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Abstract

It is shown that pressure-driven, ideal external modes in tokamaks can be fully stabilized
by resistive walls when the plasma rotates at some fraction of the sound speed. For wall
stabilized plasmas, there are two types of potentially unstable external modes: those which
are nearly locked to the wall and those which rotate with the plasma. For the modes rotating
with the plasma, the stabilizing effect of the wall increases when the wall is brought closer
to the plasma, while, for the wall-locked modes, the stabilization improves with increasing
wall distance. When the plasma rotates at some fraction of the sound speed, there is a
window of stability to both the wall-locked and the rotating mode. This window closes
when beta exceeds a new limit which can be significantly higher than the wall-at-infinity
limit. The stabilization depends principally on the toroidal coupling to sound waves and is
affected by ion Landau damping. Two dimensional stability calculations are presented to
evaluate the gains in beta limit resulting from this wall stabilization for different equilibria
and rotation speeds. In particular, results are shown for advanced tokamak configurations

with bootstrap fractions of =~ 100%.

PACS numbers: 52.35.Py, 52.30.-q, 52.55.Fa, 52.35.Dm



I. Introduction

An important limit to tokamak performance is that of the ratio, beta, of the particle
pressure to the magnetic field pressure, 8 = 2uo(p)/(B?%), where (---) denotes volume
average. Large values of beta are desirable, because in a reactor the fusion efficiency
scales with beta as does the ignition parameter. An upper limit to beta is set by ideal
MHD instabilities, which can cause a rapid termination of the discharge. Troyon et al.l
found numerically that the beta limit is proportional to the plasma current I,, Omax =
9I,[MA]/a[m]B,[T], where a is the minor radius and By is the magnetic field on axis.
This scaling has since been well confirmed experimentally and in other numerical studies,

although rather different normalized betas, g, have been achieved in different tokamaks.

Beta limits are normally computed by requiring ideal MHD stability of static equilibria
without accounting for any stabilization by conducting walls. Early computations! gave
g =~ 2.8, and subsequent studies, where the profiles were further optimized, have yielded
higher estimates of g; up to 3.5 or 4. (A review of tokamak stability at high beta has
been given recently by Strait.2) However, experimental work on the DIII-D tokamak® has
achieved g =~ 5, and MHD stability analyses show that at least some of these discharges
are unstable to modes of low toroidal mode number n with the wall at infinity. These same
cases have been shown to be stable with an ideal conducting wall at the position of the

DIII-D vacuum vessel.*

Since the pressure limit is set by robust, global instabilities, kinetic corrections due to
drift frequencies, finite Larmor radii or trapped particles can be estimated to be small.
Conventional wisdom® holds that ideal MHD instabilities are only slowed down, but never
completely stabilized, by resistive walls. It has been suggested® that such modes might
be stabilized by rotation of the plasma within a resistive wall, and, in fact, the high beta
DIII-D discharges are usually rotating due to unbalanced neutral beams.* We present here

theoretical results that show that these pressure driven external modes can be completely



stabilized by resistive walls and toroidal rotation of the plasma. The gain in confined
pressure due to this stabilizing effect can be significant. Part of this work has been presented

elsewhere.”

It is well established that resistive walls do not change the stability boundaries of the
axisymmetric “vertical” instability® and the “cylindrical” external kink mode,*'® when the
plasma has no resonant surface where kj = (m/q — n)/Ro vanishes (m = poloidal mode
number, ¢ = safety factor and Ry = major radius). Resistive walls slow down the growth
of these instabilities to the resistive time of the wall, , = L/R, but do not change the
stability boundary from their wall-at-infinity value. Furthermore, the growth rates of these

modes are not affected by sub-Alfvénic plasma rotation.®-1°

By contrast, tearing modes can be wall-stabilized in the presence of rotation provided
the rotation frequency exceeds both 7! and a characteristic tearing growth rate.®'%:12 This
type of stabilization was recently put forward by Finn'? as an explanation of the DIII-D
results,* although no convincing argument was given for how rotation on the resistivee-MHD

time scale would stabilize an ideal instability.

Generally, the stability boundary is not changed by resistive walls and plasma rotation
when the rotation frequency remains small compared with the local Alfvén frequency kjva
throughout the plasma. This condition is clearly violated by the toroidal pressure-driven
external kink modes for which kj vanishes locally at the resonant surfaces where m = ngq.
Evidently, there will be layers around each resonant surface where the rotation frequency
exceeds the local Alfvén frequency and where the plasma response to a wall locked mode
is dominated by inertia. Furthermore, for pressure driven modes the parallel motion is
important and this is influenced by inertia when the rotation is comparable to the sound

speed.



