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Abstract

A new finite element (FE) scheme, based on the decomposition of a second order
differential equation into a set of first order symplectic (Hamiltonian) equations, is
presented and tested on a one-dimensional, driven Sturm-Liouville problem. Error
analysis shows improved cubic convergence in the energy norm for piecewise lin-
ear “tent” elements, as compared to quadratic convergence for the standard and
hybrid FE methods. The convergence deteriorates in the presence of a regular sin-
gular point, but can be recovered by appropriate mesh node packing. Optimal mesh
packing exponents are derived to ensure cubic (respectively quadratic) convergence
with minimal numerical error. A further suppression of the numerical error by a
factor proportional to the square of the leading exponent of the singular solution,
is achieved for a model problem based on determining the nonideal magnetohydro-
dynamic stability of a fusion plasma.

PACS: 02.70.Dh, 52.30.Jb
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1 Introduction

The purpose of the present paper is to explore the numerical gain in accuracy
that can be obtained by decomposing a second order ordinary differential equa-
tion into a system of first order equations. Such a decomposition is generally
required to make an initial value problem numerically tractable, but is not
common in the case of boundary value problems. There are reasons, however,
which contribute to make this decomposition an attractive scheme. Firstly, it
introduces additional dependent variables, which increases the dimension of
the Sobolev space from which trial functions are drawn to minimize the action
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functional (at the heart of the finite element method). This leads to higher
accuracy. Secondly, the decomposition can ensure that the dependent vari-
ables obtained by decomposition are determined with the same accuracy as
the unknown solutions. This may be required in particular physical problems.

The advantage of splitting a higher order equation disappears if the decom-
position does not preserve properties such as self-adjointness. Not all decom-
positions are therefore appropriate. In Section 2 we develop the formalism of
Hamiltonian systems, that is an infinite class of equivalent Hermitian systems.
Any such system can be generated from another using symplectic (canonical)
transformations. (For a good introduction to other properties of such systems,

see Appendix C of Ref. [1}).

In Section 3 we estimate the convergence rate of the error for the symplectic
finite element method. Two choices of finite elements expansions are adopted
for the Galerkin-Ritz approximation of the conjugate “momentum” solution:
the piecewise constant and piecewise linear (‘tent’) elements. These choices
have distinct convergence features. In particular, the deterioration of the con-
vergence rate in the presence of a regular singular point gives rise to different
mesh packing criteria.

To test the usefulness of the symplectic FE scheme, a singular problem of
asymptotic matching which arises in the context of resistive magnetohydrody-
namic instabilities in a plasma, is constructed in Section 4. Convergence rates

in energy norm are computed in Section 5 for this exact case, and compared
with theoretical predictions.

2 Hamiltonian Decomposition

Consider the driven Sturm-Liouville equation,

Ly(z) = [f(2)y'(2)) - 9(z)y(z) = ra(z) — r3(z) (1)
subject to the boundary conditions

¥'(0) + Boy(0) = o

2
Y1)+ Bwy(1) =m @

at £ = 0, and z = 1 respectively.



A Lagrangian density,

L=3fy"+ 39y +ry +ray/,
can be constructed such that (1) is the Euler-Lagrange equation,
oc\' ocr 0
dy') oy

which extremizes the action

SE/dwC;

i.e., 65 = 0 for arbitrary variations éy that vanish at the end-points.

A conjugate momentum to y can be defined,

oL

PE‘a—:lP:fy'-l—rz,

as well as a Hamiltonian density,
H=py' - L=-1fy? -39y’ —my.

