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Abstract

A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam in-
stabilities in gyrotrons and their effects on the beam quality is presented. The code is based
on recently developed techniques for handling charge conservation and open boundaries.
It has been implemented on the massively parallel computer CRAY T3D. First results
show an electromagnetic backward-wave instability periodically growing and decaying to
energy levels close to those obtained from the electrostatic Bernstein wave instability. On
the average, the resulting beam degradation is 3 to 4 times larger than that predicted by
electrostatic models.

1 Introduction

The efficiency of gyrotrons depends critically on the monochromaticity in energy and velocity
(or pitch angle) of the exciting electron beam [1]. Electrostatic simulations [2] of electron-
cyclotron instabilities in gyrotron beam tunnels predict lower values of velocity and energy
spreads than experimentally determined values which are either directly measured [3,4] or in-
ferred from experimentally determined efficiencies [1,3,4]. Recently, parasitic frequencies have
been observed in gyrotron beam tunnel [5]. It is tempting to connect the two observations and
to try to explain the beam degradation with the excitation of parasitic electromagnetic modes.
With this goal in mind, an electromagnetic particle-in-cell (PIC) code modeling an annular elec-
tron beam in a cylindrical cavity (beam tunnel) has been developed. The physics is assumed
to be independent of the azimuthal angle which results in a two dimensional model. Only the
transverse magnetic polarization is considered so far. This polarization includes, however, elec-
trostatic perturbations of the beam and therefore allows to discuss electromagnetic instabilities
together with the electrostatic ones.

In Section 2, the physical problem is presented . In Section 3, we briefly discuss the numerical
scheme which is a PIC method [6,7] improved by using two recent inventions by Eastwood
[8] for the current assignment and by Bérenger [9] for the treatment of boundaries open to
electromagnetic waves. In Section 4 the implementation of the code on the CRAY T3D is
described. Section 5 contains the results.



2 Physical problem

A cylindrical cavity (coordinates r, 6, z) of radius R, and length L, with a perfectly con-
ducting wall is considered. It is immersed in an external magnetic field Eo = Byé, and is open
on both ends at z = 0 and z = L,. The electrons constituting the annular beam are injected
on the left side in such a manner that their guiding centers lie on the radius Ry. We restrict
the model to two spatial dimensions by assuming azimuthal symmetry of both the beam and
the wave fields, i.e. % = 0. At t = 0, when the injection starts, there are no electrons and no
electromagnetic field in the cavity. The boundary conditions at z = 0 and z = L, must allow
the excited electromagnetic waves to leave the cavity freely without any reflections.

The beam electrons are injected into the cavity with the initial momentum defined by its axial
and perpendicular components P,o and P,o. Their gyrophase is chosen in such a way that the
resulting beam would be as quiet as possible (m the sense of a quiet start in PIC parlance) if
they were to spiral along the magnetic field B, following unperturbed orbits. Their real orbits
are then given by the relativistic equations of motion:

dP L o
- = —e(E + v x B), (1)
dz .

Here Z, 7 and P are respectively the position, the velocity and the momentum of an electron.
The velocity 7 is related to P by = P [ym, where ¥ = (/1 + P?/m2c? is the relativistic factor,
m and —e are the mass at rest and the charge of the electron, c is the velocity of light in vacuum;
E and B are the electric and magnetic fields, respectively. Details and generalizations of the
electron injection procedure will be described in a forthcoming paper.

The electromagnetic field evolves according to Maxwell’s equations. For axisymmetric so-
lutions in a cylindrical cavity they can be separated into equations describing the transverse
magnetic (TM) and transverse electric (TE) polarizations. Here, we concentrate on the TM
polarization which involves the field components E,, E, and By :
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where € is the permitivity of vacuum and j is the current density.



A subsidiary requirement for the electric field is that it satisfies the Poisson equation at all
times. This can be guaranteed by imposing the charge continuity,

where p stands for the charge density.

3 Numerical scheme

The PIC code described in this paper is based on two non-standard features. The first is
Eastwood’s [8] virtual particle electromagnetic particle-mesh method for solving egs. (1) to
(5). The particularity of this method resides in the fact that eq.(6) is satisfied exactly, or in
other words, that the electric field satisfies the Poisson equation at all times if it does so at
t = 0. Algorithmically, this is achieved by using finite elements in both space and time with the
result that a current due to a particle is not assigned pointwise to the mesh as in a traditional
PIC method but rather "orbitwise”: The current due to a particle is distributed to different
mesh cells dividing it into contributions proportional to the length of its orbit in each cell. The
individual contribution to a cell can be thought of as the contribution of a ”virtual” particle
having a charge proportional to the length of the orbit in that cell. The charge conservation
obtained with this scheme is only limited by truncation errors.