II. Calculation

The toroidal pressure driven modes are more complicated than the cylindrical tearing
mode because of the toroidal coupling between different poloidal harmonics and between
the Alfvén and sound waves. Therefore, we have used numerical computation to study
the effect of resistive wall stabilization with rotation in toroidal geometry. The spectral
codes MARS!* and NOVA!516 have been modified to include a resistive shell in the vacuum
region surrounding the plasma. As a minimum modification to existing toroidal stability
codes, we have modeled rigid plasma rotation by making the resistive shell rotate rather
than the plasma. Thus, the equilibrium is static, which allows us to separate the effects of
wall stabilization from other modifications due to the plasma rotation. In most calculations
reported here, the rotation frequency is much larger than any resistive growth rate so that
the plasma can be treated as ideally conducting (this excludes resistive modes rotating

with the plasma).

A. Resistive Wall

Both codes use a thin resistive wall model which divides the vacuum surrounding the
plasma into two distinct regions. The two regions are connected by the boundary condition
at the resistive wall, which includes the effect of toroidal rotation of the resistive wall
boundary. Faraday’s law is combined with Ohm’s law (including the toroidal velocity of
the wall) to give a boundary condition that relates the components of the magnetic field

across the resistive wall.

The NOVA-W?® code uses a Green’s function technique that is a modification of the
ideal calculation.!® In this model, the perturbed magnetic field in the vacuum is represented
by the gradient of a scalar potential, b = V®. The effect of the thin resistive wall enters



as a jump in the scalar potential across the wall:
AP = &, — Piy (1)

This is then related to the normal derivative of the potential (7 - V®) at the wall through

the boundary condition:

(W — nwret) (R - VP) =
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Here (@) is the wall resistivity, and 6(6) is its thickness, R and Z are the coordinates of
the wall contour in a (R, ¢, Z) cylindrical coordinate system, Ry = OR/00 (the derivative

in the poloidal angle), and wyet is the rotation velocity of the wall.

In calculating the vacuum boundary condition, the MARS code uses a discretized vac-
uum inside and outside the resistive shell. The perturbed magnetic field in those two

regions satisfies the conditions:
V-b=0 & Vxb=0 (3)
In MARS, the magnetic field is represented as
b=b'V6 x Vé+ b2V x Vs + b°Vs x V4 (4)

where s is the coordinate labeling the poloidal flux surfaces. The boundary condition at the
resistive shell that relates the normal and tangential components b! and b?, respectively, is

similar in form to the boundary condition in Eq. (2):

d ob! o]
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(W — NWyot)b - (|V3|A s 2Ab 60|V8|) (5)

w

Here, d is the wall radius on the midplane and r,, is the resistive wall time constant.

B. Sound Wave Damping

Sonic rotation complicates the stability problem by coupling to sound waves, and it

has been pointed out that the MHD equations predict an unphysical resonant behavior of
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the sound waves.!” For realistic temperature ratios, the sound waves are strongly damped
by ion Landau damping, and an accurate calculation requires a description that is kinetic
along the field lines. However, reasonable approximations of the kinetic behavior can be
obtained by adding dissipative terms to the fluid equations.!® We have applied three such
modifications of the scalar pressure, ideal MHD equations. Two of these consist of adding
a damping term for the Lagrangian pressure perturbations. The perturbed pressure is split

into a convective and a Lagrangian part,
pr=—€ Vpo+pi (6)

where

Op1/0t = —TpV -7 —vpyg (7)

The damping rate v is either taken to be a fixed number or to represent a thermal
diffusivity following the Hammett-Perkins!® approximation, v = x|kyuwi|. As a third al-
ternative, we use a term representing parallel viscosity in the equation of motion along the

field lines so that vy = (Bo/By) - ¥ is computed from

Oy /0t = —(B - Vp)1/Bopo — Klkyvinfvy 8)

By comparison with the guiding center results in Ref. 17, one can show that this for-
mulation with T' = 3/2, K = /m = 1.77 and v = 0 gives a good approximation for the
perturbed perpendicular pressure induced by Lagrangian perturbations of the magnetic
field strength.

ITII. Resistive Wall and Plasma Modes

We now present results from numerical solutions of the MHD eigenvalue problem mod-
ified according to Eq. (7) or Eq. (8). The resistive shell rotates toroidally with the angular

frequency wrot, and its time constant 7, is long compared with ideal MHD time scales and

6



wiot. Using the MARS and NOVA codes, we search for eigenvalues in the complex plane,

giving the growth rate and the rotation frequency of the mode with respect to the wall.

