LRP 528/95 August 1995

A DIRECT PARALLEL SPARSE MATRIX
SOLVER

T.M. Tran, R. Gruber, K. Appert and
S. Wuthrich

submitted for publication to
Comput. Phys. Commun.

A direct parallel sparse matrix solver

T.M. Tran®, R. Gruber?®, K. Appert® and S. Wuthrich®

® CRPP, Association Euratom-Confédération Suisse, Ecole
Polytechnique Fédérale de Lausanne, CH-1007 Lausanne, Switzerland

b Cray Research (Switzerland) S.A., CRAY-EPFL PATP Center,
Parc Scientifique (PSE), CH-1015 Lausanne, Switzerland

ABSTRACT

The direct sparse matrix solver is based on a domain decom-
position technique to achieve data and work parallelization. Ge-
ometries that have long and thin structures are specially efficiently
tractable with this solver, provided that they can be decomposed
mainly in one direction. Due to the separation of the algorithm into
a factorization stage and a solution stage, time-dependent problems
with a constant coefficient matrix are particularly well suited for
this solver. The parallelization performances obtained on a Cray
T3D show that the method scales up to at least 256 processors.

1. Introduction

The attraction of direct methods to solve linear sets of equations relies mainly
on the separation of the computations into two steps: a factorization step and
a solution step, the latter being an order of magnitude less expensive than the
former. For linear problems with constant coefficient matrices and changing right-
hand sides, the cost of the direct methods may be essentially the cost of the solution
step, given the factorized matrices which are computed only once.

Parallel matrix solvers exist, such as the SCALAPACK library [1]. However,
they are available presently only for dense matrices while those resulting from
finite difference or finite element discretization of partial differential equations, are
always sparse.

In this article, we present a parallel solver for such a sparse linear system
of equations. The domain decomposition technique is used to distribute the data
(matrices, solution and right-hand side vectors) as well as the computations among
the processing elements. In order to handle a block tridiagonal matrix arising
from the factorization stage, a parallel cyclic reduction is employed to minimize
the computational and communication effort during the solution phase, resulting

in a log, P scaling for the algorithm, where P is the number of processors.

The definition of the matrix problem is presented in section 2, together with
the two-step algorithm for the matrix factorization and the backsolve step. The
implementation of the solver is given in full detail in section 3. A rough estimation
for .the storage requirement and the operation count is also given in this section.
The timing performances of the solver on a 256 processor Cray-T3D can be found

in section 4 and finally, the section 5 contains some concluding remarks.

2. Matrix problem

2.1. The ordering strategy

The matrix solver we present is based on the old technique of decomposing a
geometrical domain into sub-domains [2] in a structured way. This method permits
the treatment of complicated shapes and the definition of the matrix partition for
parallelization. We consider here only 2D domains and elliptic problems (such
as the Poisson equation) discretized using bilinear finite elements [3]. Each sub-
domain (which may have non-rectangular shapes) is meshed using quadrilaterals.

If the unknown variable associated with a given mesh node is related only to
those on its immediate neighbors, the numbering of the nodes can be performed in
the following order: (1) The nodes lying internal to a sub-domain, (2) the nodes
lying on connectivity faces vertical to the major extension of the geometry and
finally (3) the refnaining horizontal connectivity nodes. An example of mesh and
numbering for 8 sub-domains of 2 x 2 cells per sub-domain is shown in Fig. 1: The
vertical and the horizontal connectivity nodes are shown here in thin border boxes
and thick border boxes respectively. The nodes that are local to a given processor,
are grouped inside boxes with dashed borders. In the chosen node partition, the
horizontal connectivity nodes are duplicated on all processors, assuming that their
number is small compared to the number of all other nodes. This is indeed the
case for problems in which the domain decomposition can be performed mostly in
one direction.

Using this ordering scheme, the matrix problem resulting from the original

partial differential problem can be written as:

A yV W z b
VI »D Z yl=1c]|, (1)
wrt zT g z d

where the vectors (z,y, z) and (b, ¢, d) are respectively the unknowns and the right-
hand-sides defined on the three types of nodes defined above. The sub-matrices A,
D and H, on the diagonal, relate the nodes of the same type and are symmetric.
Note that A is block diagonal with blocks having a band structure, that D is also
block diagonal but with blocks being tridiagonal and that H is simply a tridiagonal
matrix. All of the off-diagonal sub-matrices V, W and Z, which relate the nodes
of different kinds, are sparse. A derivation of Eq. (1) from the discretization of the
Poisson equation can be found in Ref. 4.