The second non-standard feature of this code has to do with the open boundary conditions.
It is practically impossible with a time-dependent particle-method to simulate a whole gyrotron
device. In the present investigation only the beam tunnel where a uniform magnetic field favors
the development of unwanted instabilities is considered. A major difficulty in the modeling of
such a situation are the open electromagnetic boundaries: waves excited in the constant magnetic
field region must be allowed to leave. Reflections at the boundary of the computational domain
would create standing waves in contrast to reality and make the model useless. Here, we have
adopted the technique of perfectly matched layers recently described by Bérenger [9] in which
one uses specially devised absorbing layers of thickness Ls on both ends of the computational
domain. The particularity in Bérenger’s method is the use of an unphysical absorbing medium
which can be matched exactly to the free space so that the theoretical reflection factor is null
at any incidence angle. The field equations governing this medium are:
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where By, and By, are subcomponents of By, i.e. Bs = By, + By, og and op are electric and
magnetic conductivities [9], respectively and po is the permeability of vacuum.

The impedance of the absorbing medium exactly matches that of the vacuum if og/og =
€o/ 0. In this case, the interface between the cavity and the absorbing layer does not reflect any
waves back into the cavity. Reflections can occur, however, at the end of the absorbing layers
at z= —Lgand z = L, + Lq where E, = 0 is imposed. This leads to an apparent reflection of a
plane wave incident on the interface at an angle 9 if the absorption in the layer is insufficient.
According to Bérenger one obtains the reflection coeflicient,

cos ¢] , (11)
for a parabolic conductivity profile of the form

o5(C) = Om (fc;)z (12)

where ( = —z in the left and = z — L, in the right absorbing layer, respectively. We usually fix
om such that a reflection coefficient of 0.2% results for a highly oblique incidence of 80°.

For charge conservation reasons the particles must be injected at the metallic boundary at
z = —Lq and traverse therefore the absorbing layers with their strange physical laws. To avoid
strong wave-particle interaction in these regions we usually impede feedback by letting evolve the
particles in the background magnetic field B, alone. In this mode of operation they emit little
energy in the absorbing zones. The amount can be monitored by the global non-conservation
of energy because the full system, in which the particles evolve everywhere according to eq.(1),
conserves the energy. The energy conservation law for the electromagnetic field written for the
total volume V' (cavity plus absorbing layers) is
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where og = o = 0 in the cavity. Results will be shown in section 5.

The computational mesh is defined by N, equally sized intervals along the cylinder axis and
3 equidistantly meshed zones in radial direction (fig 1). The total number of radial mesh cells
is N,. Usually, most of the cells are situated in the the beam region whose width is taken
somewhat larger than two Larmor radii.



4 Implementation on parallel computer

A typical simulation of a beam tunnel of 10 cm length immersed in a static field of 3.8 Tesla
is done over a time period of 14 ns. As we use an explicit time integration scheme (leap-frog)
the computational timestep is limited by the CFL condition [6]. On a mesh with N, = 384 and
N, =104 36 + 6 = 52 this forces us to take 128 timesteps for one cyclotron period. A run with
only 83000 particles then requires 60000 cpu-seconds on a CRAY Y-MP which is inacceptable
for doing research. This is the motivation for implementing the code on a massively parallel
machine like the CRAY T3D.

As the CRAY T3D has a sizable memory per processor (8 MWords) the implementation of
the present code is even very simple because the total field can reside on every single processor.
This allows to distribute the particles among the processors independently of their position and
velocity. The field can be updated in parallel as well. For this we decompose the total cavity (i.e.
cavity + absorbing regions) along the z axis into equal sub-domains {2 < z < 2k41,0 <7 < R,}
and assign each one of them to a processor. Here z; = (k—1)- N,/Npg, k is the number of the
processor, Npg the total number of processors.

The following algorithm can then be used:

1. Each processor updates the positions of its resident particles and calculates their contri-
bution to the current.

A parallel global sum is carried out over all the processors, computing the total current.

Each processor advances the field in its sub-domain.

= N

Each processor sends its fields to all the other processors.