Figure 1 shows a typical example of how the growth rate varies with respect to the
wall position. The growth rate, s, and the slip frequency, Awyre = Wrot — Wres (rotation
frequency minus the mode rotation frequency), both normalized to the wall time, are shown
as functions of the wall position. Also shown is the normalized ideal growth rate for a wall

located outside the marginal position of an ideally conducting wall.

When the pressure exceeds the stability limit with the wall at infinity, we find two
classes of modes that can potentially be unstable: (a) one which has zero frequency in the
frame of the plasma and hardly penetrates the resistive wall: the “plasma mode,” and (b)
one which penetrates the wall and rotates slowly with respect to it (slip frequency, Awres
= O(1,!) < wyot): the “resistive wall mode”. The resistive wall mode rotates with respect
to the plasma at a frequency close to the imposed rotation frequency wrot. The two modes
are influenced in opposite ways by the wall distance—the plasma mode is destabilized as

the wall is moved further from the plasma, while the resistive wall mode is stabilized.

The plasma mode rotates quickly (frequency ~ wyot >> 7,,;1) with respect to the wall.
It does not penetrate the wall and behaves as if the wall were ideal. The plasma mode is
unstable on the ideal MHD time scale when the wall radius exceeds the usual ideal MHD
threshold for wall stabilization, digea;. This marginal wall position approaches infinity at

the conventional beta limit and decreases with increasing pressure.

The resistive wall mode, on the other hand, becomes increasingly stable as the resistive
wall is moved away from the plasma. It becomes completely stable at some threshold
position, and it remains stable for all wall positions outside this threshold. Therefore, there
can be a finite window for the wall position such that both the plasma and the resistive
wall modes are stable. If the wall is moved outside this region closer to the plasma, the

resistive wall mode will become unstable, whereas if it is moved further from the plasma



the ideal mode will become unstable.

A. Large-Aspect-Ratio Calculation of A’ at the Wall

This counter-intuitive effect of the wall position on the stability of the resistive wall
mode can be understood from a large-aspect-ratio calculation of A’ at the resistive shell.
We consider a magnetic perturbation in the vacuum, dominated by one poloidal harmonic
m (assumed to be positive). The perturbed magnetic flux function 9 satisfies V{4 = 0 in

the vacuum region and the solution the vacuum region inside the resistive wall is given by
Y.=car " +cr™ (9)
and the solution in region outside the resistive wall (extending to infinity) is:

’lp+ = Ca'r—m (10)

The resistive shell is at r = d, and the growth rate of the resistive wall mode is given by
v = 121dA!,, where Al, = [i'(d}) —¥'(d-)]/1(d). We can write the logarithmic derivative
of 1 at the plasma edge, r = a, as

(%)m = —%(1 +2) (11)
with z = z + iy, = and y real. For static equilibria, the imaginary part y vanishes, but in
the presence of rotation, y is forced to be nonzero (if there is at least one resonance where

wro €quals the frequency of the coupled Alfvén-sound continuum).

By applying continuity of ¥ at the resistive wall, we can eliminate one of the three
unknown constants cx, and applying the boundary condition at the plasma boundary,
Eq. (11), eliminates a second. This gives for A

z  (wr—z?—9y%) +iwy

w-2_" @-22+3 (12)

N {1 ~ (a/d)*™] =



where w = 2/[(d/a)®™ — 1] is a geometric factor representing the wall position. As the
radius of the resistive shell d increases from the plasma radius, d = a, to d — +o0, w

decreases from infinity to 0.

Let us first consider the case of no rotation, y = 0, and the plasma unstable in the
absence of a wall, z > 0. For this case, Eq. (12) shows that the resistive wall mode is
unstable (A}, > 0) for w > z, or equivalently, for a < d < digeas = a(1 + 2/x)1/?m, As
the wall radius increases, Al, — 0o when d — digea1, (which corresponds to w = z) and at
this wall position, the resistive wall mode connects to the ideal MHD instability, which is
unstable for d > digea1- In the region of ideal instability, plasma inertia is non negligible

and modifies (1’ /1)),=q 50 as to keep AL, = 400 for d > digeal.