Equation (1) can then be rewritten,

—p' =0H/0y = —gy —m
y' =0H/0p=f1(p—r2)

(3)

(4)
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(6)

(7)

(8)

as a system of two first order equations. A more compact notation for (8) is

Ey'—Hy=s,
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and

sz( Bk ) (11)
—flrs

Such a system is called Hamiltonian.
All transformations U

y—-y=Uy (12)
which conserve the Hamiltonian form (9) are called canonical. Since the action
S = [dzy-(E-y’ — H-y — s) is an invariant,

S= / dz(U-y)-(E-Usy' — [H-U — E-U]y —s) = S, (13)

one immediately finds that U must satisfy the condition

UT.E-U = constE, (14)

that is, U is a symplectic matrix [2].
We regard all Hamiltonian systems generated by U satisfying (14) as equiva-

lent forms to the initial problem (1). Take for instance the symplectic trans-
formation

p—Pp=p+ey, (15)

that redefines the conjugate momentum but leaves the solution unchanged;
that is,

u-( : ") o
e(z) 1 '

The transformed Hamiltonian matrix and source term map into

“le2 5 —fle ‘lerz——rl
H——)(f ; I ]]: ) a.nds—»(f 4 ), (17)
—f-1g -1 — flp,



where § = g+¢€'. These are the most general forms of H and s for a self-adjoint
second order differential equation with a source term, which conserve the self-
adjointness of the system (H = HT). This property can then be exploited
numerically.

The concepts of conjugate momenta and Hamiltonian density are very general,
they can be defined for all equations. The definitions (6) and (7), however, only
apply to the Sturm-Liouville Eq. (1). These definitions would require revision
to account for higher order derivatives (equations of order exceeding two)
and the fact that the adjoint solution § may differ from y (as in the case of
non-selfadjoint equations). A pathological situation is encountered when p is
linearly dependent on y as in the case of a first order equation. Of course
we must discard such degenerate systems (see e.g. the case of the diffusion
equation treated in Ref.[3]).

3 Error Estimates

Multiplying (9) on the left by the row vector 3(u p.) and integrating over the
domain (0, 1), we obtain the weak form

1
Wi(u,y) = —3 [ do (urs + puf'rs) (18)
1]

of (8), where

1
Wa(u,v) = %/d:z: (——puf"lpv +u'py + puv' + ug'v) - ';' [UPle) (19)
0

is the energy inner product, and p, and p, are the conjugate variables to
u and v, respectively. Approximating the solution y by an expansion (Ritz
approximation)

=305 dPe(z) (20)

k=1 i=1

(k)

in finite elements e;™’,

(1)
NONE B (=) and e = 0 , (21)
1 1 (2)
0 e ’(x)
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we find the linear system of equations

2 M 1
33 Wa(el, ey = 1 / dzels (I1=1,2 and j =1,2--- M). (22)
0

k=1 1=1

In general, the basis functions ei(l)(:z:) and ei(z)(a:) need not be identical. Noting
that no derivatives of e{*)(z) appear in (18) and (19), ei(z)(:z:) may be taken
as piecewise constant, whereas the ei(l)(:t:) must, at least, be piecewise linear.
Such a choice of hybrid elements will be treated in details in Section 3.1.

Note also from the weak form (18) that the error € = § — y is orthogonal to
(k).

the space spanned by the basis functions e;": i.e.,

Wi(el, €) = 0 (23)
and therefore the error in energy norm

Wu(¥,¥) — Wu(y,y) = Wa(e, €) (24)

converges quadratically in €. Such a property also exists for the ordinary FE
method.

3.1 Symplectic hybrid elements (SHE)

To proceed further we adopt the hybrid basis elements:

0, z<zi10rT > Tiy
(@) = { (¢ — 21)/(i ~ mi1), @ia <z <o (25)

(Zig1 — z)/(Bit1 — @), 2 <z < Tigq

for y, and

0, <z > T
el(l)(m) _ T T;orr Ti+1 (26)
1, elsewhere

for p. A similar choice of finite elements has been made in Ref.[4].



