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Abstract

The global stability of toroidicity-induced Alfvén eigenmodes (TAEs) in the presence of
fast ions in realistic tokamak fusion-grade plasmas is analyzed with a global, perturbative
approach. Volume averaged fast particle betas for marginal stability are obtained and
analyzed for a wide range of plasma parameters such as the fast ion radial density profile
width, the ratio of birth velocity to the Alfvén velocity on axis and the bulk plasma
beta. The different stability behaviour of two types of TAEs (internal’ or ’external’) is

evidenced.



1 Introduction

The destabilization of Toroidicity-Induced Alfvén Eigenmodes (TAEs) [1] by fast particles
in tokamak plasmas has been demonstrated both theoretically [2]-[6] and experimentally
[7)-[9] . In the context of fusion-oriented research one should be able to predict as
accurately as possible the conditions that can lead to such instabilities and to determine
whether the region in parameter space where instabilities are avoided is compatible with
the operation of a tokamak reactor. The expected density profile of fusion alpha particles
in such a device s largely unknown and can only be inferred from theoretical models based
on a number of assumptions on transport properties of plasmas yet to be produced.
The instability threshold strongly depends on this profile, therefore we must address the
question of TAE stability for a wide range of fast particle density profiles and subsequently
examine the compatibility with a fusion plasma.

Experiments in which the fast particles were produced by intense NBI heating [7]-[9]
have shown that driving TAEs unstable can lead to rapid losses (bursts) of a substantial
fraction of the fast particles. Although it is not sure that it would be the case for fusion
alphas in a reactor, it is generally admitted that TAE instability should be avoided.

The possibility of exciting TAEs when they are stable is currently investigated at
JET. The saddle coils now installed in the machine serve as antennas. The planned
experiments aim at determining the spectrum of TAEs and their overall linear damping-
growth rate by diagnosing the plasma response. Even in the absence of fast particles
these experiments will be helpful in studying the damping mechanisms acting on TAEs.

From local theories [2]-[5] we know that three basic conditions must be met for insta-

bility:

1 The birth velocity v of fast particles must exceed the parallel phase velocity v, of the

eigenmode so that the fast particles can resonantly interact with the eigenmode.

2 The fast particle pressure gradient |dp;/dr| must exceed a given threshold so that the

drift frequency w* is larger than the eigenfrequency wy .
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3 The fast particle induced growth-rate, |y/w|sqst , must exceed the sum of all damping

rates, |y/w|damp , due to the presence of the background plasma.
The damping mechanisms contributing to |y/w|damp considered in our model are :

a) resonance absorption (sometimes called “continuum damping”), when the TAE eigen-

frequency matches a frequency of the Alfvén continuum;

b) electron and ion Landau dampings due to the curvature drift and finite parallel electric

field;

c) transit-time magnetic pumping (TTMP) on electrons and ions due to finite parallel

magnetic field of the wave (compressibility).

In addition to these dampings the non-perturbative interaction with the kinetic Alfvén
wave has been investigated in Ref. [10] . It is not considered in this paper.

Local theories suffer from a number of shortcomings. First, the TAEs are not localized
at a given rational ¢ = (|m|+1/2)/|n| surface. They extend over the whole plasma cross-
section, with wavefield components (e.g. the normal electric field) peaking at all such
rational surfaces and other components (e.g. the poloidal electric field) having a broader
radial dependence [11] . Second, the eigenfrequencies and eigenmode structures depend
on global geometrical parameters (shape of the cross-section) and equilibrium profiles
(density and q profiles). Third, local theories usually use some kind of expansion in
geometrical parameters (a/Rg). A more accurate evaluation is needed in order to model
actual and future tokamaks.

In this paper we adopt a global approach similar to that of Ref. [6] . The TAEs
are computed globally in true toroidal geometry consistent with an ideal MHD equilib-
rium. Kinetic effects (damping and driving mechanisms) and fast particles are treated
perturbatively. More precisely, we first obtain the global eigenmodes and then use these
given eigenmode fields to evaluate the global overall wave-particle power transfer as-

suming given fast particle density profiles. The marginal stability point is obtained by



scaling the number of fast particles so that the overall power transfer is zero. The wave-
particle power transfers (to the electrons, bulk ions and fast ions) are evaluated using
the drift-kinetic equations (DKE).

The paper is structured as follows. In the next section, the plasma model in toroidal
geometry and the antenna excitation are briefly presented. Then the expressions for the
DKE powers are derived for the various species (electrons, bulk ions and fast ions). In
section 3 we show the results of our model applied to a wide variety of plasma parameters.
In particular, the critical volume-averaged fast particle beta corresponding to marginal
stability, < By >, is calculated for a wide range of bulk plasma parameters (vo/v 40,
beta, w/w) and fast particle profile widths (s;/;). We discuss the results in section 4

and draw some conclusions in section 5.

2 Model

2.1 Global ideal model for TAE wave fields

We consider ideal MHD axisymmetric equilibria Bo= TV + Vi x Vip where T is the
toroidal flux function, ¢ is the toroidal angle and the poloidal flux ¢ is a solution of the
Grad-Shafranov equation obtained with the bicubic finite element code CHEASE [12] .
The plasma. is modelled as a cold, current-carrying plasma [13] neglecting electron inertia.
In the limit w/wy — 0 it is equivalent to ideal MHD setting the adiabaticity index to

zero. The linearized equations for the electric wave field are written in the variational

form :
-— —t 2 -— - 2 w2—+* enn Cnb — 3
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where €,= V/|V¥|, €=Bo /Bo, €s=¢|| X €n, J= (o jo X €x)/Bo, jo is the equilib-
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The plasma is surrounded by a vacuum region V, enclosed by a perfectly conducting wall.
In the vacuum region an antenna is modelled by an infinitely thin sheet D(Z) on which

—
currents j, of given frequency w and toroidal mode number n are prescribed :

bad

Jo = 6(D)VD x Va (3)
o = ) an(0)expi(np —wt) (4)

where 6 is the poloidal angle. The coefficients a,, are obtained from the Fourier series
decomposition of the actual antenna currents. In this paper we consider the top saddle
coil antennas that are installed in JET. Different phasings of the saddle coil currents
give different toroidal Fourier spectra a,. It is thus possible to select the desired mode
number n (mainly n =1 or n = 2).

