = 2.1

(see Fig.5.8).
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Conclusions

A gyrokinetic eigenvalue code has been developed for computing electrostatic ITG-related
microinstabilities in collisionless tokamak plasmas. The global approach we have chosen
is different from most previous linear studies which have been carried out using the bal-
looning representation, valid only for sufficiently high toroidal wave numbers and usually
applied only to lowest order, that is local to a magnetic surface. Finite Larmor radius
and finite orbit width effects of ions have been considered to all orders contrary to the
only other global kinetic spectral code by Marchand, Tang and Rewoldt [27][28], which
is based on a second order banana width expansion. Besides being more general in this
respect, our model avoids in this way having to deal with spurious modes. The eigenvalue
problem is then formulated as a two-dimensional integral equation for the perturbation
in the poloidal plane.

Practical methods for solving the non-Hermitian equation had first to be devised
and tested. Making use of a Fourier decomposition appears naturally when solving the
gyrokinetic equation for ions as it allows one to perform gyroaveraging procedures of
the unknown perturbing fields analytically. Furthermore it enables to give an explicit
relation for the kernel of the integral form. Fourier transformations had been applied in
different former lower-dimensional work [16][17][18]. However we have shown that in a
curved system a wave decomposition into basic modes compatible with the geometry of
the magnetic surfaces turns out to be more practical then the commonly used plane wave
decomposition.

Remaining in this particular Fourier space seemed to be the best choice for solving
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numerically the eigenvalue equation. Nevertheless it was first tested in a cylindrical
geometry against a finite element method in configuration space. This allowed us to
validate the application of this non-standard decomposition to a finite system with realistic
equilibrium profiles. For its many advantages over solving in configuration space, such as
avoiding singularities in the kernel, the Fourier method was finally adopted for toroidal
geometry.

A practical algorithm proposed by Davies [40] for finding the zeros of an analytical
function was also first tested in cylinder for identifying the unstable spectrum. By sam-
pling the determinant of the system along a closed curve in the complex frequency plane,
this elaborated Nyquist technique allows one to actually localize with great accuracy the
eigenfrequencies enclosed by such a path. Initially developed for sampling along circles, we
have generalized this method to more elongated curves using conformal transformations.

In this work a large aspect ratio torus with circular concentric magnetic surfaces has
been considered. This simple configuration enabled us to carry out the analytical deriva-
tions further then in a more general geometry. In a first toroidal model the modulation
of the velocity parallel to the magnetic field was neglected so that in particular trapped
particle dynamics, as well for ions as for electrons, were discarded. Comparisons [37] with
simulations from a linear, time evolution, particle in cell code [35] developed in parallel
provided a useful benchmark. This system allowed us to study the transition from the
slab-ITG to the more unstable interchange-like toroidal-ITG mode when bending a pe-
riodic cylinder into a torus. For fixed toroidal wave number the spectrum in cylinder is
formed by many eigenmodes with a given poloidal wave number, radially localized on the
corresponding mode rational surfaces. The ability to resolve FLR effects, possibly to all
orders, is crucial for computing these slab-like perturbations as perpendicular wavelengths
typically become of the same order or shorter then the ion Larmor radii. Furthermore
they provide the only radial coupling in cylinder. Going to torus the eigenmodes couple

together in such a way that a single one converts to the full toroidal-ITG, characterized
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by a ballooned envelope and radially large coherent structures covering many rational
surfaces.

The slab- to toroidal-ITG transition was also studied in a fixed tokamak configuration
by varying the toroidal wave number n. Local calculations by Dong et al. [24][41], using
the same model, allowed us to compare our global results to the ballooning approximation.
As expected, good agreement was obtained for high n, i.e. approximately ten mode
rational surfaces inside the radially unstable region. Results however differ for lower n, in
particular as the transition to the slab-ITG takes place. This illustrates how ballooning
representation is not suited for modes without an interchange-like character. One must
point out that had one considered trapped ion dynamics, a transition to the TIM would
have occured instead. However even in this case the validity of applying the ballooning
approximation remains questionable as discussed by Xu and Rosenbluth [23].