The overall structure of the matrix is illustrated in Fig. 2 for the example
shown in Fig. 1. The structure of the sparse matrix V is made explicit, using the
matrices U and Vj which act on the connectivity points on the left and the right
side of a given sub-domain k, respectively. From the numbering scheme defined in
Fig. 1 follows that Dg, Vs, Z¢ and Uy are all empty blocks since the sub-domains
6 and 7 are deconnected: The unknown and right-hand-side vectors yg and cg are
empty. One can then consider two decoupled linear systems for the connectivity
nodes y1,y2,...,ys and y7 respectively.

In Fig. 2, the subscripts of the different blocks yield the matrix partition among
the processors, consistently with the node partition shown in Fig. 1: The blocks
with the subscript & would be local to the processor k. Only the block H is
distributed to all processors. The matrix is thus completely partitioned except for
the small block H. For a strict 1D partition (such as the domain in Fig. 1 without

the sub-domains 7 and 8), the matrix partition would be complete:

2.2. The asymmetric block factorization

The solution of the linear system of equations, Eq. (1), can be obtained in the
following way: First, the matrix is factored and then the solution is found by a
forward and backward substitution. This two-step procedure is most appropriate
for problems with constant coefficient matrices.

The factorization consists in applying successively a LU decomposition to the

original matrix as follows

A VvV w A 0 0 I Ay A'w
viI. p z =Vl D Z 0 I 0 :
Wl 2T g wr z8 '#) \o o I

-2 97

and therefore

A VvV W A 0 0 I A7y A-'w
(VT D z)=(vT D g) (0 I 5’?), (2)
wr zT H wr 2z ') \o o I

where I is the identity matrix and D, Z, H and H are the Schur complements

defined by

D=D-vTAly
Z=Z -Vl AW
(3)
H-wlaAw

Notice that the computation of the Schur complements, Eq. (3), will introduce
fill-in in the block diagonal matrices D and H, as well as the sparse matrix Z.
Referring to Fig. 2 and the first equation of (3), the matrix D will have a block

tridiagonal structure:

51 Ey
D= | Ef D; E; , | (4)

where the blocks D and Ej are computed from
Dy = Dy — V¥ A Wi — UL, 432 Upaa,

T -1
Ek = — Uk+1Ak+1Vk+1‘

(5)

Likewise, the Schur complements Z and H are obtained by computing the blocks

Z, from

—Z-k =7 — VkTAI:ka - U]Z;].A;_}_l Wk+17 (6)

and

H=H-) WIA'W,. (7)
k

In all of these operations, the multiplications with the inverse of the matrix blocks
Ay, are replaced by two solution steps using the Cholesky factorization, Ay = Ly, Lf,
since we assumed that A is symmetric, positive definite and banded. The matrix
multiplications with VkT, UE and W,;T are performed as sparse matrix operations.
Notice that the solution steps together with the multiplications can be done locally
within the processor k and then sent down to processor k£ —1 to compute the Schur
complements Dj, E; and Z;. The computation of H demands however a global
sum across the processors.

The Schur complement H defined in the last equation of (3) can be written

explicitely as
H=H-Y 7}Z,, (8)
k

where E'k are the solutions of the following block tridiagonal system of equations

D1 E Z, 7

ET D, E, 7. 7
. = : : (9)

_— —1 2

EY , Dui Ena Z
El, D _Z_"n. Zn
A parallel scheme to solve this linear system will be described in section 2.4.
It should be noted that the factorization used in Eq. (2), also known as an
asymmetric block factorization [2], can be easily generalized to an asymmetric and

non-positive matrix.