Special care must be taken because of the existence of the Alfvén continuous spectrum.
First, the solutions of Eq.(1) are singular at the magnetic surfaces where the antenna
frequency matches that of a continuum. Consequently the wave is resonantly absorbed
there, a process sometimes called “continuum damping”. We solve the problem by adding
a small imaginary part to the dielectric tensor in Eq.(1): w is replaced by w(1 + iv),
with v > 0 to ensure causality. The operator in Eq.(1) is now regular but has lost its
hermiticity. The limit v — 0 is extrapolated from the numerical results of the LION code
and gives a finite damping rate if the wave frequency is in the Alfvén continuum. Second,
the discretization scheme must avoid spectral pollution. The use of hybrid elements in
the LION code ensures that [11], [13] .

The variational form (1) is written in toroidal axisymmetric geometry using a toroidal
magnetic coordinate system (v, X, @) where x is a general poloidal coordinate, and dis-

cretized with finite hybrid elements in the plasma domain. The vacuum, including the
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antenna, is solved with a Green’s function technique. The LION code computes the wave-
field solution of Eq.(1) and the total absorbed power P for given antenna frequencies w.
A global mode shows as a peak on P(w) [11].

We know from kinetic theory in 1-D [14] that the inclusion of finite Larmor radius
effects (FLR) usually does not modify the overall plasma power absorption but drastically
changes the wavefields near the former Alfvén resonances : mode conversion to the Kinetic
Alfvén Wave (KAW) or to the Surface Quasi-Electrostatic Wave (SQEW) takes place.
Therefore this paper is concerned with TAEs that have no continuum damping. Such
cases arise when the profile of 1/q,/p is rather flat (g is the safety factor and p is the
mass density) thus aligning the ¢ = (|m| + 1/2)/|n| gaps. Continuum damping of low
n modes was extensively studied in Ref [11] for a wide variety of shapes and profiles.
High n cases were analytically studied in Refs [15], [16] . Only for cases where the profile
1/q./p is sufficiently peaked or hollow do the continuum gaps not overlap and one is
sure to have continuum damping. Otherwise we can have TAEs “threading” the gaps
and thus exactly zero continuum damping. It is safer to examine these cases since one
cannot be sure to exclude them in a reactor (neither the density nor the q profile are

easily controllable).

2.2 Global kinetic model for the wave-particle power transfers

The evolution equation used for the plasma species is the Drift Kinetic Equation (DKE)

Df_[aaﬁa;'a ded du 0 =

_— = —_— =t e —_—— t) =

Dt a)_z+dt36+ dt op f(Xae’ﬂa ) 0, (5)
where X is the guiding center, € = }(vf + v%), p = v}/2Bo, v,= vy €p + UE + vy,
vg=E x(Bo + B)/B?,
vg= (m/qB) €p x (vi/2 + vﬁ) VinB, B = | Bo + B | the total magnetic field, (E, B)
the perturbing electromagnetic fields and € g= (Eo + E) /B.

Equation (5) is first solved to obtain a stationary distribution function. To lowest



order in the Larmor radius expansion one obtains

F =F(,¢ p). (6)
In particular for electrons and bulk ions a local Maxwellian distribution is chosen

__N®) (L,
(o3 (¥)*? p( 2v3“‘,,(¢))’ (7)

with density N and thermal velocity squared v, = 2T/m. For the fast particles a

slowing-down distribution is assumed [17]

F = N(zp);g_%ﬂ(vo_v), (8)
my + m; 1/3 T, 1/2

v, = <3ﬁ—7:7n—£—me) (;1—:) ; (9)

C = 3 (10)

3 ?
4rln [(-”3) + 1]
vC
where H is the Heaviside function and vo the birth velocity of the fast particles (v =
1.3-10"m/s for fusion alphas).

The linearized DKE is then solved to obtain the fluctuating part of the distribution
function in terms of the EM fields

8 . 9o\z [ 9 ded
(m-i- Vg0 ﬁ) f— - ('Ug '5’;"‘ E E) F, (11)
where

Vg = U €|+ Vo, (12)
=~ B. EXB
v, = 'l)“-ﬁ-:;'i' B Oa (13)
de ¢ - = . 0B
T = m o B )

As the unperturbed system is homogeneous in time and the toroidal direction, one can
consider fluctuating quantities of the form expi[ny — (w + in)t], where n > 0 ensures

causality. Equation (11) is solved using a perturbation method. The operator vy, -V =
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O(e), on the left hand side is considered as perturbative. Furthermore, to avoid an
integration along the field line, the differential operator -é'" -V, is replaced by its magnetic-

surface-averaged value < V) >= ik, where

B2 = fzﬁ:const dl (IV"E"I2 + IV”Ebl2) (]_5)
. f¢=canat dll E I2 ,

The integrals in Eq.(15) are evaluated along a closed path in the poloidal plane on a

¥ = const surface. Another possibility instead of using Eq. (15) would be to make the
rough approximation w? = vikﬁ, since TAEs are Alfvén waves. But k) obtained in this
way can be wrong by a factor up to 3. The reason is the “sidebands” created by toroidal
coupling: simple models give resonances at one third of the Alfvén speed.