In a second stage non-adiabatic trapped electron dynamics was added to the global
model using the bounce-averaged drift kinetic equation. Beforehand the basic effects of
these trapped particles were analyzed solving a local kinetic dispersion relation similar to
the one considered by Romanelli and Briguglio [8]. In general they contribute directly to
the growth rate of the toroidal-ITG and by amplifying the ballooning in the unfavorable
curvature region they further enhance the ion drive. For a non-uniform density profile
(low ¢,), they also remove the threshold on the ion temperature gradient for the onset
of instability. This is achieved by a transition of the toroidal-ITG to the TEM as the
ion temperature flattens. In this transition region and for sufficiently strong electron
temperature gradients the spectrum can contain simultaneously these two types of modes.
For high toroidal wave numbers the toroidal-ITG is damped due to FLR effects of ions
while the TEM keeps on growing. Ultimately this would require taking into account finite
banana width and Larmor radii of electrons.

Following recent experimental observations of core transport barriers in NCS dis-

charges, we have studied the stabilizing effect of negative magnetic shear. Not only does
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it reduce the growth rate of the toroidal-ITG but also the radial extension by inducing
a transition to a more slab-like mode. In the absence of trapped electron dynamics our
global calculations predict a stronger attenuation when going to negative shear then the
local ballooning calculations[41]. This probably again illustrates the problem of applying
this representation in a slab-like regime. When considering trapped electron dynamics,
these particles destabilize the ITG-type mode for all values of shear. The enhancement
factor is however larger for negative values so that the stabilizing effect of shear is slightly
reduced. This is in contradiction to some conclusions drawn by Dong et al.[59] who also
included non-adiabatic electron dynamics in their local ballooning calculations. Anyway,
realistic negative magnetic shear alone can only account for the complete suppression of
the TEM but not of the ITG instability and thus is not sufficient to explain the dramatic
improvement of confinement in the core of NCS discharges. Experimental results [43]
point towards the E’) X 1—3) flow shear for being responsible of the full stabilization of these
modes [66].

To fully exploit the advantages of this spectral code, the trapped ion dynamics must
still be added so as to be able to analyze the TIM. This instability appears at low toroidal
wave numbers where our global approach finds its real justification. Handling trapped ions
is somewhat more complicated then trapped electrons. Indeed, if one wants to describe
correctly the transition from the toroidal-ITG to the TIM one must take into account the
contribution of all harmonics of the bounce frequency so that a bounce-averaged equation
is not sufficient. Furthermore their finite banana width is not negligible. The physical
modeling of these particles has been presented in appendix B and we are confident that
the numerical methods already developed allow for a straightforward implementation.

This will be done in the near future.
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Appendix A

Deriving the Linearized Gyrokinetic Equation

The main steps for deriving the linearized gyrokinetic equation are presented. This ap-
proach is based on the work by P.J.Catto [12]. The method consists essentially in ex-
panding the Vlasov equation to different orders in the small gyro-ordering parameter €
defined in Sec.2.5. This scaling leads to a reduction of phase space through a well defined

gyroaveraging process.

A.1 Larmor Expansion of the Vlasov Equation

Considering a collisionless plasma, one begins with the Vlasov equation

D

o - 0
—— vV oe—
Dt

_ |9 L= AN P
t.p.f_[aﬁ 8?+m<E+va) éﬁ]f.uo, (A.1)

(%

f(?, g,t) being the distribution function of a given species having electrical charge ¢
- =

and mass m. ([, B) are the total electromagnetic, self-consistent fields. This equation is

linearized with respect to small electrostatic perturbations of the stationary state, defined

by the magnetic field § and the distribution function F(?, TJ))

DI % [0, 5 0 g2 2 0z ag, 0
Dty = [aﬁ” a7 T VX B = Ve o5t (A.2)

f being the fluctuating part of the distribution function, ¢ the electrostatic potential and
I)D—t , the total time derivative along unperturbed trajectories of particles. F must be
u.t.p.

a function of the constants of motion. We will consider here the case of an axisymmetric
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toroidal system so that F' can be chosen function of kinetic energy € = v?/2 and the
canonical momentum conjugated to the ¢ direction ¢ = ¥ + mrv,/q , ¥ being the
poloidal magnetic flux. One assumes that the plasma is close to a local equilibrium, so

that F' is essentially Maxwellian:

(¢0) exp — _*—8
F= B0, &) = G oy (T@%vm)’ (A-3)

where to zero order in ¢, N is the density and T the temperature on the magnetic surface

¥. Keeping terms to first order in ¢, the right hand side of Eq.(A.2) can be written

D _ _ q 2% _ p aFM

where the fact that D% , qFM/T = 0 and the relation e,= (Bw & —B, e)/B have
u.t.p.

+0(), (A.4)

been used. Note that in equation (A.4), Fir can now be considered a function of (3, £€).