When there is rotation, the logarithmic derivative has a nonzero imaginary part, y. This
eliminates the zero in the denominator of Eq. (12). Consequently, A}, remains finite and
complex for all wall distances, and the resistive wall mode does not connect to the ideal
instability. Thus, rotation effectively separates the resistive wall mode from the plasma
mode for all values of d. The growth rate of the resistive wall mode remains O(75!) for
all d, and if 7, > T4, the plasma response can be computed neglecting the small slip
frequency with respect to the wall. (These conclusions are dependent on the assumption
that (1'/1)r=a is independent of the O(7,!) growth rate, which, of course, fails if wrotTw
is order one or less.) Furthermore, because of the damping added to the sound waves and
the toroidal coupling of sound and Alfvén waves, the solution in the plasma remains well
behaved as Re(y) — 0, i.e., the continuum resonances of the ideal MHD equations have

moved into the stable half plane.

When there is no rotation, y = 0, and the resistive wall mode is unstable for all values
of wall radius d. At d = digea it connects to the ideal mode. However, Eq. (12) shows that
rotation, through the nonzero magnitude of y, is stabilizing. The resistive wall mode is
stabilized as Re(A!,) — 0. This occurs as the geometric factor w decreases, or, equivalently,

as the wall radius d increases. Figure 1 shows that the resistive wall mode is stabilized



when d exceeds a threshold, which, according to Eq. (12), is given by wzx = 22 + y? which
gives the marginally stable wall position:
2 1/2m
des=0a|l+ —-+ 13
a( +(5624-1/2)) (13

The resistive wall mode remains stable when wz > x2 + %, i.e. when d > dye.

Although the present discussion is oversimplified, e.g., by only considering one poloidal
harmonic, it demonstrates two important aspects of the behavior of resistive wall modes:
(1) the plasma and resistive wall modes are separated by rotation that is rapid compared
with the wall time (and resistive MHD times*!113) and (2) they behave in opposite ways
with respect to the wall distance. These two conclusions are ultimately due to the nonzero
value of the imaginary component of (¢ /1),=a, When there is rotation. It is clear that the
optimum wall position lies within the region stable to both the resistive wall mode and the

ideal mode, and it is some distance away from the plasma.

We conclude that, when a rotating plasma exceeds the pressure limit for low-n stability
with the wall at infinity, there are two stability limits for the wall radius, dres and digeal-
The plasma is stable when dres < d < digeal, and this condition must apply for all n (except

n = 0 which is usually stabilized by active feedback on the resistive wall time scale).

B. Equilibria in the First Stability Region

We have computed stability limits including rotation and resistive walls for several
MHD equilibria. Generally, the effect of wall stabilization is stronger when the pressure
profile is broad so that the beta limit is set by external modes. An example is given in
Fig. 2 which shows d;gea and d,es versus normalized pressure g for n = 1 and 2 and rotation
frequency |wros/wa| = 0.06. The computations were made for an equilibrium with JET
shape (elongation = 1.7, triangularity = 0.3 and aspect ratio = 3) and a low pressure

peaking factor, po/(p) &~ 1.7. The current profile was adjusted to keep the safety factor

10



at the magnetic axis and at the edge of the plasma fixed: ¢go = 1.2 and ¢, = 2.55. The
resistive shell was conformal with the plasma boundary and we used the parallel viscosity

model Eq. (8) with k = 1.77.

In Fig. 2, digea is smaller for n = 2 than for n = 1, thus the outer stability limit
for the wall position is set by n = 2 not by n = 1. In fact, n = 3 gives an even more
restrictive diges;. However, the present model is somewhat unrealistic for high-n modes.
First, strong shaping, such as in DIII-D, can cause a transition to second stability for
large and intermediate n. Second, experimentally, the plasma is rotating rather than the
wall, and the velocity profile in the plasma is sheared, which is expected to stabilize high-n
ballooning modes.!? Thus, the stability boundaries of the high-n and intermediate-n modes
should be more sensitive both to the profile of the plasma rotation and to geometrical effects.
Although a general conclusion cannot be drawn from the example in Fig. 2, it is clear that
the most restrictive diges can be set by toroidal mode numbers larger than 1. On the other
hand, our computations indicate that the inner limit, dres, is generally set by the n = 1
resistive wall mode. An important reason why the present mechanism of wall stabilization
influences the overall beta limit is that it is effective for low-n modes, in particular, n =1,

for which shaping effects alone are not enough to produce second stability.?

For the equilibria in Fig. 2, the highest g-factor that is stable to bothn =1 and n = 2
at the prescribed rotation frequency is about 4.2, to be compared with the threshold of
3.1 in the absence of wall stabilization. The effect of wall stabilization is strongly profile
dependent, not only because of the different effects of the wall on internal or external

modes, but also because of the spectrum of n-values that can become unstable.

