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Abstract

The recent revival of interest in the application of the “ballooning for-
malism” to low-frequency plasma instabilities has prompted a comparison of
the Wentzel-Brillouin-Kramers (WKB) ballooning approximation with an (in
principle) exact normal mode calculation for a three-dimensional plasma equi-
librium. Semiclassical quantization, using the ideal magnetohydrodynamic

(MHD) ballooning eigenvalue to provide a local dispersion relation, is applied
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to a ten-field period stellarator test case. Excellent qualitative agreement,
and good quantitative agreement is found with predictions from the TERP-
SICHORE code for toroidal mode numbers from 1 to 14 and radial mode
numbers from 0 to 2. The continuum bands predicted from three-dimensional

WKB theory are too narrow to resolve.
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I. INTRODUCTION

The ballooning formalism?® is often regarded as applying only to tokamak modes with
very large toroidal mode number n. This is for two reasons, the first being that n~! (or
n~1/?) ig used as an asymptotic expansion parameter. The second reason is that, at least in
ideal MHD, the highest growth rates for ballooning modes occur in the limit n — oo, when
the modes become localized about the most unstable magnetic surface.

However, such localized modes cannot have much effect on turbulent transport. This
has prompted recent interest?? in extending the formalism to treat drift waves with more
extended radial structure and finite n by use of the WKB-ballooning theory. This has also
led to controversy*® over the nature of the normal mode spectrum — whether it is discrete
or continuous. It has also been suggested® that the validity of the ballooning theory for
moderate n is questionable.

There is little formal difference between WKB-ballooning theory as applied to drift waves
and to ideal MHD modes, the main difference being that, in the drift-wave case, turning
points will in general be complex. Thus, for assessing the practical applicability of WKB-
ballooning for calculating approximate global eigenmodes at moderate n, it is sufficient in
the first instance to use the simpler MHD model.

The formal ballooning theory”® is based on standard asymptotic analysis, in which one
orders ky/k. = O(€), where kj and k, are the projections of the local wavevector respectively
parallel and perpendicular to the magnetic field B. However, since it is not practicable to
make a formal estimate of the residual error when the expansion is, as always, truncated at
the lowest nontrivial order, one must resort to comparison with numerical solutions in order
to get a feel for the typical domain of applicability. This is particularly the case for the
WKB method, which typically works well deyond the range one might expect on the basis
of formal asymptotics.

Such a comparison was in fact done in Ref. 7 for a critical 8 (plasma pressure/magnetic

pressure) study of two tokamak equilibrium sequences. It was found that WKB-ballooning



theory worked well for n Z 5, but one equilibrium sequence showed oscillations for n < 5
which were not explainable on the basis of simple semiclassical quantization for “trapped
modes,” i.e. modes whose ray paths are restricted to a finite interval (width < 2x) in the
ballooning parameter 6.

These oscillations may be explained® as interference fringes due to coupling, via tun-
neling, between adjacent trapped modes lying close to the separatrix dividing trapped and
“passing” modes, i.e. modes whose ray paths are unbounded in ;. For slightly lower n,
degenerate passing modes lying on either side of the “island” can also couple. These passing
modes are the ones recently singled out as being more dangerous for anomalous transport??
due to finite radial extent, although trapped modes close to the separatrix have comparable
extent. The treatment of trapped and passing modes, and their coupling, may be effected by
a new ballooning formalism® based on a “twisted radial Fourier transform.”!® In this paper
we restrict attention to trapped modes.

In view of the recent interest in finite-n ballooning, we have thought it useful to perform
a new ideal MHD numerical comparison study. The present study differs from that in Ref. 7
in that (a) it uses a more realistic model for the kinetic energy and calculates growth rates
for a single equilbrium, rather than critical Bs for a sequence; (b) it finds several of the
infinite number of radial eigenmodes predicted from the semiclassical quantization formula
for trapped modes;” and (c) it treats a nonaxisymmetric equilibrium so that qualitatively
new features of the WKB ray tracing problem in such geometries® might potentially be
observed.