Subtracting the adiabatic part of } by defining

G=1 +%¢Fu, (A.5)
one obtains
D ~_ q9¢ 1
—_— — I V A\ A.
Diloe, 9= g M+ 5 spVnFr, (A.6)

using V,, = —rB,0/9}. The right hand side of Eq.(A.6) now only contains terms of
order O(e). Inspired by guiding center theory [50], one performs the following change of

variables :
particle variables <= guiding center variables
-+ = - .
(r,v) (R,&u, a,0 = Slgn('vu)) ,

with the definitions v = v (cosa e—; + sin o E;, + f?, j%):? + v x 1)/Q for the uidin
I €l | g g

center position and p = v} /2B for the magnetic moment. In these new variables one can

write
D 0
v _ _02 o
o0 5 8 5 [0p 8 0Oa d 8 e\ (- 0
£ = = - il — —J) ( —)}
it A PR PR (a?«’ﬂ Yk



where —Q0/0a ~ O(°) and L) ~ O(e'). Writing Eq.(A.6) to order O(e°) simply gives

0 ~0) ~(0)  ~(0)
—Q% 9 =0 = g #g (a),
and to order O(e') reads:
9 ~() ~0) g ¢ ]
0= (1) - 177 —
Qaa + LV g T B¢ Fr + BVquVnFM. (A7)

A.2  Gyroaveraging and the Gyrokinetic Equation (GKE)

~ 0
Due to the periodicity in «, Rel.(A.7) imposes an additional condition on 9( ). Indeed,

averaging over this gyroangle leads to the gyrokinetic equation:

D

D 5(0)_28<¢>
Dt

u.t.g. B T 6t

1
Fy + Evb <¢>V,Fy

where < ¢ > is the gyroaveraged potential:

— —
U><e“

O ,1).

1 27
< ¢ >= —/ dod(F=R —
2w Jo

Hereafter the superscript (0) of § is discarded as the derivation is limited to this lowest
order.

Although one solves for the particle distribution function, the GKE has taken full

advantage of guiding center theory as £ stands for the total time derivative along

Dt u.t.g.
the unperturbed trajectories of the GC [50]:

b
Dt

J -
_— /vg,

9
u.t.g. B at

OR

Z’g being the GC velocity divided into parallel motion and drifts related to curvature and

gradients of magnetic field:

g = v+ Vo,
— 1 & 9 —+ — ’U_ZL
Vg = 5 WX (vjj e (V e”) + 7V1nB .
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From MHD equilibrium one can easily show
— — 1
B -(V B) = V(5B® + pop),

so that
2

- _1o YL, .2 2 Ho
va= g €|l X [(7 + v”) Vih B+ v“ﬁvl) ,
and for a low pressure plasma one can approximate

2

— 1 vy 2\ =
= q (?'H)II) e xViInB.

To be able to perform exactly the gyroaveraging of the unknown potential ¢, we will

consider here a plane wave decomposition:

so that

- 73N s 1 g o U X g e kol B2 7
<¢>= [dk e R g (K)o [T da exp(—i K-y = [dk g, * 7 (k),

27 Jo

using the integral representation of the Bessel function [60]:

1 2m
Jp(z) = o ) daexpi(zsina — pa). (A.8)

The GKE can now be written

D J(RE £) =

Dt w.t.g. g (R? s 1y T,y ) -
4, 0 L / T IR RS
I:TFMat+vnFMBVb:| dk Jg( Q € ¢(k‘,t).

A.3 The Propagator Solution to the GKE

Formally the GKE can always be solved by integrating along the GC trajectories defined
by the first order differential equation

_>.
d R

= —
dt Z?g (R, (t)> 67/"’0) ) with R (t = 0) :?é :
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As the unperturbed system is homogeneous in time, one can consider perturbations having
a time dependence of the form e™**. Solving the GKE is then essentially brought down

to evaluating the propagator P:

~ k = A
§(REmoiw) = —EPu [dF (=5 R w —w)iP 6 (7). (A9)
0 =
’P(]_{’, Z,&,u,o;w) = / dtexpi [_]; (R — 7{) - wt] , (A.10)
where

T E 3

x _ * — - _=
w* = qB(annFM)kb Wr, [1 + n(vtzh 2)] , (A.11)

stands for the diamagnetic drift frequency with w,, = T(V, In N)k,/¢B, and by definition
vf, = T/m is the thermal velocity squared. One must point out that in definition (A.10)
for the propagator, Sm(w) > 0 for the time integral to converge, in agreement with
causality. Thus, it is mainly through the propagator that the solution to one system
differs from another. In particular it contains all resonances. P is in fact the Green’s

function of the GKE and is solution of the differential equation
[—iw+ 7, - (z Pt +i_,)] P=1 (A.12)

