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Abstract

The equations of three-dimensional plasma equilibrium based on the magnetic
field representation with poloidal magnetic flux ¥ and plasma current F are formu-
lated. As a result, the description of three-dimensional equilibrium configurations
is obtained as a system of the following equations: an elliptic type equation for the
poloidal flux, a magnetic differential equation (MDE) for the poloidal current and
the equations for the "base” vector field b.

For the resolution of the difficulties with possible singular solutions of the MDE
on the rational toroidal magnetic surfaces small regularizing terms are introduced
into the proposed system of equations. Second order differential terms with a small
parameter are added to the MDE transforming it to an elliptic type equation.
Several variants of such a regularization are proposed.

The system of equations formulated can serve as a basis for a numerical code
development of three-dimensional equilibrium calculations with island structures.

1 Introduction

For the description of the magnetic confinement systems with a coordinate of symmetry,
the following ”poloidal” representation of the magnetic field is convenient:

278 = [VTbg] + Fhy, (1)

where ¥ and F(¥) are the external poloidal flux and plasma current, and the base vector
field bo is known. Particularly, by = V¢ corresponds to axial symmetry. The general
case of the configurations with a coordinate of symmetry is described by the following

formula he. 4
e, ey
bo=—rr 2> (2)
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with e, = Vz, ey = rV@$, 2rk is a helicity pitch parameter. The magnetic
field representation (1) with vector b from (2) reduces the system of MHD equilibrium
equations

[iB] = p(T)VY, (3)
Jj = rotB, (4)
divB =0, (5)

to the following two—dimensional elliptic equation for the flux function ¥(r, z) describing
plasma equilibrium in symmetric confinement systems:

1. ., 2k 42 | ,

Sl = — —FF 6

g v (V) = 5= F - Sp/(9) - FR(D), (6)
where b2 = 2—1——5. The equation (6) is used as a base for numerical codes in two-

r

dimensional plasma equilibrium computations.

The difficulty of three-dimensional plasma equilibrium modeling concerns the com-
patibility of representation (1) with prescribed a vector field b. Thus it is impossible
to describe the equilibrium with one equation for the flux function ¥, generalizing the
two-dimensional equilibrium equation. Nevertheless the practical necessity of 3D equi-
librium calculations stimulated the development of several numerical codes. As a rule
the codes are based on the Clebsch representation of the magnetic field 2B = VIV
One group of codes (code VMEC [1], BETA [2], POLAR-3D [3]) uses an assumption of
nested magnetic flux surfaces, other codes: PIES [4] and HINT [5] treat arbitrary 3D
equilibria including possible magnetic islands. For practical calculations, the most widely
used are the VMEC and HINT codes. The VMEC code is based on a preconditioned
spectral energy minimization procedure that calculates equilibria with nested magnetic
flux surfaces extremely efficiently when the total number of Fourier harmonics required
to describe the equilibrium state is limited to 200 or less. With higher number of the
harmonics the iterations might not converge. The codes that determine 3D equilibria
with island structures such as HINT are based on time relaxation methods which is very
time consuming and use relatively coarse meshes. So searching for the 3D equilibrium
problem formulation and the development of the corresponding code which could allow
to perform massive calculations remains a desirable and relevant task.

In the present paper, the possibility of generalization of the equation (6) to the 3D
equilibrium problem is discussed. The further task should be to clarify whether such
type of scheme can offer significant improvements in the efficiency and resolution of
computations of arbitrary 3D structures with magnetic islands and stochastic regions.

The specific feature of the approach presented here is an invariant vector formulation
of the equilibrium problem for the poloidal lux function. It allows to use for calculations
an arbitrary coordinate systems connected with magnetic surfaces as well as Eulerian
coordinates. In this respect, the approach differs from work that essentially uses coordi-
nates related to magnetic configuration (see for instance the recent paper of M.Tessarotto
et al. [6]).

As a rule for computations of stellarator type systems, the following contravariant
representation of the magnetic field in flux coordinates [1] is used:

2B = [V&VE] + [VIV(] + [VpVy). (7
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Here @ = ®(p) and ¥ = ¥(p) are toroidal and external poloidal magnetic fluxes, 8
and ( are arbitrary poloidal and toroidal angle-like variables, p — the flux surface label.
The representation (7) implies that the toroidal magnetic surfaces are nested.