Assuming that the approximate solution y approaches pointwise the exact
solution y as M — oo, we make the following ansatz for the error estimates

[5]:

1,112 ! n
e =y'h? | € o y'h;

2V Y for z; < z < ziyq, (27)
and Pe o pih;

at lowest order in h; = ;41 —z;. Here, y!’ and p! are understood to be the max-
imal values of y"(z) and p'(z), respectively, within the node interval (z;, zi11).
This allows us to write

M-1 Tt

Wale, ) o 3 3 [ do{ (F7),00°hF +/5ih? + 1aw®hi},  (28)

=1 x

plus some higher order terms in h;. For bounded |y{| ~ |p{| < o0, it is clear
that the first two terms dominate at large M ~ 1/h and that they produce a
convergence rate in M2

The picture is quite different in the singular case, i.e. when y{’ and p| are
potentially unbounded. To be more specific, let us assume a regular singular
point at z = 0:

f(z)~z? g~go, y~Cz* andp ~ Caz®t!, asz — 0, (29)

the behaviour of p being in agreement with (6) and o assumed # 0 or 1.
Anticipating accuracy problems of the solution in the vicinity of z = 0, we
allow the mesh nodes z; to be distributed according to

z; = (/M) = t" (30)

with the mesh packing exponent 4 > 1 controlling the density of nodes. The
choice of a power law for the mesh packing is motivated by the singular be-
haviour of the solution. (A different ansatz would be required in the case of
an essential singularity.)

Taking the limit of M — oo, we have
i — M [y, dt

1/M — di (31)
hi = dz =yt /M



and inserting these relations in (28) we obtain

An N
Wale, &)~ 30’y [M—_z (M2 — b~ Gectai)
v? By, 4 —(Gat1)
S e S 0 Ve R VN
N Ra+1)yy -4 ( ) (32)

at leading orders in 1/M, where A, and By are constants which depend on
the coefficients of proportionality in (27).

It is immediately apparent that the energy error Wy(e, €) reaches a maximum
convergence rate in M~2 provided

2
20 +1°

y > (33)

Note that the poles in (32) are only apparent since we have, for instance,

M—2 _ M—(2a+1)-y

i =M2noM 34
1_.21/1(Izre1x+1) (2a+1)y -2 nh (34)

which yields

Wa(e, €) ~ 1C%a’® [AhM_2 In M + %'ythM'z] asy — 2/(2a + 1).(35)

In this limit, the density of energy error (35) spreads evenly over the (0,1)
domain. If however (33) were not satisfied, then the energy error density would
peak in the vicinity of the singularity and the contribution to Wi(e, €) arising
from the first node would dominate over the remaining integral. This would
result in a reduction of the convergence rate,

Wil(e, €) o« M7(22+1) (36)

with the coefficient of proportionality depending on §, the small distance which
defines the position of the first element away from the singular point. Note
also that the error in energy norm is seen in (32) to be o 4* for large v,
indicating that the scaling v = 2/(2a+1) is optimal, in the sense of providing
the highest convergence rate for the smallest error.



3.2 Symplectic tent elements (STE)

Since the error for hybrid elements was dominated by the Ritz representation
of the conjugate momentum, the choice of tent elements (25) for both expan-
sions y and p provides the hope to increase further the convergence rate. By
selecting smoother basis functions, a price must however be paid; the number
of upper diagonals in the sparse linear system (22) resulting from the overlap
of neighbouring basis elements increases from two to three.

The derivation of the error estimate is in every point similar to the one in
Section 3.2, with the difference now that

Pe o 37 A3, (37)

which suggest higher order error. Introducing (37) with the error bounds for
e and € in (19), we find the expression

. M ] »
Wi(e, €) ~ 10%ay* [—(2a m 1*)7 — (M~ — M-Cet)
B¢ —4 —(2a+1)
—_— M -M v
+ (2a+1)'y—4( ) ’ (38)

where A; and B, are, again, constants which depend on the ¢, ¢ and p. esti-
mates.