0R

The perturbed particle density 7 is evaluated from g by integrating over velocity space

after transforming back to particle variables which basically consists in replacing exp zj?t

in Eq.(A.9) by exp1 k- [? +(1_} X Eﬁ)/ﬂ]

~ 9 A AR LI Y
n_T[ N¢ /dke qS(k)/vaO( a )Fm(w — W )iP| (A.13)

the gyroangle integration having been performed, providing a second Bessel function Jo,
so that d v = 2rvydvydvy.

Finally, note that it is the Fourier transform which enabled us to perform gyroaveraging
and integrate along the GC trajectories explicitly although the field ¢ is unknown. For

this reason, Fourier space appears as the natural representation in a gyrokinetic model.
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Appendix B

The Propagator in a Toroidal Axisymmetric System

For completeness, the full propagator of an arbitrary tokamak-like system is derived. The
limiting case of highly passing particles in a circular, large aspect ratio equilibrium is
recovered. The results obtained are comparable with those of Rutherford and Frieman

[10] as well as Taylor and Hastie [11].

B.1 General Case

The notations introduced in Sec.2.1 for a general toroidal, axisymmetric system are ap-
plied here. The solution (A.9) to the GKE is considered assuming that the plane wave
decomposition has been transcribed to the general toroidal wave decomposition

=y

N R A
[ %S (B)e* — S [ de b, (w) expi(stp + mx + ng),
so that the local wave vector reads
_).
k= &VyY +mVx + nVep.

A systematic approach for evaluating the propagator entails solving the differential equa-

tion (A.12)
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The spatial variation of P is on the long scale of equilibrium. Thus in the frame of

gyro-ordering the differential operator can be approximated by

2.9 2.0 __uwd
g Bﬁh el a]—%“ JB oy’

with the fact that P is independent of ¢ in an axisymmetric system. As an effect, drifts
are taken into account iteratively by integrating their contributions along the lowest order
trajectories which follow the magnetic field lines. The equation for P now reduces to an

ordinary differential equation in x:

| JB
5. P00) = —U—”—z(k U, —w)P(x,0) — o (B.1)

(¥, K, m,n,E, u;w) appearing as parameters. When integrating (B.1) one must distinguish

between circulating particles, for which v = a\/28(1 — AB(%, x)/Bo) always keeps the
same sign, from trapped particles, for which v goes to zero at the turning points.
In the following we will use the definitions

JB

Y (_]: ) —89 —LU) = SO(XIaX) + USI(X/,X),

XI
S(x'yx) = /X dx"

SO(le X) = /X dx”JBk” — /X dX//(nd_‘P 4 m)’
X

dx
LT

Silx',x) = : dx o] (k- Va —w) = &a(x's x) + mxa(x’s X) + noa(x’s X) — wt(x's x),

=

as dp/dx = —JB,/r and invoking the fact that drifts U, are independent of o. In

appendix C it is shown in detail how the radial contribution can be integrated:

X' JB , rB X
Va0 = [ =V Tady = Sty (B.2)
x|yl X

In most systems |B,/B,| < 1 so that the contribution g is negligible. However it is
shown in appendix C that the simultaneous effect of Eﬁ and vy give rise to a toroidal
precessional drift. Due to the iterative method employed for handling drifts, this effect is

not included here.
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The different functions of two variables defined above naturally verify

FxX''x) = =Fx.x),
FX'sx) = FOXOA"+FX x),
F(x+2m,x) = F(2r,0).
B.1.1 Circulating Particles

In this case, (B.1) can be integrated over the complete poloidal revolution:

Plx +2r) = expliS(x + 27, 1)) {7><x> - dx’%? expl—iS (¥, x)]} ,

and using the periodicity of P in y:

PO =1z exp[-—lz'S(er,O)] [ dX'%exp =806l (B9

Hence, for circulating particles the resonance of order p is given by
S(2m,0) = (ngs — m)27 + o [mx4(27,0) — wry] = p2m.
with 7 = ¢(2m,0) the transit period and

I 2= dy
%("M - _’2?‘/(; an,

the safety factor. Using (B.2) one obtained 4(27,0) = 0 as v is periodic in x, which
clearly shows that the GC trajectories are closed curves in the poloidal plane.