The magnetic field vector B in the form (7) automatically satisfies the equation
divB = 0 and one projection of equation (3): (B-Vp) = 0. Another projection:
(J - Vp) = div[BVp] = 0 should be satisfied by the appropriate choice of the function
n(r). It vanishes when special 6, { -coordinates are chosen (straight magnetic field lines
coordinates, SMFL).

Alternatively the magnetic field can be also represented in the covariant form:

2B = JVO+ FV¢ — vVp + V. (8)

Here the presence of the toroidal current J(p) suggests also (as well as in (7)) the im-
position of nested magnetic surfaces. The first two terms in (8) reveal the relation of
magnetic field B with its sources: toroidal current

J(p)=$B-a, (9)

and external poloidal current
F(p) = ]{B . dl;. (10)

Here dl, and dl; are vector length elements along closed poloidal and toroidal contours
at magnetic surfaces. The functions 7, ¢ should provide the condition divB = 0 and
(B - Vp) = 0 with arbitrary prescribed 6(r) and ((r) [7, 8]. If the representations
(7),(8) are used simultaneously, then the special choice of the coordinates 0, ( allows to
prescribe one of three functions 5,v,¢. In particular, in SMFL coordinates the choice
v = 0 corresponds to Hamada coordinates, and the choice ¢ = 0 — to Boozer coordinates.
A more general representation of the magnetic field, which is not connected with the
nested surfaces assumption, was considered in [9] where the following generalization of

(1) was proposed:
2B = [V¥bfr] + Fby. (11)

Here two vector fields by and by are introduced. By special choice of them both
"poloidal” and "toroidal” terms in (11) satisfy independently the magnetostatic require-
ments:

divB =0,
(B-V¥) =0, (12)

(G-V¥) = div[BVY] = 0.

The advantage of the representation (11) is that the transition matrix between co-
variant and contravariant representations does not depend on the coordinates 8, ¢ [8, 9].
Using the "poloidal” representation of the magnetic field without the introduction of the
toroidal flux ® looks very attractive. It naturally generalizes the equilibrium equation
(6) for axial (A = 0) and helical (A # 0) symmetry onto the 3D case and does not imply
nested magnetic surfaces. It makes it possible to develop numerical codes based on Eule-
rian coordinates independently of magnetic surface topology. It allows to hope that such
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a way can be effective for the description of 3D equilibrium configurations with magnetic
islands and regions of stochastic magnetic field lines.

These notes present the system of equations for three-dimensional plasma equilibrium
based on the magnetic field representation (1), i.e. with one a priori unknown base vector
field b. This approach leads to the direct generalization of the equation (6) to the 3D
problem and allows to describe so called quasi-symmetric configurations [10, 11].

Another essential feature of the approach concerns the extraction of the functions
a or m from the toroidal current density j - b contributing to the right hand side of
the equation for ¥. The functions a, m are related to the secondary current from the
following equalities: o = [BVp]Vm/B? = j- B/B2. They can be singular at rational
magnetic surfaces, so their extraction allows to introduce regularizing corrections in an
appropriate place.

Of course such an extraction of the function a,m is possible also for the representa-
tion of the magnetic field with two base vectors b, bg. The corresponding formulas are
given in Appendix A.

2 The three—dimensional base vector field b

Let us use the magnetic field representation (11) with bp = bg = b:

27B = Fb + [VUb]. (13)
Then the vector B length takes the form
Am®B? = (F? + |[V¥|2)p2. (14)

Let us require that the vector b satisfies the closedness condition, and it is normalized
such that

fb -dl = 2, (15)
where the integration is performed along the vector b. Then its poloidal flux vanishes
4, = }{ b - [dldn] = 0, (16)

(here dn is a length element normal to the magnetic surface). The length element dl can
be related to the toroidal angle variable ¢ such that

b
di=qd{, q=4 (17)
The requirements (15)-(17) identify the functions ¥, F' as the external poloidal flux and
current through the toroidal contour formed by the vector b.

The constraints (12) for the magnetic field B and (13) lead to the following equations

for b:
div(Fb + [VTDb]) = 0,

(b-V¥) =0, (18)
div((F? + |[V¥|*)b) = 0.
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The last of them is a consequence of the equation div(FB + [BV¥]) = 0, which is a
combination of the second and third equations in (12) and the representation (13). One
can see that here the poloidal and toroidal components of the field are connected.