Solving to second order in € and retaining only the most dominant element among

comparable terms leads to

F= -4 { (B, — vV, ) Vo F (16)

mw.$o
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where w, = ¢Bo/m, Qo = w + in — kv, ﬂ__;_= (Vx ?”)L and V, = (Vp x Vy)/|Vp x
V|- V.
One can now derive the power absorption formula. The total power exchanged be-

tween the particles and the perturbing EM fields averaged over time reads

de ~%x

Piypecies = %e/dr dt ,pec,e,, dl' = B X dPv. (17)
Inserting Eqs (14) and (16) leads to the following relations

Papectcs — Phomo + thomo (18)
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The resonant denominator can be written as

1 1 1 1 w

— = — =P - 6(v——-). 21
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Globally, only the resonant particles can exchange energy with the EM fields. The
principle value in the above relation can therefore be discarded when evaluating the

absorbed power.

For a Maxwellian distribution the power reads

2
homo  __ Wy Uth _5?
P = \/7_reo/d3:c4w2|k”| exp(—27) X (22)
{ )
inhomo d3 2'0?’1 2 .
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—
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t

(23)

where w2 = N¢*/meo, 20 = w/ kyve, and V', is equivalent to V, except that it operates
only on density and temperature. For the slowing-down distribution resonant particles

can exist only if the phase velocity is below the birth velocity (|v, = w/k)| < vo), in that

case
omo 1 2
Ph = 7 60/d3$ lk‘"l {l’U |3+v va||+ 'U ,BJ. (
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where I, = /Ivo| de. (26)

v3 4+ 03
The EM fields are calculated from an ideal model (see Section 2.1) in which E) is ap-
proximated by zero. Therefore Ej must be obtained from a more general model. The

starting point is the quasi-neutrality condition
N.=N; . (27)

As the thermal velocity of the electrons can be comparable to the phase velocity (Vehe ~
lvp|), it is reasonable to evaluate the dominant term of N. using a kinetic model. For

this reason f,j,.,0n 18 integrated over velocity and leads to

ﬁe= 9 eN, l:wwc,

MWWee

(1- Z)E"——Z(m J__sz,,)+( )2(1_2)51.13],

(28)

kllvtzhe k||'0the

where Z = Z (W“m) is the plasma dispersion function [18] . However, to evaluate Ni
one can use a cold fluid model for the ions as v, < |vp|. Due to their relatively large
mass, the ions dominate the motion perpendicular to the magnetostatic field. Solving the

equation of motion in the perpendicular plane, one obtains for low frequencies w < we;

— e

[El. X ?u —i-{E)—: E’L] ’ (29)

iWei ct

and using the equation of continuity for the ion density gives

i -

[V Ey —2z—— ﬂ_._ EL —wc.B“] (30)

.w2

Inserting these density relations in the quasi-neutrality condition leads to

— k"vizhe 1 ( w pd = = ) 2
E” - —-2wwcc 1-2 chg'v. El + 'Bl . El + 1+ 2 k”’Uthe

,3_;_ . E.L —sz”} .
(31)

Finally, using the above expression in the power relation for electrons and ions gives

2) , (32)

wlvg,
phome \/—50/d3374w2|;c |exp —zg X (laapectes| +

By -
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1 . —_ — —
Qelectron = 1-27 (zi:v Ei+8.- EJ.) ’ (33)
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Pinhomo can be neglected for these species. This is related to the fact that in the frame of

the present work w > w* for electrons and ions, where w* is the characteristic frequency
of the drift mode. Note that the contributions of E to the power absorbed by the ions
are proportional to T./T;. As the average kinetic energy of the fast particles is very
high as compared with the energy of the electrons, the contributions of E) to the power

absorbed by the fast particles can therefore be neglected. In this way, one can write for

the fast particles

2 4 - L2
Pome = wzeo/dsx wpr0 {[ > +2vﬁfo] BL-E

35
|kylw?s L Llval® + w2 (%)
2
+ 2wv2103‘m (B" By - ) + I ﬂ.L } 3
tnhomo __ 7('60 3 ! C {( 4 2 1)
P = —3m / 2V, |k|| |w L+v*2) 8. - E (36)

I , -
+ (v};E‘ + f) (6L E ~iwBy)} . v)E;

The expressions (32)-(36) have been written in toroidal axisymmetric geometry and im-
plemented in the LION code.

Marginal stability is reached when the sum of the DKE powers of the different species
Pypecies is zero. For a given TAE, a given ny(s) profile shape and given T.(s) and Tj(s)
profiles (s = \/W is the minor radius coordinate, where v, is the poloidal flux at the
plasma surface), both P}°™° and Pj*A°™° are proportional to the number of fast particles,
or equivalently to the fast particle central density ns{0). The procedure to obtain the

value n4(0)ci corresponding to the marginal stability of a given TAE is the following:
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P., P, P}°™ and Pj**™ are computed for given T,(s) and Ti(s) and for a given n(s)

profile shape with an arbitrary value of ns(0). We have then

P.+ P
1Ot = = sy P 0 (37)

From this value of ns(0)r;; and the given profiles ny(s) and T.(s) we compute the cor-
responding critical central fast particle beta B84(0)ri; and volume-averaged < A § Serite
We note that ns(0)yi: < 0 means that the mode is always stable (i.e. stable for any
fast particle density). Thus instead of the necessary instability criterion of local theories,

w — w* < 0, we have the necessary global instability criterion Pf"°m° + P}"h"m" <0.

3 Results

3.1 Excitation of gap modes with JET saddle coils

We consider an up-down asymmetric equilibrium configuration representative of a “single-
null” discharge in JET. The parameters are: a/Ry = 0.36, k = 1.65, ¢o = 1.1, ¢, = 3.34,
P'(¥) = 2/3 of ballooning optimized p'(1) profile, I, = 5M A, < 8 >=3.9Y%, Bpu = 0.78.
In all the equilibria considered in this paper we keep the same shape of cross-section,
value of go and I*(3)) profile, where I* is the magnetic-surface-averaged toroidal current
density. Different equilibria are obtained by scaling the p'(1) profile.