The equilibrium chosen for study, a ten-field-period torsatron with a 8 well beyond crit-
icality for ballooning instability, turns out in fact to behave in some ways similarly to an
axisymmetric case. The present study is not principally concerned with nonaxisymmetric
effects, but the torsatron case will be useful for comparison with more strongly nonaxisym-
metric devices such as heliacs.

The paper is arranged as follows. In Sec. II the WKB-ballooning formalism is re-

viewed, while in Sec. III its implementation on a parallel computer is described. Section IV
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describes the equilibrium, and compares the calculation of global eigenmodes using the
TERPSICHORE?!! code with those found from the WKB-ba.llooning formalism, followed by

Conclusions.

II. WKB-BALLOONING FORMALISM

We assume the magnetic field B(r) to be integrable, that is the field lines all lie within
nested invariant tori, or magnetic surfaces, which are labeled by the enclosed poloidal flux

2ny. Introducing straight-field-line poloidal and toroidal angles § and (, and a Clebsch
potential

a=f—¢19, (1)

where g is the safety factor (tokamaks) or inverse rotational transform (stellarators), we

have

B =VaxVy. (2)

8

Then, following Dewar and Glasser,® we write the fluid displacement as

= E(r, €) explie ' S(r) — iwt] , 3)
where £ is slowly varying and the eikonal § = S(a, ), so that the local wavevector
k=VS=kVa+kVqg=k,(Va+6iVg). (4)

lies in the plane transverse to B at each point. Here the ballooning parameter 6 appears as
the ratio k,/ka, revealing its dual role as a dimensionless radial wavenumber’ and an angle.
The formal expansion parameter ¢ expresses the assumed smallness of the perpendicular
wavelength (i.e. k/e is large). The parallel wavenumber k) does not appear explicitly in this
formalism, slow phase variations along B being absorbed into £.

To derive the ballooning mode equation, we apply the ballooning formalism to the energy

principle.!? The internal potential energy can be expressed as!?
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W, =1 [ &2 [ICF +Tp|V-¢F + Dig-v[], (5)

where the modified perturbed magnetic field is

0 = Vx(ExB)+ Vg, (6)

the MHD driving term is

J><Vq

D =275 (B )(lv I,) , "

7 is the current density field, I' is the adiabatic index and p is the thermal pressure.
In the standard ideal MHD model, the kinetic energy is expressed as

2
We="5 [ &z ot (8)

and the stability is determined by solving §W,, + §W; = 0. The Euler-Lagrange equation
derived from the minimization of the energy principle after the application of the 3D bal-
looning mode formalism results in a fourth order ordinary differential equation (ODE) on
each magnetic field line.® However, the MHD model can be simplified further by adopting a
kinetic energy model that eliminates the sound wave continuous spectrum from the problem.
This reduces the ballooning equation to a second order ODE.! One form that was adopted
in the CAS3D code!* and in an early version of the TERPSICHORE code!! is to consider
the kinetic energy as the unit matrix. Another more physically realistic alternative is to

express the mass density as a dyadic tensor!® so that the kinetic energy is written as

w2
W= / Pz Epart . (9)

In the PEST?2 code,!® the mass density dyadic is par = V4V so that only the radial com-
ponent of the displacement vector contributes to the kinetic energy. In the TERPSICHORE
code, the mass density dyadic is
M = [28'(s)]’ VsVs
+ (V) [BX(VIX V() [BX(VExXV()], (10)
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where /g is the Jacobian of the transformation from Cartesian coordinates to magnetic
coordinates, and the toroidal magnetic flux is 2xr®, which we treat as a function of the
radial variable s = $(v)/®(+,) normalized to unity at the plasma edge % = 1,. This choice
for pas annihilates the parallel component of the displacement vector in the kinetic energy,
partly because the radial variable s is a surface quantity. This then allows the plasma
compression term I'p|V-£|? of the potential energy to be eliminated algebraically from the
energy principle. The eigenvalues, however, cease to correspond to the physical growth rates
of the instability when an artifical mass tensor is used, but the points of marginality remain
unaffected. For the numerical evaluation of global stability, the simplifications invoked to
describe the kinetic energy translate into a reduction of the unknown components of the
displacement vector to be computed from three to two and in a significant suppression
of the spectral broadening of the Fourier components of the perturbation caused by the
coupling to the sound waves.!®