The equations (18) must be solved simultaneously with the equation for the function
3

To derive such a three-dimensional equation for the function ¥ let us present some
features of the representation (13).

Taking the scalar and the vector product of (13) with q = b/b? leads to

2r(q-B) = F, (19)

2r[qB] = V. (20)
Using the obvious equality

q=T B)BBt [BlgB]] (21)

and the equations (17), (18) we obtain the formula for vector q:
b  FB4[BVY]

I=5~ " orpm (22)
or taking into account (14),
_ 5 FB 4 [BVY]

One can see the equivalence of the vector q with the vector of quasi-symmetry, introduced
in [11]. The equations (22),(18) lead to the equality

div(qB?) = 0. (24)

For nested magnetic surfaces, the vector q coincides with the Boozer coordinate basis
vector: q = e¢
o < BY>
e¢ = Vg[VpVl] = V'(p))—5;—([VrVi]. (25)

Here the brackets < . > mean averaging along the magnetic field line

i

In closed magnetic confinement systems with nested irrational magnetic surfaces this av-
eraging is equivalent to averaging the volume within the layer between closed magnetic
surfaces (p = const, p+8p = const), then < f >= f;(p). Formally, on a rational magnetic
surface (when the field line is closed) < f >= fo(p, A), where ) is a magnetic line label.
However invoking continuity conditions we assume that < f >= fo(p) everywhere. Note
that the definition of the vector q (22) or b = 5%q (23) does not imply nested flux surfaces.



3 The three-dimensional equation for poloidal flux
function ¥

In order to get the equation for W, let us apply the div operator to the equation (20)
multiplied by 4?:
div(5*V¥) = 2x(B - rot b) — 27(j - b). (27)

The first term in the right hand side of (27) can be transformed using the equation (13)
to the form

27B - rotb = (Fb+ [V¥b]) - rotb. (28)

The term Fb - rotb is a "source” of vacuum stellarator magnetic surfaces. The term
[V¥Db] - rot b is inherent only to 3D magnetic plasma confinement system geometry. It
brings first derivatives of ¥ to the differential equilibrium equation (6).

The second term 27(j - b) is connected with the ”toroidal” component of the current
density j, = b(j - b)/%*. It is defined by the equilibrium equation (3). Substituting the
representation of B (13) into it, we obtain

Fjb]+ (j - b)VY¥ = 27p'V ¥, (29)
This gives
. . 2 _ j . [bV\I’]
I. 27(j-b) = 4x°p'(T) QWF___IV‘I’P . (30)

Another expression for 27(j - b) can be obtained starting from the conventional rep-
resentation of the vector j as a sum of longitudinal and normal components with respect
to the vector B:

. BVY
J=aB+p’(\Il)[ B ] (31)
Here .. B
J .
a= "m0 (32)

Excluding V¥ from (31) with the help of (20) and using (22) we get the decomposition
of the vector j onto the vectors B and q:

. 'F
= (a - %‘;) B + 27p'q. (33)
From here we find using the equality (q-b) =1 (17)
I, 27(j-b) = 4n*p/ (V) + ¥F [ — BL
. 27(j - b) = 4n®p/(T) + o=z (34)

The third expression for the same value can be obtained using the "m — representation”
[13] for the current density

J = am(¥)B + p'(V)C(T)BVY] + p'[VEVm)] (35)

which explicitly satisfies the divj = 0 condition. Here m is a "magnetic function”,
its definition is given below. On the closed toroidal magnetic surfaces, this function
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is an invariant combination of the functions n,v, ¢ entering the contra- and covariant
representations (see [11]), eq.60 and [13], eq.89):

45 v Qo
- r 422 36
2mm <Bz>+p' p’n’ (36)
where <iB>
J .
= ZFs @

Below (if it is not mentioned specially) we do not imply magnetic surface closedness and
do not use these equalities.