2.3. The forward and backward substitutions

The solution of the factored system, Eq. (2), can be readily computed by per-

forming a forward substitution

A _E)_ 0 z! b
VI Do v l=1c¢], (10)
wr ' ') \# d

followed by a backward substitution

I Ay A'w T o
o I DZ||ly]=1|y]. (11)
0 0 I z 2

More explicitely, the solutions , y and z are obtained by successively solving the

following systems of equations:

Az’ = b,
Dy =c- VT4, (12)
He=d-WTe -2y,

during the forward step and

Dy =Dy — Zz,
(13)
Az = Az' — Vy — We,
during the backward step.
The first equation in (12) and the second equation in (13) can be readily solved
in parallel since A is block diagonal. Since the full matrix H is distributed to all
processors, the third equation in (12) is solved in every processor. The solutions of

the equations involving the block tridiagonal matrix D are obtained by the parallel

cyclic reduction method which is described in the next section.

2.4. The parallel cyclic reduction

The block tridiagonal linear system in both the factorization step, Eq. (9) and the
solution step, Eqs. (12), (13) has the form

Dy E; 51 ry
ET D, B 32 ra
' K =] s, (14)
Eg_z Dn_1 Ena Sp—1 Tn-1 |
E;y Da o r"

where the bars have been omitted from Dy and s, r denote the solution and the
right-hand-side arrays, respectively. Such a system can be solved in many ways.
The best-known is the recursive block Gaussian elimination which leads to the

system,

Dl El S1 71
0 D, E, $2 2
0 f)n—l En_1 Sn—1 Fn—1

where
Dit1 = Dy1 — E{ D Ey, 16)
Pet1 = Thy1 — EF Dy, k=1,...,n—1,
and D; = Dy, 71 = r;. The system Eq. (15) can be solved by simple back-
substitution. Both, the elimination and back-substitution procedures are however,
entirely recursive and cannot be parallelized.

A similar Gaussian elimination is known under the name of Burn At Both
Ends (BABE) algorithm. Here, the elimination proceeds from both ends towards
the center where a purely diagonal block can be produced and from where the
subsequent back-substitution can start. In this procedure, only two processors can
work in parallel; it can however, be optimal even up to 8 processors because the
number of operations is small.

An appropriate procedure for higher numbers of processors is cyclic reduc-

tion [5]. The basic idea here is to eliminate first all odd blocks (k¥ = 1,3,5,...),

leading to a system for the even numbered unknowns,

EA]{_lsk—l + bk+13k+1 + Ek+13k+3 = T'Ak+1a k= 1’ 3) 5? s (17)

where . S L
Diyr = Diy1 — B Dy Ep — Epa Dy h By,

Ery1 = —Ex1 Dyl Ergo, (18)

Ph41 = k1 — EE D rg — Ek+1D;.,1_27'k+2-
This procedure reduces the number of blocks from n to n/2. A second step can be
performed, reducing the number of blocks again by two, and so on. After a total
of log, 1 steps, the elimination is done. At the beginning of the process, half of the
processors are active, half are idle. Then, a quarter of the processors work, then
an eighth, and so on. At the end, all processors but one are idle. This is a large
improvement upon the BABE algorithm but one can do even better.

The cyclic reduction procedure can in fact be performed in parallel [5]. This
implies performing the matrix transformations, Eqs. (18), in parallel over all matrix
blocks. At the end, not only do we have block number n/2 ready to solve, but
all the blocks at once. The advantage is in the reduction/back-substitution step
for the right hand side. Instead of first reducing the right hand side vector and
back-substituting afterwards, it is sufficient to reduce only. The solution s of the

block tridiagonal system Eq. (14) can then be immediately obtained.

More explicitly, the Parallel Cyclic Reduction (PCR) algorithm can be de-
scribed as a recursive computation of new matrix blocks Dg), 'E,E:l) for levels
Il =1,2,...,L = [logyn], (the ceil function [z] returns the smallest integer not

less than x) using

(1-1)

D(l) D(’ 1) F(l) ET Gg) E(l“l)

() _ _p®p0-) e (19)
By =-F B -y
where .
) _ p(1-1) [p(-1) B
F,'=E, [Dk+2(' 1)] (196)
l (i-1) -1 -1
Gi) = El’f—z(l—l) [Dgc—z()l—l)] .