The maximum convergence rate is found to be in M3, provided

3
2« +1’

v > (39)

with the limit,

Wu(e, €) ~ 1C%a’y* [AtM_3 InM + 'thM_s] asy — 3/(2a+1) (40)

well defined. Note that condition (39) is more restrictive than (33). For (39)
not satisfied, the convergence rate reduction is given by (36) in this case too.
Mesh packing with - in excess of (39) should be avoided, for the energy error
increases proportionally to 4* at large y’s. The convergence rates of the hybrid
and tent element schemes are summarized in Fig. 1.



4 Test Problem

The following problem arises in studying resistive (so called “tearing”) modes
which develop within the framework of the resistive magnetohydrodynamic
(MHD) plasma model. It is known that Eq.(1) with 7; = r; = 0 approximates
the equation [6] governing the plasma displacement field ¢ in the vicinity of a
singular surface at z = 0 where

f(@) ~ 2 + fig® +.-- and g(z) = go + g1 + gaz® + - . (41)

The singularity at £ = 0 gives rise to two independent solutions,

1
€@ = 2727 + % + a7 + -}

1 : (42)
& = o7l 1 el 4 a1 )

with superscript (b,s) corresponding to the big and small leading exponents
a = —1/2 % u, respectively, where

p=yi+a (43)

is assumed positive and real.

The quantity of interest is the ratio A’ = E((,') /f((,b) which drives the ‘tearing’
mode unstable when positive. (To be more precise, the ratio is computed
taking the jump of small solution to odd large solution but the parities have
no incidence on the difficulty of computing A’ so that we are entitled to focus
here on the one-sided, z > 0 problem.) As £ — 0, we have

¢ ~ const(¢(P) 4 A'¢) (44)

and A’ is given by the jump of the bilinear concomitant [7,8] of

€~ ™ and £ ~ AW, (45)
which in turn can be expressed

pi' =W(E &) +1 [ dof(Lé) (46)
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in terms of the functional

W(u,v) = %/d::c (' fo' +ugv) — 3 [uf]y, (47)

which represents the “ideal” energy of the plasma. In real situation, W (u,v)
(which differs from Wy) is often positive definite and when this is case, the
error in computing A’ from (46) gives a systematic negative error.

We take é to be a prescribed function which approximates Af(b) to an accuracy
which is recessive to the small solution ¢(*). Otherwise, € is arbitrary. The
unknown solution is called ¢ and is obtained by solving

L = —L§ (48)

where —Lf acts as a source term. We require ¢ to have the ¢(®) behaviour as
z — 0 and to satisfy homogeneous Dirichlet boundary conditions at ¢ = 1.
(In fact, the numerical scheme automatically selects the asymptotic solution
with (f()') behaviour by assuming finite W, as long as —L¢ is compatible with
£~ EP))

Because the second term on the right hand side of (46) is prescribed and
therefore independent of M, the error in A’ arises entirely from computing

W(E,&).

A similar expression to (46) can be obtained for the Hamiltonian system by

replacing W by Wy and €(L€) by §-(E-§' — H-y).

5 Results

An exact test case [9] is constructed by taking

f(z) = z? and g(z) = go + z°. (49)

The small and big solutions (for go > —1/4) are ¢®) = 2¢T(1 + p)z*L,(z)
and £®) = 27#T(1 — p)z~#I_,(z), respectively, where I, are modified Bessel
functions [10]. By requiring ¢ = £®) + A’¢®) to vanish at z = 1, we get

y e D(=p)I_u(1
A= (1) (=p)Lw(1)

2 TTLa0) (50)

11



Note that since A’ can be identified with C in (29), we expect the relative
error in A’ to be proportional to A’ from Eqgs. (35)—(38) and (46). In the case
of a plasma at the marginal ideal stability point (JA’| — o0), the relative
numerical error would formally be infinite.