We first evaluate the plasma response to the antenna excitation at various frequencies
in the absence of kinetic effects. Fig.1 shows the antenna coupling resistance vs frequency
for the case < B >= 3.9 and for two different possible antenna phasings. Note that
for standard JET parameters Ry = 3m, By = 3.45T, npo = 5 x 10®m=3 a normalized
frequency Row/v40 of unity corresponds to a frequency f = 400kHz. The dotted line
corresponds to two top antennas at opposite toroidal locations with opposite phasings,
exciting mainly n = 1 modes. The continuous line corresponds to all four top antennas
with (+, —, +, —) phasings, exciting mainly n = 2 modes. Saddle coils excite TAEs in the
frequency range f = 80 — 250kHz and EAEs (Ellipticity-Induced Alfvén Eigenmodes)

in the frequency range f = 250 — 500k Hz. The different modes can have very different
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couplings and this is due to different eigenmode structures. For example, the n = 1
mode labelled “a” in Fig.1 has an “internal” structure (Fig.2a) with a relatively modest
wave amplitude at the plasma boundary and therefore a much smaller coupling than
the mode labelled “b” which has the structure of an “external” mode shown in Fig.2b
with a large wave amplitude throughout the plasma cross-section. We point out another
basic difference between these two types of modes. The eigenfrequency of mode “a” is
very close to the lower edge of the toroidicity induced gap. The mode ”a” is rather
insensitive to the position of the vacuum vessel whereas mode ”b” is very sensitive to
it: its frequency increases with a shorter plasma-wall distance and it does not exist for
a wall right on the plasma boundary. The TAEs studied in Refs [1], [3], [6], [19] , being
calculated with a fixed boundary, are of the "a” type (“internal”).

Before we analyze the consequences of these differences in eigenmode structures on
the fast particle destabilization, we point out another interesting difference in behaviour
from the point of view of the strictly ideal model. Fig.3 shows the eigenfrequencies of
the modes "a” and ”"b” for a sequence of equilibria with varying pressure. The mode
”a” hardly changes its eigenfrequency and always remains just above the lower edge of
the continuum gap. The fact that its frequency decreases just reflects the opening of the
gap as the Shafranov shift of magnetic surfaces increases. Its coupling from the antennas
remains quite small and roughly constant. Mode "b”, on the other hand, is very sensitive
to variations in the plasma equilibrium. Its frequency decreases strongly with increasing
Byot, by a factor 2 for Bpo =~ 2.4. For fBpo ~ 2.25 the two modes cross each other and for
still higher B,,; mode ”b” enters the Alfvén continuum. The antenna coupling of mode
”b” exhibits a remarkable behaviour: it is linearily proportional to Bye (see Fig.4). This
is an effect of the increased Shafranov shift and a stronger variation in By, along field
lines as the equilibrium pressure is scaled up. The compressibility of the mode (finite
By)) increases with S,0(see Fig.4). The mode ”b” also becomes less torsional: the ratio
of amplitudes E,,/E, decreases from 15.4 for 8,5 = 0.78 to 4.1 for Bpo = 2.14. Therefore

gap modes are “Alfvén modes” only in a loosely speaking sense. One cannot a priori rule

13



out the effect of TTMP on gap modes. This is why we chose to retain finite B)| in our
DKE model (see Eqs(32)-(36)). A practical consequence is that it will be hard to see the
mode “b” for low B, values in the antenna excitation experiments. We note also that
the frequency decrease with increasing beta has been seen in the DIII-D experiment [20]
. The factor 2 decrease that we found is of the same order as reported in Ref. [20] .
The authors of Ref. [20] have given another interpretation to this effect and named the
high-beta TAE modes Beta-Induced Alfvén Eigenmodes (BAE).

3.2 Stability of TAE modes in the presence of fast ions

In what follows we analyze the n = 1 stability of the lowest frequency modes correspond-
ing to modes ”a” and ”b” in Figs.1-4. From the point of view of the necessary condition
for instability w* > w, these are the most dangerous modes. Let us first consider the
mode ”"a” (Fig.2(a)) with the parameters Ry = 3m, npo = 5 x 10®*m~=3, By = 3.45T,
Teo = 10keV, Tjo = 30keV, in the presence of fusion alpha particles. We consider fast
particle density profiles defined by

ng(s) = ng(l — s*)™, (38)

and vary the profile peaking by varying ;. Moreover, we define the quantity P(s) by

the relation
1
PSPCCC'CC = ‘/0 P(S)d.g. (39)

Fig.5 shows P(s) of the different species, Eqs.(32)- (36), plotted versuss for £; = 22 which
gives an alpha particle profile half-width s,/; = 0.176. As expected the destabilizing term
Pjrheme peaks around s = 0.15 where the alpha particle density gradient is maximal. The
fast particle stabilizing term P}*™° shows a similar behaviour. The electron damping, on
the other hand, is localized near s = 0.8 (¢ = 1.5) where eigenmode gradients are very
large (see Fig.2a). The ion damping is maximal near s = 0.5. This can be understood

from the factor exp{—(w/|ky|vni)?} in P*™°, Due to the ky variation with respect to

s, the quantity w/|ky|vens is minimal near s o 0.5(see Fig.6). This example shows the
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importance of determining the overall stability globally. Local stability criteria would
give instability if applied near s = 0.2 but stability if applied near ¢ = 1.5 (s = 0.8). The
influence of the eigenmode structure on the stability plays a crucial role. First, through
the profile of eigenmode wave fields and their gradients (Fig.2). Second, through the
profile of &y (Fig.6).

For the same parameters as in Fig.5 (except the fast particle density profile half-width
81/2 and the central ion temperature T}y which are varied) we show in Fig.7 the critical
volume averaged fast-particle beta for marginal stability, < 8; >, plotted versus the
profile half-width s,; for various central ion temperatures Tjo. The stabilizing effect of
ion damping is clear for Ty > 20keV. We note a remarkable behaviour of < §; >, vs
81/2. For sy, < 0.35, flattening the fast particle profile is stabilizing as one can expect.
But for 0.35 < sy/2 < 0.55 flattening the fast particle profile actually destabilizes the
mode: the reason is that an increasingly large fast particle pressure gradient is present
near s = 0.8 (¢ = 1.5) where the eigenmode has a large amplitude (Fig.2a). This effect
is not small : < fB; >, is about a factor 2 larger for s;/; = 0.35 than for 8172 = 0.65.
This means that about half of the fast particles would be lost if the fast particle profile
widens beyond s/, = 0.35. For s,/; > 0.65, flattening the fast particle profile is again

stabilizing because of the reduced fast particle pressure gradient.