Blocks D®) and E® having subscripts outside the range [1, n] are set equal to zero
and the [= 0 blocks refer to the original matrices. Thus, considering a matrix

with n = 7 blocks, the level [= 1 through level [= 3 PCR steps are illustrated

below
/Dl Ey \
(v (1)
T Dy E}
Ey D; By (DY e
Ey;y D3 Ej; - Ef(l) 1 Dgl) E§1)
Ef D, E, = EF® DM EY
)
ET Ds Es Ef" DV E{)
7 ET(l) D(l)
E5 De Eg \ ET(l) D(l)
5 7
\ Ef Dy /
(D(z) Egz) \
D B2
D B
= D)
EF® p®
ET(z) D(z)
\ 2 DY
(2f? \
IS
2
l} D:(33)
=3 D‘(;;)
D
p{®

Note that after the first step the result for the even blocks is identical to Eq. (17),
the only difference being the notation which has changed from (ﬁk, E’k) to (D(l),
E,(cl)), respectively. The distance between the outer diagonal blocks to the diagonal
blocks doubles again after each further PCR step. Altogether, L steps are needed
to move all the outer diagonal blocks out of the matrix, resulting in a block diagonal
matrix which can then be inverted in parallel. The next phase implies the cyclic

reduction of the right-hand side:

I I— 1 l— l -
UL SR W SR S))

and the matrix-vector product

-1
S = [D;cL)] T;cL) (21)
to obtain the solution of Eq. (14).
3. Implementation of the parallel solver algorithm

In this section, the full algorithm for solving the matrix problem stated in Eq. (1)
is described. The algorithm is divided in a factorization phase and a solution
phase. Such a two-step procedure is most suitable when considering for example,
time-dependent simulations that have constant coefficient matrices. The cost of
the factorization, which can be a few orders of magnitude higher than that of one

solution step, may easily be amortized as the number of these latter steps increases.

3.1. Factorization phase

Referring to the decomposed matrix shown in Eq. (2), the factorization phase can

be stated as follows: -

1. Factor Ay = LyLT (SPBTRF).
2. Compute the Schur complements Dy, Ey, Zy, H, using Egs. (5-7).

3. Perform parallel cyclic reduction of the matrix D: for { = 1k, ..., L

3.1. Invert Dy, (SPOTRF and SPOTRI)
3.2. Compute the PCR matrices F,Sl), G(l), Eﬁ'), E,(:), using
Egs. (19).

10

4. Tnvert D) (SPOTRF and SPOTRI).
5. Compute the Schur complements —ﬁ, using Eq. (8).
6. Invert H (SPOTRF and SPOTRI).

We have used the LAPACK [6] routines SPBTRF, SPOTRF and SPOTRI to factor and to
invert locally the matrices. All these steps can be performed in parallel. The steps
involving the computations of the Schur complements and the PCR matrices, steps
2, 3.2 and 5, require communication across processors and are handled with the
PVM message passing library [7] send and receive primitives. The optimized BLAS3
matrix multiplication routine SGEMM is used in these steps. The products involving
in Egs. (5-7) the sparse matrices Uy, V; and W}, are handled with sparse matrix-
vector multiplication routines in order to minimize the operation counts. Notice
that the global sums are required to compute the Schur complements H and .
This operation is performed using the cascade sum algorithm so that the resulting
matrix resides on every processing element. At the end of the factorization phase,

the matrices

-1 _ S
{Lk, U Vo Wi EO, 60, (B Z Hl} (22)

required in the solution phase, are stored locally in the processor k. Note that only

- -1
the last blocks [D%L)] are needed for the solution phase.