Rewriting in (35) the terms [BV¥] and [V¥Vm] with the use of (19), (20) in the
form

[BVY] = 2rB%*q — FB, (38)
[V¥Vm] =27 {(q- Vm)B — (B - Vmm)q}, (39)

we get the projections of the current density vector j (35) onto the vectors B and q:
j = {am —P'CF + 27p'(qVm)} B + 2np' (CB? - BVm) q. (40)

Comparing the representation with (33), we get the magnetic differential equation (MDE)
for m and the relation between m, a and a,,(¥):

BVm =CB? -1, (41)

BVplVm 1
a= [—g]z—— = am — p'F (C - ﬁ) + 27p'(qVm). (42)
The multiplier C(¥) should be determined from the periodicity condition for the solution
of the equation (41) the short and long ways around the torus. For closed magnetic
surfaces multiplying the equations (41),(42) by B? and averaging over the volume of the

magnetic layer we get the representation for C(¥) and o, (%) [13]

o) =1/ < B*>,

o = o — 9! S B*qVm)> (43)
m =0 P < B?> N

[ /18

Here we take into account that the relations div(qB?) = 0, qV¥ = 0 and (24) lead to
the equalities < B*(qVm) >=< div(mB?q) >=0.
Finally from (40) we find using (19) and (43):

/

II1. 2x(j-b) = Fb? {ao __rr + 27rp’(qu)} + 47w3p. (44)

< B?>

Three forms of the equation (27) for ¥ can be obtained corresponding to the three
forms of 27(j - b) representation: (30), (34) and (44).



3a. The VV¥ - equation for ¥

Expressing the current density j = rot B in the right hand side of (30) with the use of
the representation (13) for B

27j = Frotb — F'[bV¥] — rot [bV Y], (45)
we get the equation (27) for ¥ in the form

bV

div (B®V¥) + ST

{F 1ot [bVE] - (F* — [VE[) rot b} =
(46)

F(b- rotb) — 4n%p’ — B*FF'.

It coincides with the equation obtained in [8, 9] with b = by = b. Except for the
linear differential operator div(4?V ) this equation contains the combination of second
derivatives of ¥ with coefficients nonlinear in ¥ and its first derivatives and unknown
components of the vector b. It is hard to define its type which makes it difficult to
set consistent boundary conditions and to choose the solution method. It seems that a
clearer view on the problem setting can be reached when the set of equations consisting
of equations (18) for the vector b, the equation for ¥ and a separate equation for a or
m is considered as a generalization of 2D equilibrium equation for ¥ (6) in the case of
three dimensions. We will call the corresponding equations for ¥ the a—equation and the
m—equation.

3b. The a—equation for ¥
When the equation (34) is used for 2x(j - b), the equation for ¥ takes the form

Vo2

diV (bzv\I’) + rot b . [bV\I’] = Fb - rot b - 4T2PIF+—IVW - sza. (47)
where a is determined by the expression (32).
The condition divj = 0 leads to the MDE for a:
1
BVa = —p/[BVU]V (-55) . (48)

This equation for a presents the main difficulty in the solution of equilibrium equations.
The periodicity condition for the solution of the MDE

BVr=s (49)
on each closed magnetic field line can be satisfied if and only if the right hand side satisfies

the Newcomb condition dl

In general this condition is not satisfied in 3D equilibria.



Using the representation (33) for the current density and the condition (24) for qB?,
we get the modified equation for a:

'F 2np’
BV (a - EBT) = -E%(qV)Bz. (51)
Let us note that when the quasi-symmetry condition is satisfied [10, 11]

(aV)B? =0, (52)

the equation for & (51) is resolvable. On the closed surfaces the solution has the following
form [11]:

= . 53

B? < B?> (53)

However with this additional condition, the equilibrium equations are overdefined and
can be satisfied only approximately for selected magnetic configurations in a close vicinity

of some magnetic surface [12]. To find such quasi-symmetric system one can try to solve
the equation for ¥ with the function a defined by (53),

F2p2
c o (B2 . _ . — o b?Y a2t (1 0T
div(6°V¥) + rot b - [bV¥] = F(b - rot b — aob?) — 473p (1 B >) . (54)

The boundary conditions can be varied in order to be as close as possible to the condition
qVB2=0or bVB?ie.
(FB+ [BVY¥])VB? = 0. (55)

If the condition (50) is not satisfied and therefore the equation for a has no solution,
it implies that the smooth solution of the set of magnetostatic equations is nonexistent.
According to conventional views, current sheets can arise at rational magnetic surfaces,
The current density amplitude in the sheets can be nonuniform in the poloidal direction
which leads to topology change in magnetic surfaces (island structures, stochastic regions)
when a dissipation is present. It seems that in the frame of magnetostatics, the difficulties
can be resolved by regularization of a diffusive type (see Section 4).