3.3 Dependence on the fast particle profile width s,/;, bulk
plasma 3, vg/v4 and w/w,;

In this section we consider the same sequence of plasma MHD equilibria as before but

consider the case where both bulk ions and fast ions are deuterium species. Fast ions

birth energy is 75keV. The temperature and density profiles are chosen as T.(s) =

Teo(1 — 82)Y/2, Ty(s) = Tio(1 — s?)M/2, n(s) = no(1 — 0.952)1/2 and ns(s) = njso(1 — s2)"s.

We keep the ratio T;/T, constant at 1.25. Different values of bulk 8, vo/v40 and w/ws

are obtained by varying the bulk density no, temperatures T} and T.o and magnetic field
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By each over a wide range of values:

By = 06-225 T

ng = 1.3-30x10"° m3
Tp = 015-128 keV

Tw = 012-10.3 keV

We set the major radius of magnetic axis at 1.8m. These parameters overlap those of
DIII-D TAE excitation experiments with NB injection [8], [9], [20] . We study the fast
particle critical beta corresponding to marginal stability of TAE modes ”a” and ”b” for
a range of fast particle profile widths s/, obtained by varying the coefficient «;.

The damping on bulk species depends on the ratios w/|kj|vehe, w/|kjj|veni and w/we
(see Eqs.(32)-(34)). The TAE eigenfrequencies w scale proportionally to the Alfvén ve-
locity on axis v, so the ratio w/|ky|v.n. is proportional to 1/, ,w/ |y |vens is proportional
to 1/8;, and (w/we)? is proportional to 1/ng. Thus for given T.(s), Ti(s), n(s) profile
shapes and for a fixed Tio/T.o ratio the damping on bulk ions and electrons of a given
TAE depends only on the plasma beta and on the bulk density ng. The DKE power on
fast ions depends on the ratio vo/v, through the integrals Ip, I; and I, in Eqgs.(35)(36)
and on the profile width s,/; through the parameter «; in Eq.(38). For a given TAE
mode, v, scales proportionally to v40. So the overall global stability properties of a given
TAE mode in a plasma with given profile shapes of Tj(s), T.(s) and n;(s) and a fixed
Tio/Teo ratio are determined by the plasma beta, the ratio w/w, (bulk density ng), the
fast particle profile width s,/, and the ratio vo/v40. The global stability of TAEs depends
also on the eigenmode wavefield structure as was illustrated in the previous section.

Before studying the stability of TAE modes in the presence of fast particles, we have
analyzed the DKE powers on electrons and bulk ions. For a given TAE mode and a fixed
plasma beta, we found that P. depends linearly on (w/we)?, for any combination of T.o,
neo and By giving the same beta. So P, depends on B, and ng. On the other hand we

have found that P; depends very weakly on w/w; and can be considered as a function of
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B; only.

We show in Fig.8 the critical volume-averaged fast particle beta, < 85 >.,, plotted as
a function of the fast particle profile half-width s, s, for various ratios of the birth velocity
to the Alfvén velocity on axis, vg/v4o. All data in Fig.8 has been calculated with the
same equilibrium plasma beta of 3% and for the “internal” n = 1 TAE mode (“a” in Figs
1-3). The ratio vo/v4o was varied by changing the density no and the temperature T},
Teo as 1/no, keeping By constant, so that 3 is constant. As in Fig.7, we have a remarkable
behaviour of < B >, vs 8y/;. For s <035 widening the fast particle profile is stabilizing
because the fast particle pressure gradient is decreased. But for s > 0.35 the opposite is
true: although the fast particle pressure gradient term is decreasing, the destabilization
comes from the increasingly large fast ion pressure gradient near the ¢ = 1.5 surface
where the TAE wave field and its gradient are large (see Fig.2a). For s,/; near 0.6 the
two effects balance about each other and for still larger s, /2 values the stabilizing effect
of flattening the fast particle profile dominates.

We note that for vg/v a0 S 1 the < Bf >cr is lower for sy/; = 0.7 (which corresponds
to ny(s) = ngo(1 — s?)) than for s,/ = 0.35 (which corresponds to n(s) = n (1 — s2)8).
This particular behaviour is a consequence of the TAE mode structure. By no means
could a local theory predict such a behaviour. It may have implications on the evolution
of the fast particle contents in the discharge: if this mode is close to marginal stability
and if s,/, goes beyond 0.35, the loss of fast particles, flattening the profile, would make
the mode more unstable, so that fast particles would continue to be expelled until s;, is
about 0.6. Only then can the fast particle profile build up again in the center. But in the
meantime, we see from Fig.8 that about half of the energy content of fast particles would
have been lost. Note that this may be related to the “bursts” of expelled fast particles
sometimes seen in the experiments [7}-[9] . Of course a nonlinear study is needed to
properly predict the time behaviour of fast particles [21] .

For the same parameters as in Fig.8, we show in Fig.9 the behaviour of < 8y >,

versus the ratio vy/v 4o for different fast particle density profile widths s, /2. For a given
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81/2, < By >¢r is a monotonically decreasing function of vg/v40. We note that this TAE
mode can become unstable even for values of vo/v49 as small as about 0.6. This is due
to the behaviour of |k)| of the mode, which is not exactly w/v4, but is lower in this
case due to the presence of “sidebands” in the poloidal Fourier mode numbers m: the
poloidal Fourier decomposition of the eigenmode wavefield shows actually a rather broad
m spectrum, due to the small aspect ratio, the elongation and shape of this configuration.