In the following, we will treat the three cases summarized in Table (51)

9o H a Al
-5/36 | 1/3 | -1/6 | -1.1721654155

0 1/2| 0 |-1.3130352855
7/36 | 2/3| 1/6 | -1.5752523228

(51)

We first focus on the case go = —5/36, for which the solution |£|] — oo is
unbounded as # — 0. This case is numerically the most demanding, for u
is small so that a mesh packing exponent 4 = 3 is required for the FE and
SHE schemes, respectively v = 4.5 for the STE scheme, in order to achieve
convergence in M2

Figure 2 shows the relative error of the SHE scheme versus the number of
mesh nodes M = 2,3,4.--100. The picture confirms the predictions of the
convergence rate of the SHE scheme versus the mesh packing exponent «:
that is the error is estimated graphically to be o« M%7 for a linear mesh,
o« M~12 for v = 1.5, x M=% for v = 3 and o« M~29 for 4 = 4.5. Increasing
v beyond 1/p does not improve the convergence rate but rather increases
the error by a factor approximately (yu)® = 3.4, in good agreement with the
numerical results.

A similar study has be performed for the SHE scheme in Fig. 3. The con-
vergence rate in M~ for 7 = 1.5 agrees well with predictions given in Sec-
tion 3.2. The most striking features of the STE error at v+ = 4.5 are the
numerous spikes in the convergence behaviour, which are exacerbated when
both M and - increase.

The are two reasons which explain the rough behaviour of the error conver-
gence. First, the attempt by the numerical scheme to extremize the indef-
inite functional Wu(e,€) by switching its sign. This is shown in Fig. 7 for
the case go = 0 (corresponding to a pressureless plasma), where the points
yielding a negative error are made distinct from those having Wx(e, €) > 0;
most of the peak points in the STE error convergence behaviour coincide with
Wh(e, €) changing sign. The indefiniteness of Wy can also be observed for the
SHE scheme, but is inhibited at large M’s due to the positive definite part
3 [ dz(—f7*p? + 2€'p.) of Wy which dominates over 1 [ dzge®. To see this, let

12



us assume y and p o exp(ikx) so that the discretized form of dy/dx reads as

SflSHE)y(a:i) = y(mi+1)h_ y(2) = %i—exp(ikh/2) sin(kh/2) (52)

for the SHE scheme, whereas

5£STE)y(mi) = y(zi+1)2—hy(mi_1) = %sin(kh) (53)

for the STE scheme, where h = z;11 — z; = z; — ;-1 (for a linear mesh). Both
discretization schemes yield 8, — d/dz = ik in the limit of A — 0 and k finite;
they are good approximations in the moderate k range. The behaviour of the
SHE and STE discretizations, however, differ significantly as k approaches
kmax = 7/h, the value corresponding to the shortest wavelength that can be
described considering the mesh resolution; 51(ISHE) increases to attain —2/h

whereas 5£STE) decreases to vanish at k = kpay.

The second reason for the rough convergence behaviour is that the SHE solu-
tion is “stiffer” than the STE since small wavelength oscillations have a larger
Wh energy. The fact that 5£STE) — 0 in this limit is reflected by the “odd-even”
instability of Fig. 5 as well as the emergence of the spurious eigenvalue shown
in Fig. 6 which tends to zero proportionally to A — 0. This phenomenon is well
known to arise in the presence of numerical pollution [11,12]. Interestingly, the
polluted STE solution appears more accurate than the SHE solution in the
vicinity of the regular singularity z = 0.

The case go = 7/36 is more interesting from a physical viewpoint, for the
quantity go is generally positive in a tokamak due to favourable magnetic field
line curvature. We get { — 0 which remains bounded as z — 0. A mesh
packing exponent -y of 1.5 is sufficient to ensure convergence in M~2 for the
SHE scheme, and -y = 2.25 for the STE scheme, as shown in Fig. 7. Note that
the SHE scheme reduces the error of the FE scheme by a factor 30 —40 which is
roughly equal to 2. This gain is attributed to the Hamiltonian decomposition
for which p{ « ay{’ in (28). The STE scheme yields a further improvement of
accuracy by approximately one order of magnitude.