3.2. Solution phase

The solution algorithm is separated in the forward substitution and the backward

substitution as specified by Eqgs. (12) and (13) respectively:

1. Forward Solve

1.1. Solve (LgLT)z} = b, (SPBTRS)

1.2. Compute and send U x4 to processor (k — 1)

1.3. Receive UE+1~’Ck+1

1.4. Compute ¢ = ¢ — VkTack - U]g1+lxk+1

1.5. Compute d =d — Y, Wl

1.6. Solve by PCR the block tridiagonal system Dy = ¢
1.7. Computed =d -)", Z;fyk

1.8. Compute z = B d (SGEMY)

11

2. Backward Solve
2.1. Compute t) = Z2
2.2. Solve by PCR the block tridiagonal system Dt = t'
2.3. Compute y; = yp — i
2.4. Send y; to processor (k + 1)
2.5. Receive yp_1
2.6. Compute t}, = Upyp—1 + Viyg + Wiz
2.7. Solve (LyLT)ty =1, (SPBTRS)

2.8. Compute zp = z}, — #;

The complete solutions zy, yr and z are obtained respectively after steps 2.8, 2.3
and 1.8. For simple 1D decomposed domains (i.e., the domain in Fig. 1 without
the sub-domains 7 and 8), the matrix H is empty, thus one can skip the steps 1.7,
1.8, 2.1, 2.2 and 2.3. The most demanding communication is in steps 1.5 and 1.7
which require a global sum across the processing elements. The others steps, are
either completely local or need only a send/receive to a neighbor.

Assuming that there are n blocks (partitioned among n processing elements),
and thus L = [log,n] levels, the PCR algorithm called by steps 1.6 and 2.2, is
derived from Egs. (20) and (21) as follows:

1. For I =1, L and with m = 2(-1)
1.1. Send rg to processor (k —m), k=m+1,n
1.2. Send ry to processor (k + m), k=1n-m
1.3. Receive ¢y, and compute 1y = rp — Fprgam,k = 1,n —m
1.4. Receive rg_p, and compute ry =rp — Gprip—m,k =m+1,n
2. Compute s = [-EgL)]“lrk, k=1,n
where s and r are the solution and right-hand side arrays, and k designates the

processor number.

12

3.3. Storage and operation counts

For a geometry as shown in Fig. 3, the total number of points interior to a sub-
domain Nj, the number of vertical connectivity points Ny and the number of

horizontal points Ng are respectively:

N; ~ Pmn

Ny ~ Pn (23)

Ng =nh.
Here, P is the number of processors, taken equal to the number of sub-domains,
and m, n and h are defined in Fig. 3. The main contribution to the memory space
needed for the solver comes from the storage of the different matrices listed in

(22). Neglecting the sparse matrices Uy, Vi and W}, the total memory required

per processor is

M=n(m2+n+2n10g2P+h+h2/n), (24)

where we have assumed that the factored matrices 4; = LkL{ are stored as
symmetric band matrices having a half bandwidth of m while the other matrices
are considered as full. We also assumed that each processor has a copy of the
matrix H and therefore, memory space could be a problem when Ny is large.
The number of floating-point operations per processor for the factorization, Iy

and solution phases, T, described in sections 3.1 and 3.2 can be estimated as

Tt = n(m® 4+ 11n%log, P + 4nhlog, P + ha/n)) (25)
T, = n (8m? + 8nlogy P + 4k + 2h%/n) . (26)

Only the dominant operations are counted here. All of the sparse matrix-vector
multiplications are omitted. For a scaled size problem (n, m and h fixed with
P increasing), the operation count as well as the storage per processor increase
only as log, P, while the problem size increases linearly with P. The algorithm
can be therefore considered as nearly scalable, as long as the number of horizontal
connectivity points Ng does not increase with P or is negligeable compared to Ny
and Ny. Otherwise, the parallelization of the dense matrix H must be considered,

e.g. using SCALAPACK [1] routines.

13

Let us consider a fixed size problem, keeping n, h and m' = Pm fixed. The

memory requirement and the operation count are now given by

M (P) = Mo +n (m"/P? + 2nlog, P),

Tt (P) = Tgo +n (m™/P? + 11n*logy P + 4nhlog, P), (27)

T, (P) = T, + n (8m'2/P? 4+ 8nlog, P) .
The number of operations starts to decrease strongly as 1/P? and 1/P? respectively
for the factorization and the solution steps. This behavior is due to the chosen node
ordering scheme which halves the bandwidth m of the band matrix A each time
the domain is dissected by two. For a large number of processors, the calculations
are dominated by the parallel cyclic reduction which yields a log, P dependency.
An estimate of the number of processors which minimizes the operation counts

during the solution stage T, is

1/2
Pop ~ (M> m'. (28)

n

4. Performance measurement

The parallel solver described above is implemented on a Cray-T3D, using the
PVM [7] send and receive primitives for the inter-processor communications. The
single processor optimization is achieved by an systematic use of LAPACK and BLAS
routines. Since these libraries exist in most computers, the portability of the solver
is ensured, without a loss of optimization. |