For a given fast ion profile width s;/; = 0.4 and plasmas of different beta values we
show in Fig.10 the < f; >., versus vg/v4o, for the same parameters as in Fig.9 except
the plasma beta. For all § values < 8; >, is a decreasing function of vo/v 9. For vo/v.40
close to 0.7, little effect of beta on < f; >, is seen: in this region of parameter space,
the stability is determined mainly by the competition between Pj"*™° and Pf*™° , and
the stability diagram corresponds in fact to a threshold in vg/v 40 of about 0.7. For larger
values of vg/v 40, increasing beta is always stabilizing through enhanced electron and ion
Landau dampings. We note that for vo/v4o < 2 and § = 1% we have < 87 >.,> 0.44,
which is indeed larger than the estimated < 8, > in TFTR D-T experiments [22] in
which no sign of TAE activity was reported.

In the next three figures (11,12 and 13) we show the corresponding results of Figs
8,9,10 but for the n = 1 “external” mode (“b”). In Fig.11 the values of < 8y >, are
plotted versus the fast profile width sy, for a given bulk beta of 3% and for various
values of vp/v40 obtained by varying nj and T, Tio as 1/ne. For 812 < 0.4, < 5 >4
is increasing with s;/; as the fast ion gradient decreases. For s,/, S 0.4 the behaviour
of < B >, versus sy/; depends dramatically on the value of vg/vae. For vo/vao < 1.5,
< Bs > monotonically increases with sy/;. But for vo/vao S 1.5 the opposite is true.
This particular behaviour, which is quite different from that of the “internal” n = 1 mode
(Fig.8), must be related to the global eigenmode wavefield structure, which is rather flat
in the center but has maximum amplitude in the outer region(Fig.2b). For vo/v4o above
1.5, the ratio vo/v, in the outer region is above unity for this mode: fast particles, if

present there, will be destabilizing. This is the reason for the decrease in < fy >, versus
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81/2 for 813 S 0.4. For vo/v 40 below 1.5 the ratio vg/v, is below unity in the outer region
where the mode amplitude is large and therefore no destabilization occurs by flattening
the fast particle profile.

In Fig.12 < By > is represented versus vo/v4o for various profile widths s; /2. For
this bulk beta value of 3%, < 5 >, is decreasing with vo/v 40 in all cases. We note that
this mode can be destabilized for values of vo/v 49 as low as about 0.8.

The behaviour of < B; > versus wo/vao for this “external” n = 1 mode has a
remarkable dependence on plasma beta, which is shown in Fig.13. For large vo/v40 the
TAE is stabilized when beta increases, due to enhanced electron and ion Landau damping.
On the other hand, increasing beta is destabilizing for small vo/v40: the minimum vo/v 40
for instability goes from 1 for 8 = 1% down to 0.7 for 8 = 5.5%. Increasing beta is lowering
the eigenfrequency of this mode (see Fig.3). Consequently the parallel phase velocity is
decreasing and more fast particles can destabilize the mode. Therefore the threshold in
vo/v40 is going down with increasing beta for this mode. This is not the case for mode
“a” (see Fig.10) because it is rather insensitive to beta (see Fig.3).

We now turn to the stability analysis of n = 2 and n = 3 TAEs. The wavefield of a
n = 2 TAE is shown in Fig.14. It corresponds to the peak labelled ’C’ in Fig.1. It has the
structure of en external mode having a wavefield extending over the whole cross-section,
with relative maxima at rational surfaces ¢ = (|m|+1/2)/|n|. The main differences with
the n = 1 external TAE wavefield are the smaller amplitude near the magnetic axis and
a poloidal structure exhibiting larger poloidal mode numbers m. The stability behaviour
of this n = 2 TAE is shown in Figs. 15 and 16. For vp/vse near unity the < 8y >,
instability threshold ranges from 0.3% to 1%. As for the n = 1 external TAE, we note
a monotonic dependence of < 85 >, on 833 for vo/vs < 1.5 and a drop of < 5 >
for vo/vao < 1.5 which is due to the large mode amplitude near the edge: note that
8172 = 0.71 corresponds to a parabolic fast ion density profile that has maximal gradient

at the plasma edge, which is probably not very realistic. A comparison of Fig.15 (n = 2)

with Fig.11 (n = 1 external) shows that the n = 1 mode is more unstable than the n = 2
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mode only for very peaked fast ion density profiles (s;/; < 0.3). This is due to the larger
amplitude of the n = 1 mode near the magnetic axis: having a large fast ion density
gradient there is therefore more destabilizing than for the n = 2 mode. As can be seen
from Fig.16 the n = 2 TAE can become unstable for vo/v 4o as small as 0.6.

The wavefield of a n = 3 TAE is shown in Fig.17. This mode is also of the external
type. It is as global as the n = 1 and n = 2 modes: a comparison of Figs. 2(b),
14 and 17 shows that there is no increase in the ’localization’ of the eigenmode with
increasing n. The n = 3 TAE wavefield is practically zero at the magnetic axis, and this
has consequences on the stability behaviour shown in Figs.18 and 19: for very peaked
fast ion density profiles the large fast ion density gradient is located where the mode
amplitude is small. As a result < 8y > is nearly constant for 0.18 < sy/; < 0.4. For
vo/vao = 1, < By >, ranges from 0.4% to 1.3%. We note that the n = 3 instability
threshold is very close to that of the n = 2. This may explain why TAEs with different

toroidal wavenumbers are simultaneously excited [9].

4 Discussion

Our model is based on a certain number of assumptions and simplifications that we can
summarize as follows. First, the kinetic effects have been considered as a small pertur-
bation of the ideal TAE wave fields. The dissipative contributions of the kinetic effects
have been taken into account (damping and drive) but not their effect on dispersion.
Since those cannot be considered small in the vicinity of Alfvén resonant surfaces, we
have restricted our analysis to cases where TAEs have no Alfvén resonances and thus
no continuum damping (in other words, no conversion to KAW or SQEW). In this sense
our results can be considered as a pessimistic evaluation of the TAE stability especially
for low n modes for which continuum damping is most efficient, since it goes as n=3/2 for
high n [15], [16] . Second, we have neglected trapped particle and finite drift orbit width
effects.