A considerable uncertainty comes from computing the perturbed pressure from fluid
rather than kinetic theory. Figure 3 shows the results of different fluid approximations
for the same equilibria as in Fig. 2 with |wyet/wa| = 0.06. Stability limits are shown
for the n = 1 resistive wall mode using the model of Eq. (6) with v/ws = 0.0025 and
v/wy = 0.025 and the parallel viscosity model. Eq. (8), with I' = 1.5 and x = 1.77, 0.885
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and 0.1. The Hammett-Perkins approximation with x = 2/# gives a result almost identical
to the pressure damping model with v/ws = 0.025. Thus, the two pressure damping
models Eq. (6) give very similar results, while the parallel viscosity model, Eq. (8), gives
a somewhat stronger stabilizing effect. Furthermore, if the sound waves are eliminated by
setting I’ = 0, the wall stabilization becomes very weak for |wyo/wa| < 0.1. We conclude
that the magnitude of the stabilization by resistive walls and rotation is sensitive to the
dynamics of sound waves and an accurate theory must be kinetic along the field lines (e.g.,
drift kinetic).

Also shown in Fig. 3 is a comparison case with half the rotation frequency, |wwt/wal
= 0.03 (and I = 1.5, k = 1.77). The stabilization is much weaker for this lower rotation
frequency and is almost lost when |wyot /w4| < 0.02. Thus, there is a threshold behavior with
respect to the rotation frequency. For the type of equilibria we have examined, |wyot/wal
needs to be about 0.05 to give a significant stabilizing effect. This corresponds to a minimum

rotation frequency of about 20% of the sound frequency at the ¢ = 2 surface.

Another example shows the sensitive dependence of the stabilization on the rotation
frequency at fixed beta. In Fig. 4 the dependence of growth rate on wall position is shown
for several different rotation velocities. The resistive wall growth rate with respect to
wall position for the case with no rotation is also shown for comparison. Here an unstable
equilibrium similar to those just considered, except with ¢, = 3.55, with g = 4.3 is examined
using the constant pressure damping model, Eq. (6), for v/w4 = 0.01. This case shows a.
strong dependence on wret. The lowest value of rotation for which any stabilization is seen
is for |wrot/wa| = 0.045, but only for large values of d/a. Increasing |w,x /wa| significantly
increases the region of stability by moving the stability threshold value of d.e closer to
the plasma surface. For high rotation frequencies of |wrot/wa| > 0.065, the resistive wall
mode is stabilized for all wall positions. This behavior of dyes With respect to wro gives
a continuous enlargement of the stability region with increasing rotation starting from a

minimum threshold rotation where dres < digea1 to much higher rotation frequencies where
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dres = a.

We find that when ¢, is increased, for equilibria with similar pressure profiles, d,es for
n = 1 moves closer to the plasma boundary, and the maximum normalized beta is increased.
Figure 5 shows the regions of stability with ¢, = 2.55 and ¢, = 3.55 for equilibria with the
same pressure profile definition. The stability calculations are performed with the constant
pressure damping model, with different damping coefficients. The stability limit, when
expressed in terms of normalized beta, is higher at ¢, = 3.55 than at ¢, = 2.55 both for
the resistive wall and the plasma mode. Increasing g, to higher values further increases the

stable g.

C. Mode Structure

Figures 6-8 show some eigenfunctions for equilibria that are unstable with the wall
at infinity but are stabilized by a resistive wall and rotation. Figure 6 shows the radial
component of the eigenfunction, & = 5 - V4, for the ideal case with the wall at infinity.

Compare this to Fig. 7 which shows &, for the same equilibrium surrounded by a resistive
wall, but with no rotation. There is a very sharp drop in the m = 2 component of &, at
the ¢ = 2 surface. The sharp variation of the marginal solution visible inside the ¢ = 2
surface is connected with a rather small pressure gradient, so that the exponent for the

“small solution” is near zero, v = v/D; — 1/2 = 0.05, at ¢ = 2.

Figure 8 shows & and &5 = £ (é x V1) /|Va|? for an equilibrium with one rational
surface (¢, = 2.55) with resistive wall and rotation (|wyet/w4| = 0.06) with v/wy = 0.01
for the pressure damping model. Two resonances are now visible—one inside and one
outside the rational surface. The resonances are particularly distinctive in the plot of &s.
These resonances move away from the rational surface as wyot is increased. In the lowest
approximation, the Alfvén continuum frequency of a particular poloidal harmonic m and

toroidal mode number n being given by went = [Bo/Rop'/?(¥)]|m/q(¥) — n|. Thus the
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resonances in the m = 2 harmonic for this n = 1 mode in Fig. 8 occur at ¢ = 1.887 and

g = 2.128.