The timing of the parallel code is done by measuring the times spent by the
factorization and the solution parts on each processor, and then finding their max-
imum across the processors. Note that the times defined in this way include all
the communication overhead. The total number of operations summed over all
processors, is obtained by introducing a counter in the program, yielding thus
the computation rate. The matrix considered arises from the discretization of the
Poisson equation, using bilinear finite elements.

The performance results for a scaled size problem, with n = 46, m = 8 and
h = 3m, (the sizes n,m, h were defined in Fig. 3), are listed in Table 1, together
with the total number of unknowns, for a number of processors P varying from
8 up to 256. In agreement with Eqgs. (25) and (26), the factorization times and

the backsolve times are found to vary as log, P, as can be seen in Fig. 4. The

14

flop rates are higher for the factorization stage than for the solution stage, due
to the frequent calls to BLAS3 matrix-matrix product routine in the former one.
A computation rate of 5.9 GFlops is obtained for the factorization step at 256
processors. We have observed that these rates increase slightly with increasing n
and m. _

The performance for the fixed size problem, with m' = 576,n = 46,h = 192
(see Fig. 3), is shown in Table 2. In this problem, P; processors are assigned to
the lower m' x n rectangular domain and P = P — P processors are assigned to
the upper h X n domain. There are altogether 35997 unknowns in this problem.
Both the factorization and the backsolve times decrease strongly at small values
of P, since the number of operations for solving the band linear system decreases,
as can be expected from Egs. (27). The 1/P? decrease of the backsolve time at
small P is illustrated in Fig. 5. The estimated optimum value of P calculated from
Eq. (28) for this problem is 100 which is somewhat smaller than the value of P;
observed here. Notice that at P = 256, the mesh size of each sub-domain m is

only 3.

5. Conclusion

In this paper, we have presented a parallel direct solver for linear systems of the
type arising from finite element or difference discretizations of partial differential
equations in two dimensions. Using an adequate ordering scheme for the discretized
unknowns, the pertinent matrix can always be brought into the form shown in
Fig. 2. Throughout the paper, the matrix has been assumed to be symmetric and
positive definite; this restriction is however, not necessary for the application of
the present method. It can easily be extended to general, asymmetric matrices.

The method utilizes the domain decomposition technique for the parallelization
and is shown to be efficient when the decomposition is mostly performed in one
direction. For very thin and long geometries, the method scales as log, of the
number of processors P at large values of P. Moreover, the solver is separated in
a factorization stage and a solution stage, making it very attractive for problems
where the same linear system is solved repeatedly for different right-hand sides as
e.g. in time-dependent simulations. In fact, our main motivation came from 2D
Particle-In-Cell (PIC) electrostatic simulations where Poisson’s equation must be

solved at every time step [8-9].

[1]

2]

8l

[5]
[6]
[7]

8]

15

The implementation uses the LAPACK/BLAS [6] library to optimize matrix op-
erations on single processors and the PVM library [7] for communication to produce
an optimized and portable code. Test runs on the 256 processor Cray T3D system
show that it is possible to solve a Poisson equation on a 2D grid of 96000 nodes
in about 12 ms per backsolve step. A computation rate of 5.9 GFlops during the

factorization stage is achieved at 256 processors.

Acknowledgments

This work was supported in part by the Swiss National Science Foundation
and by Cray Research, Inc. within the framework of the Cray Research/EPFL
Parallel Application Technology Program. The computations were done on the
Cray T3D massively parallel computer at EPFL, Lausanne. The authors would
like to acknowledge O. Sauter and S. Merazzi for fruitful discussions and D. Whaley

for reading the manuscript.