As discussed in chapter 4, it can be useful to write the propagator as a sum of contri-
butions corresponding to the different resonances. This so-called harmonic decomposition

is obtained by taking the Fourier series of the periodic function

IB _iny _ 2 Cb i
oy = 2 gc
I p=—o0
<~
27T JB _;
Cp(lb,/i,m,n,&u,o;w) = A dXU_He (A(X)'H?X)’
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with A(x) = S(x,0) — S(27,0)x /2. Inserting this relation into (B.3) leads to

) +00 O eipx
— HiA(x) P
Pl =™ 3 i[S(2m,0) — p2n]”

p=—oc0

(B.4)

B.1.2 Trapped Particles

In this case Eq.(B.1) can only be integrated up to the turning point angles x; and X2t

P(x1,0) = expi[So(x1,X )+051(X1,x)]><

( / dx’' |U|eXP—Z[So( ,x)+051(x’,x)]), (B.5)
P(X%U) = eXPZ[SO(X2aX)+USI(X27 )]X

(?(x,ff)—a /X dxﬁg-eXp [SO(X/aX)+0'S1(X’aX)])' (B.6)

oy
Integrating (B.1) between y; and x; for particles following the magnetic line in the op-

posite direction yields

P(x2,—0) = expi[So(x2,x1) —051(X2aX1)] X

(P(xl, —0)+o dx ﬁem —i[So(x's x1) — 051 (x',xl)]) (B.7)

For trapped particles the propagators corresponding to o=+1 and c=—1 are not inde-

pendent and must verify
P(Xiv U) = P(Xia _0)7

at the turning angles x;,4 = 1,2. This allows one to solve the system (B.5)- (B.7) for

- exp[_iUSI(XI)X)] X2 /E . ' ’
P(X?U) - isin Sl(X2,X1) \/)(1 dX |’U”| eXp[ ZSO(X ’X)] Ccos Sl(X ’X2>

JB . ,
-0 dX W eXp — Z[SO(X/7X) + USl(X 7X)]’

defined for y; < x < xa.

Here the resonance of order p is given by

251()(2, Xl) =0 [mQXd(Xz,Xl) - WTb] = p2m,
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7o = 2¢(x2, X1) being the bounce period. Note that over one such period the dynamics
along the magnetic field is averaged out so that k| does not appear in these resonances.

Again applying (B.2) gave 94(x2,x1) = 0 as v = 0 at X1, showing that the banana

trajectories in the poloidal plane of these particles are closed as well.

B.2 Circular, Large Aspect Ratio Torus

As an illustration of the above results, let us consider the large aspect ratio equilibrium

given by (2.6). In this simplified geometry (v, ) are replaced by the polar coordinates

(p,8). The following list of relations comes in useful:

JB Rqs = const,
Z—(g —gs = const,
|vy | \/26 [1—A(1— A-1cosd)],
- =
k-ve = kvg = —vg(ksind + kg cos),
v N1 EE@-N)
Vi = 9(2 +““)R— OR

with A™" = p/R the inverse aspect ratio of the magnetic surface p =const. The 6
dependence of v and v, in the drift term only gives rise to a weak modulation of the
numerator and is therefore neglected.

In all cases, Sy is given by
So(0',0) = (ngs —m)(0' — 6).

To calculate Si:

S1(8,0) = kpa(¢',0) + mby(0',0) — wi (0, 0),

one must evaluate

¢ JB 5 5 Rqsvg, 9, sin ¢’
0) = d'— vq - e,= — do , B.8
pa(0) 0 |y | 475 V2E /0 \/1—/\(1 — A-lcosd) (B.5)



!
6.(0) = /d@’JB vd e(;: Rqsvdz/ cos ¢ , (B.9)
logl \/1 M1 — A-tcos 6)

¢ ,JB  Rg
oy = [fag?B B.10
(9) /0 loy| /2 Jo \/1 —A(1 = A~ cos 9’) ( )

A convenient parameter for expressing these integrals is

1 — ABpin/Bo

X=—a

allowing one, as A, to classify the two groups of particles:

circulating: 0<A< B P = 1<Xx< +00,
B B B 0
trapped: Bm(:x <AL 792 < B'mjn < 0 < sin? 3 <X <1,

with Brazmin = Bo(l £ A™!) and B = By(1 — A~ cos 6) the magnetic field at the point
of interest (p,0). Contrary to A, the boundary for X between circulating and trapped

particles is independent of p. For trapped particles the turning point angles satisfy:

B(p. 0 1 b
Bleha) 1 preep, =) e a2 ivRw
Bo S 2

Rel.(B.8) can be easily integrated in a common form for all particles:

[ 14s0a; - L 1),
€ /1= By /B0 X2

For 04(0) and ¢(0), which can be expressed in terms of elliptic integrals of the first and

second kind [67], one must however distinguish between circulating and trapped particles.