Concluding the subsection let us make two remarks.

1) By comparing the expressions for 2r(j-b) (30) and (34) one can get the expression
for « in terms of V¥
p'F . [bV¥] - rot [bV Y] rotb - [bV ]
= — F - F N
=TTt ey RV (56)
2) In force—free magnetic fields, where BVa = 0, the 3D equilibrium problem is
reduced to the solution of the equation (47) with prescribed a(¥) and the equations for
the base vector field b.

3c. The m—equation for ¥

The equation for ¥ which follows from the representation (35) for j with the magnetic
function m is based on the assumption of nested toroidal flux surfaces. In this case (see
[11], equation (8))
p'F
< B?>

= F". (57)

Qo
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So the expression for 27(j - b) (44) becomes simpler and the equation for ¥ takes the
form:
div(6°V¥) + rotb - [bVY¥] = Fb - rot b—
(58)
4n’p’ — FF'B* — 21p' Fb*(qVm).

The function m is defined by the equation (41) bringing the same difficulties as the
equation for . Let us note that from the quasi-symmetry equation qVB2? =0 together
with the equation (24), it follows that the requirement divj = 0 leads to B-V(qVm) = 0
and further under periodic conditions to the equality: qVm = 0. In this case the equation
(58) takes the simplest form:

div(3*V¥) + rotb - [bV¥] = Fb- rotb — 4n2p' — FF'8?. (59)

Again the problem is overdefined under such condition and the solution can exist only
for special choice of magnetic configuration (see for example [10]).

4 Regularization of the three—dimensional equilib-
rium equation

Three 3D equilibrium problem formulations were considered in the previous Section. In
the second and third one, the functions & and m satisfying magnetic differential equations
were introduced. These equations are hyperbolic and the conditions of their solvability
are not satisfied at the rational magnetic surfaces in general. However, an introduction
of a small diffusive terms into the equations can provide existence of the solution. From
the point of view of the 3D equilibrium problem formulation, it corresponds to the sub-
stitution of the exact equilibrium equation (3) with a model one. Let us consider some
possible approaches to such a regularization.

4a. The regularization of a-equation for ¥ (first variant)
Let us choose as model equilibrium equation the following equality
[i — eFoVé4,B] = Vp. (60)

Here Fy is a dimensional constant (for example Fp = Fuze), € - a small dimensionless
parameter. By definition of the magnetic flux, BV¥ = 0. From (60) it follows that
BVp =0i.e. p=p(¥). However in this model j- Vp # 0:

i-V¥ = eFy(Va- V). (61)

The additional term eF, V& also changes the expression for toroidal current density. Now
we have

. BVVY .
j=aB +p'[—Bz—] + eFyVa, (62)
. BVa
a=a+ ek Bza'
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Instead of (33) we get

._ (. PF , \ ‘
i=|&-"F55 B + 27p'q + eFoVa. (63)
For the "toroidal” component of the current density we get
b2 2
2rj-b = Fb*& +p' le | + 27eFy(bVa). (64)

The substitution of (64) into (27) and the condition divj = 0 applied to (62) give the
equations for ¥ and é&:

v (8 . = Fb- roth— dr?y— VI __
div(¥*V¥) + rotb - [bV¥] = Fb - rotb — 4r%p VP
(65)
Fb%a — 2meFy(bV &),
eFyV25 + BVa = —/[BVI|V (%) . (66)

The term with € is critically important in equation (66). It can be omitted in equation
(65).

4b. The regularization of a—equation for ¥ (second variant)

Let us choose as a model equation the following equilibrium equation
(Bl =(1+¢et-Va)p'VY, (67)

where t is some vector with a dimension of length squared. Hence the current density

has the form (BYY]
j=aB+(1+et- Va)p'-—B—z—, (68)

and the equilibrium equation:
div (b’V¥) + rotb - [bVE¥] = Fb - rot b—

69)
oy VP e (
dr*p FZpn IV‘FP(I + et - Va) — Fba.