References

J. Choi, J.J. Dongarra, D. Walker, R.C. Whaley, “ SCALAPACK Reference Man-
ual”, Version 1.0 Beta, ORNL/TM-12470, 1994.

A. George, J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice Hall Inc., 1981.

G. Strang, G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, En-
glewoods Cliffs, 1973.

T.M. Tran, K. Appert, O. Sauter, “A Direct Poisson Solver for Particle-in-Cell
(PIC) Simulation”, CRPP-EPFL/LRP 499/94, 1994.

R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger Ltd., 1985.
E . Anderson et al., LAPACK User’s Guide, STAM, 1992.

G.A. Geist, A.L. Beguelin, J.J. Dongarra, R.J. Mancheck, V.S. Sunderam, “PVM
3.0 User’s Guide and Reference Manual”, ORNL/TM-12187, 1993.

C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-
Hill Inc., 1985.

R.W. Hockney, J.W. Eastwood, Computer Simulation using Particles, Adam Hilger
Inc., 1988.

Table 1: Performance of the parallel matrix solver on the Cray-
T3D for a scaled size problem, with n = 46, m = 8, h = 3m.

16

P Number of FACT FACT SOLVE SOLVE
unknowns (s) (MFlops) (ms) (MFlops)
8 3077 0.228 74.9 6.16 66.0
16 6085 0.296 221.9 7.69 157.3
32 12101 0.344 554.5 9.03 352.1
64 24133 0.385 1270.5 10.09 768.8
128 48197 0.423 2788.3 11.08 1634.0
256 96325 0.463 5926.4 12.11 3400.1
Table 2: Performance of the parallel matrix solver on the Cray-
T3D for a fixed size problem, with m' = 576, n = 46, h = 192.
P P P, = FACT FACT SOLVE SOLVE
P-P (s) (MFlops) (ms) (MFlops)
4 3 1 128.75 40.5 1109.5 49.8
8 6 2 25.32 80.4 284.5 99.9
16 12 4 5.40 197.4 81.1 198.5
32 24 8 2.17 457.4 29.8 411.9
64 48 16 1.61 1018.1 16.6 938.7
128 96 32 1.60 2122.1 13.4 2125.2
256 192 64 1.74 4254.3 13.2 4449.4

17

PE7 PES
: 25 26 44 ; 29 30§
e . o i2320 |asf iy oaef A
:5 6 33 : .9 ' _%_5 46 47 48 49 : 16 42 : §21 22;
§3) \ . : s T 3 5. :.i-i.3.’.’;. .; :13 ------ _5_: : 15 " g . 19 20§
1 2 31 : E7 34 10 36 ' 12 38 14 40 é 17 185
A e pgz H pE3 pE4 : ‘PES - - E6

Fig. 1: A 2x2 cell (per sub-domain) mesh and the node numbering
for a 8 sub-domain case. The node partition among the processors
is represented by boxes with dashed borders.

18

Ax

As

As

As

As

v oUf
Vi Uf
Vi Ul
Vi U
v Uf
V1 7]
Vi U

Dy
D,
Ds
D,
Ds
[De]

Dy

wl wf wf wf wf wi wl wl

2 z3 zi z{ 7§ (Z5) 27

Fig. 2: The matrix structure for the example of Fig. 1. Blocks

within brackets are empty.

19

m’=(P-2)m

Fig. 3: A geometrical domain considered in the operation counts:
each sub-domain has m x n nodes, h is the number of “horizon-
tal” connectivity points and P designates the number of processing
elements, which is the same as the number of sub-domains.

Factorization time (s)

Backsolve time (ms)

0-6 T I ¥ L L T

0.1 ¢ i

O 1 1 1 1
4 8 16 32 64 128 256 512
Number of Processors

4t i
2r i
O 1 1 1 1 1]
4 8 16 32 64 128 256 512
Number of Processors
(b)

Fig. 4: Computational time spent during the factorization stage
(a) and the backsolve stage (b) for a scaled size problem with with

n:46,m=8,h=3m

20

Backsolve time (ms)

21

1 OOOO 3 T T T I I i T

1000 |

100 |

o4
4 ©
1 1 1

2 4 8 16 32 64 128 256 512
Number of Processors

10

Fig. 5: Computation time spent during the backsolve stage for a
fixed size problem with m' = 576,n = 46,h = 192. The solid line
represents the 1/P? dependency