The application of the ballooning formalism to the energy principle with the TERPSI-
CHORE kinetic energy norm reduces the local MHD stability problem to the second order
ODE eigenvalue problem, involving the scalar amplitude variable £ = £€-BXVS/|VS)? as

dependent variable and 8 as independent variable,

(o + G - 8) + 00 - 815
+ld+ 6~ O0)E

~ g [2a(s) + [g(s)(0 - BIF]E =0, (1)
when expressed in Boozer magnetic coordinates.!” The coefficients are!®
Cp = (-g—\};-’ - 7?%;) ; (12)
omrli )
0, = B 1o, (14)
O ¥ IO OLORGL



_M +3B-v (E_‘.)] , (15)
d, = ¢I,(("))\/‘B v(’ B ) (16)

where g;; are the lower metric elements, B, is the radial component of the magnetic field

in the covariant representation that is obtained from the MHD equilibrium force balance

relation?!d

V9B-V B, = \/gp'(s) + ¥'(s)J'(s) — @'(s)I'(s) (17)
the toroidal current flux is 2xJ, the poloidal current flux is 2xJ, and prime ’ indicates the
derivative of a flux surface quantity with respect to s. The choice of magnetic coordinates
is motivated by the field lines being straight and by the correspondence of the poloidal and
toroidal components of the magnetic field, in the covariant representation, with the current
flux functions J(s) and —I(s), respectively, which facilitates the evaluation of the parallel
current density.

The ballooning equation, Eq. (11), is an eigenvalue equation under the boundary con-
dition that £ vanishes as § — +oo. Taking w? to be the eigenvalue we replace it with the
symbol A and solve the ballooning equation on each field line, labeled by ¢ and «, and for
each value of 6, giving A = A(g,a, ;). Thus we use the ballooning equation to give us a

local dispersion relation
w? = A(qsav ok) . (18)

relating the frequency w (a global constant) and the wavevector, through the relation 6 =
kq/ka, on each field line. Here we have changed variables so that g replaces s as radial
variable, assuming nonzero global magnetic shear everywhere.

The ray equations® can be reduced to

) i)
a= —ka ’ (19)
2
qg= 3_0,, (20)
X 08
0], = 01;'8—; - -5; . (21)



In this paper we are concerned with modes trapped in a A-well in each g~} section, whose
rays thus perform bounded oscillations in ¢ and 8. Due to the L-fold toroidal periodicity
of stellarator equilibria (L being the number of field periods), there will be periodic minima
of A, spaced 2x/L apart in a, with periodic saddle points occurring between these minima.
Let the value of X at the minima be Ao (negative for instability) and the value at the saddles
be Ax. For Ao < w? < Ax the level surfaces of )\ defined by Eq. (18) are spheroidal, highly
elongated in the o direction. The rays propagate between the unstable and stable fixed
points of the dynamical system defined by Eqgs. (19)-(21). Geometrically, the fixed points
correspond to the points on the level surfaces where the normal is parallel to the (g, @, 6)-
space vector (6, 1,0). In Ref. 8 the range Ao < w? < Ax over which the rays were attracted
to fixed points was interpreted as an unstable continuum band.

For w? > Ay the level surfaces are bumpy cylinders and the rays propagate secularly
downwards in a, as illustrated in Fig. 1. Figure 2 shows the projection of a ray trajectory
onto the (g,0;) plane. It is seen that the ray traces out a cyclic motion. Introducing an
angle ¢ = Arg[(q — go) + i(fx — Oio)] [Where (o, Oxo) is an arbitrary point interior to the
envelope of the ray projection in the (g, 6;) plane, see Fig. 2], which increases by 27 each
counter-clockwise g8 circuit, we define a rotation number » = v(w?) for the rays as the

mean rate of increase, with respect to ¢, of a

(22)

Note that, since both a and ¢ have a secular component decreasing along a ray, v is

positive. In the axisymmetric case’