If the dissipation coefficients for the sound waves are small, the displacement exhibits
sharp peaks around the surfaces resonant to the coupled Alfvén-sound continuum?! at w =
Wrot- In the limit of vanishing damping coefficients and mode growth rate, these resonances
approach a 1/(1 — ) behavior for the parallel displacement and log |1y —y| for the normal

displacement. Larger values of the damping coefficients broaden the singularities.

IV. Wall Stabilization of Advanced Tokamak Configurations

There has been a considerable interest recently in advanced tokamak configurations,®?2

which are usually defined as one in which the fraction of the total plasma current coming
from bootstrap current is near unity, fgs = Ips/I, = 1, and in which there is high
normalized 3, g > 3.5, and which are mainly in the second stability region to ballooning
modes. A configuration has been described,?®?® which has a bootstrap fraction near unity,
such that the bootstrap current is well aligned with the current profile, and which has
large normalized 8 and 8*, where 8* = 2uo(p?)/?/(B?) is a measure of fusion reactivity.
This configuration also has the attractive features of being completely stable to ballooning
modes, and it has good stability properties to microinstabilities, such as trapped particle
modes and ion temperature gradient instabilities. The configuration is characterized by
high-q at the center (go = 2.5), low-q at the edge (g5 =~ 3.5), and a region of negative shear
in the plasma such that the minimum value of ¢ is gmin & 2.1. The favorable properties of
this reversed shear configuration, and the procedures used to optimize it, are described in

detail in Refs. 22 and 23.

This configuration, however, is unstable to low-n pressure-driven modes, which must be
stabilized by a perfectly conducting wall at roughly 1.3 times the minor radius. Therefore,

we have examined such equilibria to see if they can be stabilized by a resistive wall in
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combination with toroidal rotation. We created a series of equilibria similar to the reverse
shear equilibrium given in Ref. 23, with ¢o = 2.5, gmin & 2.2, ¢, = 3.7. In view of the
improved wall stabilization of equilibria with more than one rational surface, shown in
Fig. 5, we also examined a sequence of equilibria otherwise identical to the first, but with

gs=4.1.

Results are given in Fig. 9 using both the simple pressure damping model, Eq. (6), and
the parallel viscosity model, Eq. (8). For the equilibria with ¢, > 4, both models predict
a large region stable to both the plasma mode and the resistive wall mode with a suitable
wall position and wye /w4 = 0.10 up to f* =~ 5%. An equilibrium that is stabilized in both
models with the wall at d/a ~ 1.25 has ¢, = 4.1, §* = 4.7%, ¢* = 5.3 (normalized 3*),
Bp = 2.0, a bootstrap fraction of 0.96, and the bootstrap current well aligned with the
equilibrium current. By contrast, for the equilibria with ¢, < 4, having only one resonant
surface, stabilization by the resistive wall is not very effective. The resistive wall mode
is much more stable for the equilibria with two resonant surfaces (when 8* is moderately
above the wall-at-infinity limit). In fact, there is a larger region of stability for ¢, > 4
with wre/wa = 0.05 than for ¢, < 4 with wyet/ws = 0.10. It is clear from Fig. 9 that the
model of the sound-wave damping affects the quantitative results, but the dependence is

not dramatic.

Shown in Fig. 10 are the components &, and £s of the eigenfunction for an advanced
tokamak equilibrium with one rational surface (¢ = 3.7). Note the resonances of the m = 3
harmonic and the large m = 4 harmonic at the edge. In Fig. 11 are the components &y and
&s of the eigenfunction for an advanced tokamak equilibrium with two rational surfaces
(g = 4.1). Here, there is a pair of broad resonances around the ¢ = 3 surface and a
somewhat sharper resonance inside the ¢ = 4 surface. The resonance outside the ¢ = 4

surface is in the vacuum in this case.
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V. Effect of Coupling to Sound Waves

The sound waves enter the dynamics of the resistive wall mode both in the bulk of the
plasma and at the continuum resonances. To quantify how strong their effect is, we made
a series of stability calculations with different values of the adiabatic index: T" = 0, 3/2 and
3 (using a fixed “parallel viscosity” term — 7/2|kjvinilvy). The result is shown in Fig. 12
as marginal d/a vs. * for the same equilibria as in Fig. 9. Evidently, the sound waves

produce the main part of the stabilization for the resistive wall mode.