5. The total new field known, each processor updates the velocities of its particles.

6. Goto 1

This algorithm evidently provides an ideally balanced load for the processors. Its performance
is, on the other hand, limited by the communication caused by the global sum and the broadcast
of the subdomain fields. On a 8 processor T3D the code runs with 100000 particles at the same
speed as on the Y-MP but is only four times faster with 64 processors. In this case, 45% of the
time is spent for communication as shown in fig.2. This bad speed-up is due to the small particle
number which is the limit of what can be run on the Y-MP. The code scales much better when
more particles are used in order to decrease the numerical noise. Typically, in our computations
we use 300000 particles on a 64 processor configuration. As can be seen from fig.2 in this case
merely a quarter of the time is used for communication.



5 Results

The results are separated into two parts, a numerical (fig.3) and a physical one (figs.4 to
8). The performance of the numerics is, however presented in physically relevant runs and
therefore we describe here the numerical together with the physical parameters. A cavity of
length L, = 0.1m and radius R,, = 5mm in a field By = 3.8 T has been modelled. The initial
energy of the beam electrons is 80keV and the velocity ratio, @« = Pyo/P,p = 1.5 without
dispersion. The guiding center of the electrons lies at Rjo = 3mm. The total current I of the
beam is varied from 2 A to 60 A. With these parameters the beam excites the TMg3z mode, a
backward wave whose frequency and wavelength is given by the intersection between the Doppler
shifted cyclotron frequency w = w. + k,v,0 and the cavity dispersion relation. The cyclotron
frequency is w, = eBy/mye = 27 x 92 GHz and we get for the cavity mode w = 27 x 85.8 GHz and
Az = 1.29cm (k. = 486.2m™1) where by ), and k, we mean the wavelength and the wavenumber
in axial direction.

The grid size, as already mentioned, is given by N, = 384 where 2 x 64 intervals are used for
the absorbing zones and N, = 52 with 10 intervals in the center between r = 0 and » = 2.5 mm,
36 intervals between r = 2.5mm and 3.5mm and the remaining 6 intervals between there and

the wall at 5 mm. The time integration has always been performed with 128 steps per cyclotron
period (At = 8.5-107*s).

With the chosen parameters, the absorbing layers have a thickness of Ly = 2.5cm ~ 2, and a
theoretical reflection coefficient, eq.(11), of 0.2% for the TMo; mode in question. In the present
discrete version (64 intervals per absorbing zone) one measures 0.35%. This result depends on
the resolution as shown by Bérenger [9]. We find 0.75% and 1.15% with a longitudinal resolution
lowered by a factor 2 or 4, respectively.

The interaction between the particles and the absorbing medium can be kept small as shown
in fig.3. In this figure, the electromagnetic energy emitted by the particles in the absorbing
zones is plotted together with that emitted in the cavity. It is found that the ratio of these
energies is at most 0.05 and this happens only at the highest currents of the order of 60 A. In
the absorbing zones there is no action of the wave field on the particles. Consequently, even
higher levels of emission would not influence our simulation because most of it is absorbed in
the layer and only an exponentially small fraction can reach the cavity where it may influence
the particles.

The charge and the energy conservation has been monitored for all the runs described in this
paper. Typically, after 200000 timesteps the error in the energy was of the order of 5% of the
electromagnetic energy whereas the error in the charge conservation was the round-off error [8].

Let us now turn to the physical results. The energy of the electromagnetic field in the cavity
oscillates in time as will be shown in fig.5. In fig.4 we first show a snapshot of a run with
I = 2A at maximum energy. The wavefield component E, at » = Ry is shown as a function



of z together with the velocity dispersion measured as the standard deviation in % of P, and
P, of their respective average values obtained from all the particles contained in an interval

Az = L,/256.

At a given time, we determine the maximum of the so obtained velocity spread averaged over
8 cyclotron periods and plot it against time, fig.5, together with the field energy. Also plotted
in fig.5 is the electrostatic energy which has been obtained with an electrostatic PIC code [10].
The much larger energy content in the electromagnetic result is due to the unstable, backward
propagating TMy3 mode which in this 2 A case oscillates at a measured linear frequency of
86.8 GHz and exhibits an axial wavelength of 1.26 cm in good agreement with theoretical values.
One remarks in fig.5 that the energy in the unstable mode periodically builds up and decays
with a period of about 3.5ns or 320 cyclotron periods. It is interesting to remark that the
former period is of the order of twice the time it takes the backward propagating wave to go
through the interaction area which in fig.4 has a length of about 8cm. At higher currents the
interaction length is not so neatly defined as in fig.4 but it decreases with increasing current. The
dependence of the oscillation period on the current can, however, be well determined from the
computations and is shown in fig.6. The period varies roughly like 1/+/T. A similar phenomenon
has been observed in the simulation of finite length electron cyclotron maser systems [11] where,
however, the oscillations were rapidly damped out.