1
v=c-f0uda, (23)

where the integral is taken around the contour defined by Eq. (18). In this case v is a
monotonic function of w?, but in the general three-dimensional case there is a mode-locking
phenomenon which leads to a devil’s staircase structure.® However, we find the widths of
the steps (which occur at each rational value of v) to be extremely narrow so that v(w?) is

still a smooth function for practical purposes, even in the three-dimensional case.
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The phase S/e is constant on a ray except when its projection in the g—a plane passes
through a caustic,® where it jumps by 7/2; a caustic being a boundary of the projection in
the g—a plane of the set of all rays corresponding to a given w? — i.e. a line of reflection
points. In the g—a plane the problem is analogous to propagation of a mode in a planar

waveguide with periodically modulated boundary. With the additional toroidal periodicity

condition,®
€ [S(a+2r,q) — S(a,q)] = —27n, (24)

we find the semiclassical quantization condition

2N +1

W) = 50

(25)

where N = 0,1,2,... is the radial mode number and n = 1,2,... is the toroidal mode
number.

Typically N is taken to be zero (the lowest radial eigenmode) to maximize the growth
rate, though for strict validity of the asymptotics and, to give a trapped mode macroscopic
extent, it should be taken O(n) = O(e!). Another reason for considering N # 0 is the
interesting degeneracy implied by the form of Eq. (25) — there is an infinite set of (n, N)

pairs giving the same growth rate.

III. NUMERICAL WKB STUDY

Given a differentiable representation of A(g, a,8:), the integration of the ray equations,
Egs. (19)-(21), is straightforward (the LSODE package is used here'®). We evaluate A on a
(¢, @, 6x)-lattice and use a piecewise quadratic, globally C? interpolating function such that
the derivative values used in Eqs. (19)—(21) are analytically consistent with the interpolating
function A;(q, @, 6x). These properties are essential if the ray integrator is to maintain rays
on an isosurface of Eq. (18) (a defining property of the ray equations). We have found it
possible to achieve variations in ) along a ray of less than 0.001%. The (g, a,0k)-lattice
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covering one field period and magnetic surfaces on which the eigenvalue is positive was
63 x 24 x 60.

The evaluation of A on the lattice points could be done in parallel by allocating these
points to processors and solving each problem independently, entirely on one processor.
However for a SIMD computer such as the CM5 used here, it is more efficient to distribute
each eigenproblem across all processors and sweep through the lattice points sequentially.
The main reason for this is that, as a linear system, the ballooning equations are amenable
to a generalized parallel prefix solution method, an O(log(N,)) solution where N, is the
number of points along the field line.?

IV. EQUILIBRIUM AND GLOBAL STABILITY

The preconditioned VMEC equilibrium code?! is employed to numerically compute a 3-D
equilibrium state for an L = 10 field period torsatron model. The code imposes perfectly
nested magnetic flux surfaces. The pressure profile, p(s) = p(0)(1 — s?)?, is chosen to be
flat near the magnetic axis so as to have a large pressure gradient outside the magnetic well
region in order to create a ballooning unstable situation, taking Sy (the value of 8 on axis)
to be 4%. The toroidal current profile was prescribed to vanish within each flux surface.
The spectrum of Fourier modes used in the calculation encompassed 72 active mode pairs
in the optimal but nonstraight field line coordinates of the VMEC code. This configuration
has been established as a testbed for a compérison of a number of 2D and 3D MHD stability
codes and a much more detailed description of the equilibrium computation and the low-n
stability properties has been reported by Nakamura et al.??

The configuration is unstable to both local (infinite n) and to global (low ») ideal MHD
modes at By = 4% with the current and pressure profiles prescribed. The global stabil-
ity calculations were carried out with the TERPSICHORE code!! with a conducting wall
placed at the plasma-vacuum interface. A very efficient Fourier technique was employed

to reconstruct the equilibrium in the magnetic coordinates,?® with the spectrum of Fourier
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mode pairs increased to 194. The number of poloidal grid points was 120 and the number
of toroidal grid points per field period was 24. To examine stability properties, 94 Fourier
mode pairs were selected to describe the instability structure, of which 30 corresponded to
the toroidal mode number ng specifically under investigation and the remaining 64 mode
pairs were associated with the most relevant toroidal sidebands of the components that
dominate.