On the other hand, we have solved the problem globally in exact toroidal geometry
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and we have shown that this approach can give very different results from those of
local models (see e.g.Fig.5). The global eigenmode wavefield structure is an important
factor determining the instability threshold. In particular, < 8; >, can be a non-
monotonic function of the fast particle density profile width and in many cases flattening
the fast particle density profile is destabilizing (Figs 7, 8, 11, 15 and 18). This may have
consequences on the existence of bursts of expelled fast particles that are seen in some
experiments [7]-[9] .

We have identified and studied two types of TAEs: type “a” (internal) and type “b”
(external) having different wave fields (Fig.2) and therefore different stability properties
(Figs.8-13). They behave differently with respect to equilibrium plasma parameters, in
particular the plasma 3. They also couple differently to an antenna (Fig.1): type “a”
TAEs couple rather weakly and independently of 3, wheras type “b” TAEs couple better
and approximately proportionally to # due to the increased compressibility of the mode
(Fig.4).

Finite 8 affects the TAEs and their stability in the following way. Increasing 3 is
always stabilizing type “a” TAEs in strengthening the damping on bulk species (Fig.10).
The effects on type “b” TAEs are more complex. The real part of the eigenfrequency
decreases with § (Fig.3). This was seen in the DIII-D experiment [20] and already
computed for circular cross-sections [11] . Therefore the parallel phase velocity decreases
and more fast particles can resonantly interact with the wave and destabilize it. This
destabilizing effect competes with the increased damping on bulk species with increasing
B and the final result can be summarized as a decrease in the vo/v40 instability threshold
(vo/vao < 1) and an increase in < 85 > for vo/v4e above unity (Fig.13). We note that
the vo/vao instability threshold below unity (~ 0.6) is in a good agreement with the
DIII-D experiment [9] .

The parameters determining the TAE stability are: vo/v 40, 3 and ng, for the damping
on bulk species and, in addition, B; and s,/, for the drive and damping on fast jons.

Although the computations presented in this paper were not made with the intent to
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analyze a particular experimental shot, we can give some clues as to how our results
should be interpreted so that a comparison with experiment can be made. The time
evolution of a discharge should be analyzed as a motion in the 5-dimensional parameter
space vo/v4o, B, no, By, 3172 (note that additional parameters such as plasma shape,
current, density and temperature profiles could also be important but were not varied
in this paper). The instability thresholds calculated with our model can be viewed as
< Bf > surfaces function of the four other parameters. Instability occurs when the
trajectory of the discharge crosses a < 8y > surface. Let us consider the example of
NB injection and, for the sake of simplicity, let us assume that s,/; is constant. As NBI
is switched on, there is a B; increase, a bulk J increase and quite frequently a density
increase, which implies an increase in vo /v if By is kept constant. Let us consider the
stability of type “b” TAE (Fig.13). The trajectory of the shot projected on Fig.13 is
then a line going in the upward right side direction. But S is increasing, which means
that if vo/v40 is of order unity or even lower and 8y of the order of 1%, the instability
threshold will be crossed for any value of 5. We note that these values of 85 and vo/v40
are in close agreement with the DIII-D experiments (see Fig.10 of Ref. [9] ). There may
be other shots that evolve in such a way that the bulk 8 increases fast enough so that
the shot trajectory remains below < By >, at any time; this can happen even if vg/v a0
is much larger than 1. Although this is also in qualitative agreement with experiment
[9] , a more careful comparison should be made, including the study of higher n modes.
With increasing n, the radial and poloidal eigenmode structure becomes more and more
difficult to resolve numerically. We are therefore restricted to the study of low n modes.

Besides a comparison of the mode frequencies and instability thresholds with experi-
ment, another check would be to compare the wavefields in vacuum with those measured
with magnetic probes. The analysis is complicated by the fact that very often several
n’s are seen simultaneously [9]. One could have expected to see the most unstable modes
only. This indicates that the different modes observed are in fact one mode having several

n’s coupled by a break of axisymmetry. This break could come either from a non-linearity
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when the mode amplitude is large, or from error fields and ripple. We note that the eigen-
frequencies of different n’s can be very close to each other (see e.g. modes labelled ’b’
(n =1) and ’C’ (n = 2) in Fig.1). This implies that a small amount of non-axisymmetry
can substantially couple different n’s, resulting in a change in eigenmode structure and

eigenfrequency.

5 Conclusions

We have developed a hybrid fluid kinetic model for the quantitative prediction of the
global linear stability of low n TAEs in the presence of a fast ion population. We have
applied this model to a wide variety of cases in order to study the dependence of the TAE
stability on a certain number of parameters which were varied over a wide range. The
critical volume-averaged fast ion beta corresponding to marginal stability, < 8y >, was
studied versus the four parameters: vo/v40, 8, no and s, /2. Typical valuesof < By >, are,
for vo/v4o near unity, in the range 0.3% to 2%, which is in rather good overall agreement
with the DIII-D experiment [9] . For vo/v4o = 1.5, the < 8; >, instability threshold
is around 0.3%. It can become smaller than 0.1% only for very peaked fast ion density
profiles or for very low bulk plasma beta. The finite 3 effects on type “b” (external)
TAEs are a strong decrease in real eigenfrequency, a decrease in the vo/v40 threshold and
a stabilizing effect for vg/v40 above unity.

We have shown that a global stability analysis is a necessity: the fast ion drive,
damping on electrons, damping on bulk ions and damping on fast ions take place at
different radial positions. The TAE wave fields extend over the whole plasma cross-
section. There is no mode localization, even with increasing n. This fact complicates the
analysis of experiments in which there is a toroidal velocity shear: one does not know
what the Doppler shift is.