B.2.1 Circulating Particles

In this case one obtains

21 Rqsva, l 0 1 0 1
0a(0) = —\/== 1—2X)F(2, =)+ 2XE(=, —)|

_ ]2 g o1
o) = \/;\/1—)\Bmm/BOF(2,X>'
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Note that here 1/X < 1.

The resonance of order p now reads
E(1/X
S(2m,0) = (ngs — m)27 + o7 {—k‘g’l)dz [(1 - 2X) + 2X—(—£—)} — w} = p2,

where

2 Rq;
=2t =2%/— K(—
Tt (’/T) \/;\/1 _ )\Bm,m/BO (X)?

is the transit period, having used the definitions of the complete elliptic integrals of the
first and second kind. An estimate of this period is obtained with A = 0 (highly passing)

and yields a transit frequency of the order

The radial excursion of circulating particles is given by

V26 2—A
Q \/1 - ABmax/BO + \/1 - /\Bmm/BO,

Ap; = |pa(m)| = 2q,

which is typically of the order

Api ~ Ay = gsAL.

The propagator for highly passing particles used in chapter 4 can easily be recovered from

the general relation (B.4). For this one needs to take the limits

: w
/1\1_I)I(1) S(2m,0) = [(nqs —m)— —] 2m,

mA6) = —: [sin(0+02) —sind>],

A—0

using the notations of section 4.1 for wy, z;, 07; and the fact that limy_0 0v/2€ = vj. From

JB __A(e) 1 . . . < CP ip6
—e 20 = — 0+0+)—sinfs| = Y —Ze”
o e texpmt [sm( k) sin k] p2 5 €

one can evaluate the Fourier coeflicients of the harmonic decomposition:

2m . .
Cp = w—th(:ct) exp z(p@z — xsin 6’7;),
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which are independent of w in this limit. Inserting these results in (B.4) yields

+00 2—”Jp(act)expz’(pé’;;——:tc,;sin@z) ,

P(x) = exp—izy [sin(é’ +6-) —sin 07;] p;oo “”Z, (TR Sy p— ipf
oo
R s e e L
which matches Rel.(4.6).
B.2.2 Trapped Particles
For this group one gets
04(0) = —%%\};ﬁ_f_j [ZE (arcsin(\/l—-—k_— sin g-),X) ~F (arcsin(———l\/)z( sin g-), Xﬂ ,

1Rqu( .(I_H)X)
—=—=F"| arcsin(—=sin =), ,
VE VAA-T VX 2

valid for ; = —0; < 0 < 5. Here X < 1.

The resonance of order p is given by

251(02,01) = o {—k [zl’i_(g(l) -1 _w} _ por,

where
4 R,
VEVAAT

is the bounce period. A good estimate for the bounce frequency is obtained taking A = 1:

m = 4t(6,) K(X),

27T Vth
wp = —~VA-1 ~ VA~ lw,.
Th gs

The radial excursion for trapped particles reads

V2E (2= A)y/1 = ABuin/Bo
Y] VINA-T ’

Apy = 2|pa(02)] = 4q,

with a typical value of the order

/\t Apt

A,Ob ~ = ~ \/Z——T
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Appendix C

Toroidal Precessional Drift

In the same way as the Larmor rotation of magnetized particles is averaged to define
the GC trajectory, the periodic motion of the GC of trapped particles, called the second
periodicity, can be averaged in turn so as to extract the effective drift of the corresponding
banana orbit. Indeed, it will be shown here how for trapped particles, in the particular
case of an unperturbed tokamak-like system, the combined effect of parallel motion and
perpendicular drifts of the GC results, over a bounce period, in an average toroidal drift.
A simple expression for this so-called precessional drift <¢> is given in terms of the

second (or longitudinal) adiabatic invariant I

: 1 [mdp m 01y /0
<@ 7 Jo dt q 81'”/05’ (C.1)