The mode selection criteria are simplified because the conditions of stellarator symmetry
and the finite number of field periods imply the existence of families of Fourier modes that
decouple from each other, in analogy with the condition in axisymmetry that decouples each
toroidal Fourier mode number. A Fourier mode family labeled by the integer 1 < K < L/2
involves all integer poloidal Fourier mode numbers, m, (which may be restricted tom > 0 by
using the reality condition) but its toroidal Fourier mode numbers n are drawn from the set
{LN.£K|N, =0,+1,+2,...}, where L is the number of equilibrium field periods (10 in our
case).?* This terminology was subsequently adopted for advanced stellarator configurations
where the family index K has been extended to include the equilibrium state also.!* An
essential feature of the global stability computations was the identification of the principal
resonant components of the instability structure for a desired value of the toroidal mode
number no and the inclusion of the nonresonant toroidal sidebands that couple them to
beat with the main symmetry-breaking Fourier components that describe the equilibrium
state. This was a necessary step to guarantee not only a quantitative but also a qualitative
agreement of the eigenvalues computed with TERPSICHORE and those predicted with
WKB-ballooning theory. This constituted a nontrivial exercise, especially for the larger-
N radial eigenmodes because, for example, instability structures dominated by the n = 8
component belong to the same family as those dominated by the n = 2 and the n = 12
components for a 10-field-period configuration, namely the K =2 family.

Using TERPSICHORE, the three most unstable eigenvalues were computed for each n
in the range 2 < n < 14, except for n = L/2 = 5 and n = L = 10. These three eigenvalues
correspond to the radial eigenmodes N = 0 (most unstable), N = 1, and N = 2. The
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eigenvalues were converged to infinitesimal mesh based on calculations with 108, 128, 152,
and 192 radial intervals in the plasma domain.

A comparison of the results of the WKB-ballooning ray tracing method with the TERP-
SICHORE results described in this section is presented in Fig. 3. The numerical ray tracing
code described in Sec. III was used to calculate v from Eq. (22) [and also from Eq. (23)
with very similar results] for a set of w? values. Then Eq. (25) was used to predict n, taking
N =0,1,2. This gave the three curves shown in Fig. 3. The fixed-point continuum band
described in Sec. II lies between —A = 0.004187 and —A = 0.004176, which is too narrow to
resolve on the scale of the graph and lies well above the eigenvalues found.

It is seen that the presence of these three unstable branches was verified by TERPSI-
CHORE with remarkable accuracy, given that the WKB formalism is strictly valid only for
large n and N. Also, uncertainties in the converged TERPSICHORE eigenvalues can be up
to about +0.0001.

V. CONCLUSIONS

By successfully comparing two very different methods for calculating stellarator stabil-
ity we have provided validation for both. The global eigenvalue approach avoids the small
wavelength approximation needed for WKB-ballooning, but requires large amounts of com-
puter memory and careful convergence studies. The WKB-ballooning approach is easier to
generalize by adding more physics, and is the natural method when the modes of interest
are indeed of short wavelength, though we have also shown that it works well for quite small
mode numbers. It is planned in future to study more strongly nonaxisymmetric cases than

the one in the present paper.
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FIGURES

FIG. 1. Typical ray trajectory in (g, a, 6;) space.
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FIG. 2. Projection of the ray trajectory of Fig. 1 onto the (g, 8;) plane. Also shown is the angle

¢ used to define the ray rotation number v.

18



0.005 v i v 1 v I v | i 1 v 1 ! |

0.004 | ]
9 : 1
= 0.003 - T
2 : -
80 [ .
v 0.002 - 7

0.001 |

0 2 4 6 8 10 12 14

toroidal mode number
FIG. 3. Comparison of WKB-ballooning growth rate eigenvalues, —w?, (curves) with TERP-

N
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SICHORE results (dots) plotted vs. dominant toroidal mode number n for the first three radial
mode numbers N = 0,1, 2. The gray horizontal line represents the n = co continuum band defined

by fixed points of the ray equations (see text).
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