6 Conclusions

The advantages in accuracy and convergence properties, of the Hamiltonian
finite element schemes based on hybrid (SHE) and tent (STE) elements over
the usual finite element scheme have been expounded, without resorting to

13



higher order (e.g. cubic) elements which in turn would require higher order
quadrature schemes. In some problems, the physical significance attached to
the conjugate variable also contributes to render the Hamiltonian scheme at-
tractive. In the problem treated in Section 4, the conjugate variable to the
normal displacement represents the total of plasma and magnetic pressure
perturbation. The Hamiltonian decomposition is also useful to unveil proper-
ties of the equation. In Ref. [13] for instance, the Hamiltonian decomposition
of the MHD operator was presumably used unconsciously to solve the issue
about the existence of continua in the spectrum.

The relation between the mesh packing and the convergence behaviour has
been clarified. The STE scheme has the strongest maximal convergence rate
at the expense of a “wiggled” convergence behaviour, which is attributed to
both numerical pollution and to the indefiniteness of the Wi energy. The
incidence of numerical pollution on the behaviour of the solutions remains
weak, with oscillating amplitudes averaging less than 2% of the smooth part of
the solution. The accuracy of the polluted STE solution appears more accurate
than the unpolluted SHE solution near the regular singular point.

The SHE scheme, on the other hand, possesses the same convergence rate as
the standard finite element method (FE) with, however, an accuracy which
improves by a magnitude ~ a? with respect to the FE scheme. For the tearing
mode stability problem, the small solution exponent « scales with the pressure
gradient at the singular surface and is typically of the order of 0.01. The
accuracy gain is thus substantial.

It is expected that one could avoid expensive convergence studies and extrap-
olations to infinite M by using the STE scheme, which requires a modest
number of mesh nodes (about 10) to reach a 1% accuracy, as compared to
about 100 mesh nodes required by the FE method. This point could turn out
to be crucial for the resistive stability code PEST [14] when working near the
ideal marginal stability point, which is shown in this paper to lead to high
inaccuracy.
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Fig. 1. Schematic representation of the energy Wy convergence rates versus the
mesh node packing exponent 4 for the SHE and STE schemes. The standard FE
element scheme (FE) has the same convergence rate as the SHE scheme.
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Fig. 2. Relative error in Wy of the SHE scheme for the case p = 1/3, versus the
number M — 1 =2,3,4---100 of mesh intervals. Various mesh packing exponents:
7 = 1 (dotted line), v = 1.5 (dash-dotted line), v = 1.5 (dashed line) and y = 4.5
(solid line) have been used.

17



STE, mu = 1/3
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Fig. 3. Relative error in Wy of the STE scheme for the case 4 = 1/3, versus the
number M — 1 = 2,3,4-.-100 of mesh intervals. Two mesh packing exponents:
7 = 1.5 (dash-dotted line) and y = 2.25 (solid line) have been used.
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mu = 1/2

rel. error
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Fig. 4. Comparison of the error convergence of the SHE (dash-dotted line), STE
(solid line) and the FE method (dotted line) for the case 4 = 1/2. A linear mesh
has been adopted. The circles correspond to a negative error Wx(e, €).
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Fig. 5. Solution ¢ obtained using the STE (solid line) and the SHE (dash-dotted
line) in the neighbourhood of ¢ = 0 for u = 1/2 and A’ = —1.3130352855.
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Fig. 6. Spurious eigenvalue of the STE scheme versus the inverse number of mesh
node intervals.
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mu = 2/3
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Fig. 7. Comparison of the error convergence of the SHE (dash-dotted line), STE
(solid line) and the FE method (dotted line) for the case u = 2/3. A mesh packing

exponent ¥ = 1/u has been used for the SHE and FE methods, and v = 3/(2pu) for
the STE scheme.
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