X2
Iy(,€,1) = fﬁlhﬂ’n:?/X1 dxJ Blvy, (C2)

with x1,2 the turning point angles and I function of the poloidal flux ¢ and the velocity
variables (€, pt). The method given here for establishing C.1 is similar to the one used by
Rosenbluth and Sloan [51]. Other references present derivations for general configurations

[68] and non-stationary states [69].
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C.1 Derivation in Terms of the Second Adiabatic In-
variant

The coordinate y is assumed to be defined such that (¥, X,¢) is an orthonormal set. In

particular the associated Jacobian reads

1 1

I AV - TNy

The equation of motion of the GC is written here

d R - 1 Ui 2 2 Yo
dt =V4= | 6“ -{—6 6“ X [(7 + ’U“ VinB+ +’U“B2vp

which can easily be transformed to the magnetic coordinates (4, x, ¢):

dp 4R vo_ LB dln B

dt — dt - JB QO 2 v ax ’

d _ dR o _ 1 1 rB, ) OB |, dp

@ - a VXTTIBYT B o 2 v oy " WBrgy |
_).

dy dR B, BZ [(v? OlnB  ,po dp

& T @ VT on “+QB[< ) Ty i prag]

Further keeping only terms up to first order in the small parameter ¢ = Af, /L:

dp _ dp (d\" _ 1B, OB _ 9 ( B, \_ d ( rB, :
dx_dt(dt) Qvu( " ”) ox 8x( 0 ”)—dx <_TU“)+O(6 )

having used d(rB,)/dx = 0 and Ov/dx = —(v} /2v))01n B/dx. In fact this last relation

corresponds to the conservation of the canonical momentum conjugated to ¢:

Yo = ¥ + mru,/q = const.

Thus, as v)| goes to zero at the turning points, there is no effective radial excursion of the

banana orbit:

In the same way one obtains

dp dp (dx\™ _ JB, JB*[(s% OB . oo dp
dy ~ dt \dt ) oy I Bray |




When integrating over a banana orbit, the first term vanishes to zero order. However, to
first order this is not the case as the radial excursion §¢p = —(rB,/ )y depends on the

sign of v. For this reason one expands:

JB,  JB,

. ;:p (J By ) "% oy + O(). (C.4)

Q
The Jacobian J of the magnetic coordinate transformation is naturally related to equilib-

r T

rium. This appears explicitly by writing the Grad-Shafranov equation as follows:

0 1 d
-}%UBZ’) = 5. 75(rBe)” +7°/~to

which can also be put in the form
rB, 9 (JBw) _ 9
B oy B

Inserting (C.4) and (C.5) into (C.3) leads to

dp _ JB,
dx r

2 (wop+ 1BY). (C.5)

L m m 0
v=to G OO

The toroidal advance after a full banana orbit can now be evaluated:

= (J Byy).

Noticing that the bounce period can also be expressed in terms of 1

JB
forl ~
one finally obtains the average toroidal drift
Ap _ _m0h/oyp
Tb q 01,/0€’

x 0
Ty = 2 dX 2/ dXJBl’U||| = I“,

<p>= —L

C.2 Circular Large Aspect Ratio Torus

Using the same notations as in Section B.2 one can express the longitudinal invariant in

terms of complete elliptic integrals:

0, [
I = 2/01 d0J Bloy| = 4Rg,v/2€ [ doy/1 = N1 — A cos )
= 16Rg,VENAT[(X — 1)K(X) + E(X)],
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with 0 < X < 1 for trapped particles. One then can evaluate

Spheen) = 16vEL L 20K + ooy + £ B0 - L)),
no= el ) = S k() (©5)

using dip/dp = pBo/qs, the definition for magnetic shear 3= dln gs/d1n p and relations[60]:

dE(m) 1

ol %[E(m)—K(m)],
B = [ Bm) - K(m).
so that the precessional drift reads[56]:
<p> = —%%%G, (.7
G(X,A™1)5) = 4A{§ [(X—1)+%((—))%]+%[I€—g%—%]}.
The limits

show that the toroidal drift of barely trapped particles (X = 1) is always in the opposite
direction from the one of deeply trapped (X = 0). To estimate the average value of G on
a given magnetic surface over all possible values of X, this factor is integrated over the

corresponding volume in velocity space at 6 = 0 using

B 9€
&P = B2 ed
"7 2 "B\ 1-AB/B, Ed,

and d\/dX = —2A71)\% so that:

Bo/Bumin d)\ "~ Bo/Bmin d)\
<G> = / / G
BO/Bmo.z \/1 —_— /\ern/BO BO/Bma.‘D \/1 - )\Bmzn/BO
Bin A~Y 1 A2

d G
Bo \/1—Bm,-n/Bm(w 0 X\/l_/\Bmin/BO

= —;- [< G>r_ (1 8§+ <@ >y (1= Q)] .
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Figure C.1: Average factor < G > of toroidal drift as a function of the inverse aspect ratio
A~! = p/R for shear 8= +1, —1.
In Fig.C.1, < & >n_,, are plotted as a function of A~!. These results show that one

needs a strong reversed shear (§< —1) for a given species of particles to drift on average

opposite to the so-called diamagnetic direction.