It is also interesting to remark in fig.5 that the lowest energies in the electromagnetic model
coincide with the saturated values due to the Bernstein wave instability [2, 12] as observed
in the electrostatic code. In the present TM model which includes the electrostatic field, the
two instabilities seem to ignore each other. We have not observed the slightest correlation nor
any synergy between them. This is an important result of this investigation which shows that
electrostatic and electromagnetic instabilities may be treated in separate numerical models.

In order to be able to compare results from runs with different currents I the velocity dispersion
is averaged over the time between the first maximum and the end of the run. In fig.6 one obtains
in this way 6.5% for the spread in P, and 1% for that in P,.

Before presenting the final results, we discuss in fig.7 a run where again 2 A are injected but
the beam has an initial spread in velocity of 2% in both components, P, and P,. The reason in
doing this is that spreads of this order are already obtained from time-independent calculations
[13] and even higher ones are sometimes said to be produced by the surface roughness of the
electron guns used in gyrotrons [14]. In the present run, the same TMy3 backward wave mode as
before is unstable but grows more slowly and saturates at a lower level than before. The resulting
final velocity spread in P, is consequently lower than before whereas that in P, remains close
to the initial value which is higher than the final value in fig.8a. For currents higher than 10 A
and a cold beam the final spread of P, is higher than 2%. In these cases the results are not
substantially modified when a hot beam is injected in place of a cold one as can be seen in fig.8.

Most remarkable in fig.8, however, is the large difference in the perpendicular velocity spread
obtained with the electromagnetic model as compared to the electrostatic one. The difference
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is of the order of a factor 3 to 4. In contrast to this, the spread in axial velocity is only slightly
higher.

A last remark concerning fig.7 is in order. Preliminary runs over longer times have not
confirmed the impression created by this figure, namely that the energy oscillations would damp
out in the course of time. We have found that the behaviour in fig.7 is rather just a part of a
complex nonlinear waveform whose amplitude seems not to decrease with time.

6 Conclusion

The availability at the Ecole Polytechnique Fédérale de Lausanne of a CRAY T3D has enabled
us to make systematic electromagnetic PIC simulations of a gyrotron beam tunnel. The code
used for these simulations has largely benefitted of the combined application of two recently
invented numerical algorithms for charge conservation [8] and open boundaries [9].

The main physical result of this first investigation is the large spread in perpendicular velocity
which has been obtained in fig.8a. At 2 A this spread corresponds to a spread in energy of 1%,
a figure which is comparable with values inferred from experiments {4]. The experimentally
measured spread in P, [3,4] is, however, of the order of 10% for a beam current of 1.5 A and
much above the values in fig.8. On the other hand, experimental observations show indeed that
in quasi-optical gyrotron beam tunnels parasitic frequencies in the range of the backward wave
can be excited [5]. Further experiments and numerical modelling are required to elucidate this
point. In particular, the code should be completed by adding a module for the TE polarization.
An additional effort should also be made to gain a clear picture of the observed low-frequency
energy oscillations of the backward wave which in a gyrotron should appear as more or less
transient low-frequency phenomena.
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Figures

Figure 1 : Numerical model of the cavity representing the gyrotron beam tunnel.

Figure 2 : Fraction of time spent in communication as a function of the number of particles
and the number of processors on the CRAY-T3D. Shown are equilines for the fractions 0.1, 0.2,
0.3 and 0.4.



Figure 3 : Energy emitted by the particles in the absorbing zones (empty circles) and in the
cavity (full circles). The energy is given as a fraction of the initial kinetic energy.

Figure 4 : Snapshot of field component E, at r = Ry (a) and velocity dispersion (b) in function
of z. The spread of P, is shown as a continuous line, that of P, as a broken one.

Figure 5 : Electromagnetic energy (denoted Wgwm), eletrostatic energy (denoted Wgs) and the
maxima of the spread of P, and P, as a function of time for a current equal to 2 A for the cold
beam case.

Figure 6 : Oscillation period of electromagnetic energy in TMg3 backward mode versus beam
current.

Figure 7 : Electromagnetic energy (denoted Wgy ), the maxima of the spread of P, and P, as
a function of time for a current equal to 2 A for the hot beam case.

Figure 8 : Maxima of the spread of P, (a) and the spread of P, (b) from the electromagnetic
(EM) and electrostatic (ES) computations as a function of current. The initial velocity dispersion
of the beam is indicated by the words ”hot” and ”cold”.
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