Such a choice of the equilibrium model evidently provides the conventional relations:
BVY =0, jV¥ =0, a = jB/B?. Choosing for t the following expression

_ [BVY]
- P(DF (70)
we get the equation for a with the regularizing term:
€ [BVY].-Va 1
ZBVY]-V (———B-z——) +BVa = —p[BVI]V (Ei) . (1)

In equation (69), the correction term with € can be omitted when e < 1.
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4c. The regularization of m—equation for ¥

For the regularization of the equations (41), (58) let us use the following model equilib-
rium equation
[iB] = (1 + eFoVim)p' VU, (72)

It follows that BVY¥ = 0, jV¥ = 0 and
[(BVY]

B2
The function m which enters (72) is introduced with the following equation to satisfy
divj = 0 condition:

j = aB + (1 + eFoVZm)p' (73)

i = am(¥)B + C(¥)p'[BVY] + p'[VEVm)]. (74)

Decomposing both representations of the vector j (73) and (74) onto the vectors B and
q and comparing corresponding projections we get the equation for m and the relation
between a and m:
2

eFoV?m + BVm = (1 4 eFy < Vm >) ~ g 1, (75)
< B*(qVm) >
a=ag+27xp (qu - <(gz >) )
(76)
oF 1+ e, FoVim 1t enFo < Vim >
B? < B%*> '
Taking into account the terms with €, in the expression (44) for (j - b) we have here

2r(j-b) =

'F B?(qV
Fb? {ao —_ <_p§2_>(1 + emFo < V3m >) + 27p’ (qu _= <(22 7:) >)} + (177

47rzp'(1 + e,,.FOVzm).

Substituting (77) into (27), we get the regularized form of the m-equation for ¥ with the
terms keeping €,,. The correction terms with small parameter e, are crucially important
in the left hand side of the MDE (75) only. In addition if the magnetic surfaces are closed
then the following term vanishes: < B*(qVm) >=< div(mB23q) >= 0, and for ¥ one
can use the equation (58), and for m - the equation

Bz
eFoVim 4+ BVm = < B S 1. (78)
For closed magnetic surfaces the functions a and m are connected by the following relation
1 1
a=ap+2xp(q- Vm)+p'F (ﬁ - <—Bz—>) . (79)

12



5 The problem of the base vector field b determina-
tion

Here we consider the problem to find the vector b from the equations (18). The second
and third equations of the system can be satisfied by introducing one dimensionless
function #(r) such that

(F? + |V¥?)b = G(T)[VIVY. (80)

Taking the scalar product of this equality with [BV¥], we get the connection of the
normalizing coefficient G with the magnetic field:

21 B? = —G(T)(BV). (81)

The dimensionless function 6 serves as a label for the closed lines of the vector b on the
magnetic surface ¥(r) = const. According to (15), it must satisfy the normalization

G|[VeVi|
F? 4+ |VI[?
where integration is performed along the vector b line.

When the vector b is chosen in the form (80), then the expression (13) for the magnetic
field becomes: a

T F 1 |V
The condition divB = 0 leads to the elliptic type equation for § on the magnetic surface
U(r) = const:

dl = 2, (82)

2B (FIVIVE) + [VE[VIVA]). (83)

. [VE[VEVE)] + F[VIVE
d = 0.

iv Fit VO 0 (84)
The function § with the normalization (81), (82) must be periodic the long way around
torus.

In a domain with closed magnetic surfaces, the function 8(r) corresponds to the

poloidal angle variable of Boozer flux coordinates, it is monotone in the limits 0 < 8 < 2,
One can check that in this case

G(¥) =< B > V'(¥), (85)
and instead of (84) we get the following equation for 8:
2n F 1
di = — —_
ivVgé B> V,[BV\II]V (IV‘I’P) , (86)
where (VOV )

It certainly coincides with the equation corresponding to the Boozer coordinate 6 pre-
sented in [8] (equation (2.62)).

The iterative process to solve the whole system of the 3D equilibrium equations pre-
sented should still be worked out.
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6 Conclusions

We presented a new version of plasma equilibrium equations in toroidal systems based
on the introduction of one "base” field b. The vector b lines are closed and lie on
the magnetic surfaces. Their topology determines the poloidal magnetic flux ¥ and the
plasma current F included into the magnetic field representation: 2B = Fb + [V¥b].
In the systems with closed magnetic surfaces, the vector q = b/b? coincides with the
toroidal basis vector of the Boozer flux coordinates, and it can be expressed through the
functions ¥ and 6 periodic the long way around torus. The equation for ¥ is rewritten in
several forms (the equations (46), (47), (58)) using the base vector field b (80). For the
label 8 of this vector field, equation (84) is obtained which for nested magnetic surfaces
coincides with the equation for the poloidal angle variable of Boozer coordinates.