C.3 The Bounce-Averaged Linearized Drift Kinetic
Equation

In the case of a perturbation having a frequency w significantly lower than the average
bounce frequency < w, > of a given species, the wave interacts with the banana orbits
as a whole, drifting with velocity <¢>. These trapped particles can then be described
by a bounce-averaged kinetic equation, which is obtained by averaging the DKE or GKE
over this second periodicity in a similar way as these have been obtained by averaging
the Vlasov equation over the Larmor gyration. An appropriate application are trapped

electrons interacting with I'TG-instabilities as in this case w ~ wZ so that

w wr Me
— o~ o~ — K
Whe Whe m;
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if 7 =T./T; ~ 1. The Larmor radius of these particles being usually significantly smaller
then all corresponding wave lengths, the DKE (2.22) is a justified starting point. This

equation linearized for electrostatic perturbations reads

—
D r J o 0 "‘_qu)XB 0F q = OF
D huc. fo= [8t+ vg-aﬁ] fe= B 7 +— vy Ve Eva

where only the fluctuating part }g (}2), €,p;t) of the GC distribution function relative to
trapped particles shall be considered here. Fys is a Maxwellian distribution function of
the form (A.3) but with ¢ = % + mrB,v/qB the gyroaveraged toroidal momentum.

The right hand side can be expanded to give, in agreement with drift kinetic ordering:

q 99¢ 0Fm
ity <_T¢F M) T MtV

D

~ D
Dt 1= o

u.t.g. Dt

where the fact that £ , qFy/T = 0and e,= (B, Eﬁ —B, )/ B have been used. In this
u.t.g.
last relation, Fy; can now be considered a function of (1, €). Defining the non-adiabatic

part 592}9 +q¢Fum/T, one can write for perturbations of the form expi(wt — ne):

D ~ q , N
Di " 9,= ——TFMZ(LU — w*)e.
Note that here
. T B E 3 T B
w = —q—B(ann FM)—B;kw = wy [1 + n (a - 5)] ) Wy = --'q—B(anIlN)*é;k(p,

and that one can recover the definition (A.11) for the GKE by reminding that k =
(Bky,+ Bpky)/ B, < k1 in gyro-ordering. This equation will now be expanded to different
orders in the small parameter ¢, = w/w, < 1. Subtracting the slow precessional drift
<¢> from the fast periodic trapping motion and assuming w ~ w*, one can write to

lowest order in e:

a2 <<'P>i9~ A
g a—R) a(P g

C . ~(0) e .
which implies that ¢, * is constant along the non-drifting banana orbits, and to first order:

<l

0 AR .\ ~0 q . . N
( g -52—— <p> 5;) 9y —Uw—n<P>)g, = ——TFMz(w — w*)¢.
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By averaging this last relation over a complete banana trajectory leads to an additional

.- ~(0) : .
condition for g, ', that is the actual bounce-averaged equation:

_ . ~(0)
(W—n<p>)g, = —%FM(w — w*) < ¢ >y,

which is trivial to solve:

~ q w— w*
9= mIu———=— < ¢ >y, C.8
with
1 T — —
<é> (REw == ["as(R),  R(=0)=k.
b

By integrating only along the parallel motion of the GC, thus neglecting finite banana

width effects, which is a good approximation for electrons, one obtains

1 ™ N oinot 1o fx ,JB , x" JB
<¢p>p = —/ dig(h, x)e™ = =2 [ dx'—d(,x") expin (so—/ —“’dx")
7 Jo T Jx o] x T
_ B
= BN epin (p+ [Tare),
T
defining
-1
- X2 JB X2 JB X JB
PN = | de—e | [ d g, x) exp—in [,
;) X1 X,/l——)\B/BO xi /1= AB/By %) / r

and having used ¢=const, dx/dt = —v/J B, dp/dx = —J B, /r along these lowest order

trajectories.
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