We have also made calculations in which I" was prescribed as a function of the equilib-
rium flux surface. Results for the JET equilibrium with ¢, = 2.55 are shown in Fig. 13. In
this case, there is one rational surface at ¢ = 2. The factor I was defined to fall off as a
Gaussian away from the ¢ = 2 surface: T' ~ exp(—(g — 2)?/(Ag)?). Results are shown for
several values of Aq as well as for the case with no rotation, for comparison, and also the

case with regular damping (I" constant as a function of radius).

Figure 13 demonstrates that with the narrowest extent of I' (Aq = .15) the growth rates
are only slightly lower than the case with no rotation—indicating very little stabilization.
Only when the radial extent of I' is increased greatly (Ag =~ 1.0) does one see complete
stabilization, but at a larger wall radius. Increasing the value of Aq further brings the
curve back to the original damping case. We conclude that the stabilization of the resistive
wall mode comes primarily from interaction with the sound-waves and is a bulk plasma

effect.

VI. Wall Conductivity Effects

For sufficient wall conductivity, the quantitative results of the stabilization are not
sensitive to the magnitude of the conductivity. The growth rates and slip frequencies are

inversely proportional to the wall conductivity. However, when the wall resistivity becomes
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too large, the stabilizing effects are reduced. Figure 14 shows the growth rates y7, and
the slip frequencies AwresTw, both normalized to the wall time, for a case with the wall
conductivity scaled over a range of factor 200. The values of v and Awye are normalized
to the wall time, and are shown for five values of wall conductivity represented in terms of

the ratio of wall time to Alfvén time 7,,/74.

The normalized curves for 7,,/74 = 4 x 10* and 4 x 10° exactly coincide. For 7, /74 =
8000 there is a slight variation in the normalized Awyes - T curves, and in the growth rates
for some values of d/a. However, at low values of d/a and near the stability threshold,
the normalized growth rates are identical to those for 7,,/74 > 4 x 104, resulting in the
same threshold wall position for stability. When the conductivity is reduced further to
Tw/Ta = 4000 the threshold wall position is increased, thereby reducing the size of the
stability region, and it is reduced much further at 7,,/74 = 2000. Increasing the wall

resistance such that 7,,/74 < 1000 effectively removes any wall stabilization effect.

VII. Summary

We have shown that resistive walls in combination with plasma rotation can stabilize
external MHD modes leading to experimentally significant increases in the beta limit. The
effect is more pronounced for broad pressure profiles and at high ¢;,. The wall stabilization
raises the pressure limit of the low-n modes, in particular, n = 1. This makes the mechanism
particularly attractive as ballooning modes can reach a second region of stability for large
pressure and low shear, while the n = 1 mode does not access second stability without
wall stabilization.?’ This mechanism appears to be of particular importance to advanced
tokamak scenarios. Equilibria with high bootstrap fraction and negative magnetic shear
in the plasma interior®? can be stabilized with resistive walls and rotation, but not-too-low
values of ¢ at the edge (allowing for more than one rational surface) and significant rotation

are needed to obtain the wall stabilization effect required in Ref. 22.

17



The large-aspect-ratio calculation of Egs. (9)-(13) shows that rotation provides the
stabilizing influence for the resistive wall mode and explains the counter-intuitive behavior
with respect to wall position, i.e., that the mode is stable when the wall is sufficiently
far away. Our calculations show that the coupling to sound waves strongly increases the

stabilizing effect so that it is effective at subsonic rotation frequencies.

There is some quantitative uncertainty from modeling the the parallel motion using
scalar pressure MHD with fluid dissipation terms. A kinetic description is needed in order
to accurately describe this effect, and this will be the object of further study. However, all

three fluid approximations used in these calculations show similar stabilizing behavior.

The numerical example with standard g-profile and broad pressure profiles shown in
Fig. 2 indicates an increase in the beta limit by about 30% — 40% by the wall stabilization.
Increases of similar magnitude are observed on DIII-D, and some of these are believed to
be due to stabilization by the DIII-D vacuum vessel.# Our numerical computations show
that a certain minimum rotation frequency is needed for a significant effect. For typical
tokamak parameters, wyo/wa needs to be about 0.03 — 0.05 or larger. We note that this
condition is generally satisfied in DIII-D discharges where the Alfvén frequency is typically

in the range 1 x 108 s™! to 2 x 10® s and wyy is between 60 x 103 s~ and 200 x 10 s~1.

Stabilization of reverse shear “advanced tokamak” equilibria with bootstrap fraction
close to 100% and in B* ~ 5% has been shown to be possible, but this requires rather
high rotation velocity, close to 10% of the Alfvén speed. In these cases it is particularly

important to have sufficiently high values of ¢, for wall stabilization to be effective.
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Figures

FIG. 1. Growth rate 7., and slip frequency Awyes = Wrot — Wres Of resistive wall mode, both
normalized to the wall time 7., and growth rate of plasma mode %iqeai Versus wall radius
for n = 1 mode with g about 30% above free-boundary limit. This graph was calculated
using the Hammett-Perkins!® approximation, Eq. (7), with x = 2/x.