Our results are in agreement with experiments so far. More work is necessary to
further assess the validity and applicability of our model, in particular a more detailed

case-by-case analysis of some experiments. The saddle coil experiment at JET will also
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provide interesting material for a comparison with theory.

There may be positive aspects to the Alfvén wave destabilization by fast particles.
The presence of wave fields modifies the way fusion alpha particles give their energy to
bulk species: for example, the alpha energy can be transfered directly to ions (see e.g.
Fig.5) in a non-classical way, by collisionless mechanisms. One possible scenario could be
to operate in a situation where a TAE (or another mode such as the GAE) is unstable
but with a saturated amplitude small enough not to destroy alpha particle confinement.
Another possibility would be to operate when TAEs and other modes are stable and
excite a TAE or a GAE with an antenna. If the mode is close to marginal stability,
a large power transfer between fast ions and bulk species can take place even with a
moderate antenna power.
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Figures

Fig.1. JET saddle coils resistive coupling versus frequency for two possible antenna
phasings: two top antennas with (+,-) phasings (dotted line) and four top antennas
with (+,-,4+,-) phasings. The labels a,b,c,d,e correspond to n = 1 modes and
A,B,C,D,E,F,G ton = 2 modes. The plasma parameters are Ry = 3m, By = 3.45T',
npo = 5 x 10¥m=3, v = 1072, qo = 1.1, ¢, = 3.34, I, = 5MA, < B >= 3.9Y%,
Bpot = 0.78, a/R = 0.36, « = 1.63. Note that f = 400kHz corresponds to a

normalized frequency Row/va0 = 1.

Fig.2. Contour plots of the real part of the binormal component of the wave electric
field, Re(Ey), of the n = 1 TAE modes corresponding to the peaks labelled ”a” and
”b” in Fig.1.

Fig.3 Eigenfrequencies of the n = 1 TAE modes "a” and ”b” versus f,o for the same

parameters as in Fig.1 except the p’(1) profile which is scaled by a constant factor.

Fig.4 JET saddle coils resistive coupling (top) and compressibility (ratio of amplitudes
B/ B.)(bottom) of the n = 1 TAE mode ”b” versus S, for the same parameters

as in Fig.1 except the p/(v) profile which is scaled by a constant factor.

Fig.5 Radial profiles of the wave-particle DKE power transfers to electrons (continuous
line), bulk ions (open symbols) and fast ions (dotted line: P}°™e; filled symbols:
Pjrhomoy of the n = 1 TAE mode "a”. Ty = 10keV, Tio = 30keV, fusion alpha
particles with ns(s) = 10'¥m=3(1 — s2)?2, s,/ = 0.176, vo/v4o = 1.73. The radial
variable s is \/W where 1, is the poloidal flux at the plasma surface. The other

parameters are the same as in Fig.1.

Fig.6 Radial profiles of v,/vss; (dashed line), v,/vin. (dotted line) and |ky| Ro (continuous

line) of the n =1 TAE mode ”a” for the same parameters as in Fig.5.
Fig.7 Volume-averaged fast particle beta for marginal stability, < 8; >, of then =1
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TAE mode "a” versus alpha particle profile half-width s,/,, for various ion temper-
atures Tjo. The other parameters are the same as in Fig.5. (The mode is stable

below the curves, unstable above).

Fig.é Volume-averaged fast particle beta for marginal stability, < 8; >, of the n = 1
TAE mode ”a” versus fast ion density profile half-width s, ,, for various values of
vo/v40 and fixed plasma bulk beta of 3% and T = 1.25T. vo/v4o is changed by
varying the bulk density no and the temperatures T;p and T.o as 1/no, keeping By

constant. Ry = 1.8m, By = 0.74T, deuterium fast particles injected at 75keV.

Fig.9 < B >, of the n = 1 TAE mode "a” versus vp/v4o for various values of fast ion

density profile half-width s/, for 8 = 3%. Other parameters: same as in Fig.8.

Fig.10 < Bs > of the n =1 TAE mode ”a” versus vg/v 4o for various values of plasma
bulk 3 for a fixed fast ion density profile half-width s,/, = 0.4. Other parameters:

same as in Fig.8.

Fig.11 < Bf >, of the n = 1 TAE mode "b” versus fast ion density profile half-width

812 for various values of vo/v 40 and fixed plasma bulk beta of 3%. Other parameters:

same as in Fig.8.

Fig.12 < fB; >, of the n = 1 TAE mode "b” versus vo/v40 for various values of s1/2-

Other parameters: same as in Fig.8.

Fig.13 < B >, of the n =1 TAE mode ”b” versus vg/v 9 for various values of plasma
bulk B for a fixed fast ion density profile half-width s,/; = 0.4. Other parameters:

same as in Fig.8.

Fig.14. Contour plot of the real part of the binormal component of the wave electric

field, Re(Ey), of the n = 2 TAE corresponding to the peak labelled ”C” in Fig.1.

Fig.15 < Bf >, of the n = 2 TAE shown in Fig.14 versus the fast ion density profile

half-width s,/,, for various values of vo/v4¢ and fixed plasma bulk beta of 3.86%.
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Other parameters: same as in Fig.8.

Fig.16 < B; >, of the n = 2 TAE shown in Fig.14 versus vp/v.0 for various values of

31/2 and fixed plasma bulk beta of 3.86%. Other parameters: same as in Fig.8.

Fig.17. Contour plot of the real part of the binormal component of the wave electric

field, Re(FEy), of a n =3 TAE.

Fig.18 < fB; >.. of the n = 3 TAE shown in Fig.17 versus the fast ion density profile
half-width sy/,, for various values of vo/v40 and fixed plasma bulk beta of 3.86Y%.

Other parameters: same as in Fig.8.

Fig.19 < B > of the n = 3 TAE shown in Fig.17 versus vp/v 40 for various values of

8172 and fixed plasma bulk beta of 3.86%. Other parameters: same as in Fig.8.
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