For the resolution of the difficulties connected with the possibility of singular cur-
rent sheets on rational magnetic surfaces, we propose model equilibrium equations with
explicitly extracted parameters a or m that determine secondary currents. Including
small terms with second derivatives allows to get model elliptic type equations for these
functions (equation (66) or (71) for o and equation (75) for m).

In the general case, the system of equations presented does not imply closed toroidal
surfaces and it is appropriate for the description of an island structure at least repeating
the topology of the base vector b lines. More complicated topology likely needs the sep-

aration of the plasma volume onto discrete regions with different topology for the base
vector b.
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A The secondary current extraction in the equilib-
rium equations with two base vector fields by, by

The base vectors br, by are determined by the equations [8, 9]
br - V¥ =0, divbpV¥] =0, div(|VT|?bFr)=0, (A1)

b\p . V‘I’ = 0, diV [b\pV\I’] = 0, diVbq; = 0, (A2)

that can be satisfied by means of two scalar functions A, A¢ such that br|VT|? =
[VZVAF], by =[VE¥VAy]. For these functions, the following equations are satisfied

. [VUVAVE)] ~
div LT =0, div[V¥[VAsVT]]=0. (A.3)

Let us note that in contrast to the representation with one vector b, these two vector
fields by, br are determined only by the shape of the magnetic surfaces (when they are
nested) and by the prescribed topology of their field lines. Moreover, the vectors by, br
satisfy the normalization condition (15) for any contour with the same topology lying on
the magnetic surface.

Expressions for V¥ and [BV Y]

Let us use the notations

by _ br
qy bF b\Il ) qrF bF . b\Il H (A'4)
Then
qy ° bF =1. (A.5)
From the formula (11) 2rB = [VU¥bpg] + Fby it follows that

b3 VU = 2n[bpB] — F[brbyg], (A.6)
V¥ = 2r[qeB]. (A7)

For [BVY],(B - byg) and (B - q5) we get using (A.7):
[BVY¥] = 2rB%qq — 27(B - q4)B, (A.8)
2n(B - by) = [bgV¥]br + Fb3, 2r(B-qp)=F. (A.9)

Current density and its toroidal projection

For the equilibrium current density j = oB + [BVp]/B? using (A.8) and taking into
account that p = p(¥) we get:

/

i=[a- %27(’(B - qg)|B + 27p'qq, (A.10)
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and further: ,
27(jbr) = F(br - bg)[a — %;2%(qu)] + 4y, (A.11)

For the m-representation of the current density (35) with the equation (A.7), we get
the following projections of the vector j onto the vectors B and qq:

j = {am(¥) - 27p'C(Bqy) + 27p'(q - Vm)} B + 27p'(CB*> -~ BVm)qy. (A.12)

Comparison of this representation with (A.10) leads to the equations analogous to (41),
(42)
BVm =CB? -1, (A.13)
1
o = am — 21p'(B - qy) (C' - ﬁ) + 279'(qg - Vm). (A.14)
The analogue of the formula (44) takes the form

/

27(j - br) = F(br - byg) [ao -2 P 2r(B - qg) — 27p'(qy - Vm)] +4x%p'.  (A.15)

B2 >

Equations for ¥ and o
Applying the operator div to the equality (A.6) we get the equation for ¥:
div (b5 V¥) = 2x(B - rot bp) — 27(j - bp) — div F[brpbyg]. (A.16)

Substituting B from (11) and the term 27(j- bs) from (A.11) we get the analogue of
the equation (47):

div (b3VT) + rot by - [bpV¥] = F(bp - rot bg) — F'(¥)[bg V] - br—

BV + Flbog Ve by (o (A.17)
F2b% + 2F by VU] - by + b2|VEz ‘¢ OF/E%

47!'2}7’
The condition divj = 0 with j from the formula (A.10) leads, taking into account
divby = 0, to the following equation for a:
2np/ B ) b
BV<{a - §2—( qg) ¢ = 27p'qy - V(by - br). (A.18)
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