FIG. 2. Marginal wall position versus Troyon factor g for the plasma (ideal) and resistive
wall modes (resistive) with toroidal mode numbers n = 1 and n = 2. The plasma mode
is stable for d < digess and the resistive wall mode for d > dres. The region stable to
both the n = 1 and n = 2 modes is bounded by the n = 1 resistive wall mode and the

n = 2 plasma mode.

FIG. 3. Marginal wall distance versus Troyon factor g for the plasma mode (marked “ideal”)
and the resistive wall mode using different fluid approximations for the damping of the
sound waves. Curves (a)—(e) apply for |wro/wa| = 0.06. (a)-(b) give results for the
pressure damping model Eq. (7) with (a) v/wa = 0.025 and (b) v/w4 = 0.0025. (c)—(e)
give results for the parallel viscosity model Eq. (8) with (¢) x = 0.1, (d) x = 0.885, and
(e) k = 1.77. Also shown is one curve with half the rotation frequency, |wrot/wa| = 0.03,

with the same damping model as in (e).

FIG. 4. Growth rate versus wall position for several different values of rotation velocity.
The solid symbols are the growth rates with the given rotation velocity, and the open

symbols are with a resistive wall but no rotation.

FIG. 5. Marginal wall distance versus Troyon factor g for equilibria with the same pressure
profile, with g, = 2.55 and ¢, = 3.55. (a)—(b) are the resistive wall modes for ¢, = 2.55
with the pressure damping model, Eq. (6), with (a) v/wa = 0.025 and (b) v/ws =
0.0025. (c)—(d) are resistive wall modes for g, = 3.55 equilibria with (c) v/wa = 0.025
and (d) v/wa = 0.01.
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FIG. 6. Radial component &, of the eigenfunction as a function of s = /1) for the ideal
instability (wall at infinity).

FIG. 7. Radial component &, of the eigenfunction for the same equilibrium as in Fig. 6,

but with a surrounding resistive wall with no rotation.

FIG. 8. Components &, (a) and £s (b) of the eigenfunction for the same equilibrium as
in Fig. 6 with a resistive wall and rotation, |wrt/wa| = 0.06, with damping factor

v/wa = 0.025.

FIG. 9. Stability boundaries for equilibria with negative central shear and high bootstrap
fraction. Results are shown for sequences with ¢, = 3.7 (dashed curves) and ¢, = 4.1
(unbroken curves). The ideal n = 1 boundaries are given by the solid squares, then = 1
resistive wall mode boundaries using the parallel viscosity model (viscosity), Eq. (2),
and |wrot/wa| = 0.10 are given by the open circles, while the simple pressure damping
model (p. d. m.) results are the open triangles. The crosses represent the resistive wall
mode boundary using the parallel viscosity model for the ¢, = 4.1 sequence at half the

rotation speed, |wrot/wa| = 0.05.

FIG. 10. Components &, (a) and &s (b) of the eigenfunction for the advanced tokamak
configuration with one rational surface, ¢ = 3.7. Here, the simple pressure damping
model, Eq. (6), is used with rotation velocity of |wret/wa] = 0.10 and damping factor

v/ws = 0.10.

FIG. 11. Components &, (a) and &s (b) of the eigenfunction for the advanced tokamak con-
figuration with two rational surfaces, ¢, = 4.1. The parameters are otherwise identical

to the case of Fig. 10.

FIG. 12. Marginal wall position for different values of the adiabatic index I'. The equilib-
rium is the same as in Fig. 9, |wrot/wa| = 0.10 and the parallel viscosity model was

used.
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FIG. 13. Growth rates 7z of the resistive wall mode vs. wall position d/a for |wret/wa| =
0.06 with I varied as a Gaussian function around the ¢ = 2 surface with width Ag. Also
shown, for comparison, are the growth rates for the case with no rotation (open squares),
and also the case (solid squares) with regular damping (I' constant as a function of
radius).

FIG. 14. Growth rates 7. (a) and slip frequencies Awre = Wrot — Wres (b), normalized
to the wall time, 7,, vs. wall position, d/a, for several values of wall conductivity.
The curves correspond to wall times normalized to the Alfvén time 7, /74 = 2000 to

Tw/Ta =4 X 105.
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Figure 14 (a)
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Figure 14 (b)
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