LRP 499/94 September 1994
A DIRECT POISSON SOLVER FOR
PARTICLE-IN-CELL (PIC)
SIMULATION

T.M. Tran, K. Appert and O. Sauter

A direct Poisson solver for Particle-In-Cell (PIC)
simulation

T.M. Tran, K. Appert and O. Sauter

CRPP, Association Euratom-Confédération Suisse,
Ecole Polytechnique Fédérale de
Lausanne, CH-1007 Lausanne, Switzerland

ABSTRACT

A direct Poisson solver, based on the isoparametric finite element
discretization and a domain decomposition technique, is described. A
simple parallelization scheme is proposed and evaluated on a 128 pro-
cessor Cray T3D.

1. Introduction

In particle-in-cell (PIC) simulations [1-2], there are two distinct parts: (1) A particle
pushing part, using Newton’s equation of motion and (2) a second part where the
electromagnetic fields created by the particles (through their charges and currents)
should be found from the Maxwell’s equations. In the electrostatic approximation in
which the high-frequency magnetic field is neglected, only Poisson’s equation for the
electric field has to be solved.

Rapid solvers such as the fast Fourier transform [3] and the cyclic reduction [4]
based methods are generally utilized to solve the Poisson’s in PIC simulations. They
are, however, restricted to rather simple geometries. The solution method described in
this report is specially developed to be applied to general 2D curvilinear geometries and
arbitrary shapes. The isoparametric bilinear finite elements [5] are chosen to discretize
Poisson’s equation on a non-rectangular mesh (section 2). Using the domain decom-
position technique, complicated shapes of the computational domain can be handled,
resulting in the linear system Az = b, where the matrix A has a block structure. The
two-step (factorization and solve) direct method to solve this system together with a
simple scheme to parallelize the algorithm are presented in section 3. It is important to
note that only the solve step is required in the time loop of the PIC simulations since
A is constant. The timing performances of the parallel solver on a 128 processors Cray

T3D system are shown in section 4. Section 5 contains the concluding remarks.

2. Discretization of the Poisson’s equation

Consider Poisson’s equation in 2D cylindrical (r, z) coordinates

10 94 p .
;:'a—r E + — azz = —'6—6, in . (1)

This differential equation, with given boundary conditions, can be shown to be equiv-

alent to the following variational formulation [5]: Find ¢ such that

[) [e

Assume that the computational domain is subdivided into quadrilateral cells
which may be non-rectangular in order to fit the curved boundaries. The integrals in

Eq. (2) can then be performed using the isoparametric transformation [5] defined as

r(&,n) = a1 + asf + asn + asén,

z(&,m) = P1+ B2 + Pan + Baén,
which maps quadrilaterals on the plane (r, 2) to squares on the (£, 7) plane. Using the

(3)

local node ordering shown in Fig. 1, the coefficients (a;, 8;) can be computed as

oy =(ri+ra+rs+rs)/d Br=(n1+22+23+2)/4
ag=(—r1+ra—r3+ry) /4 Pa=(—2+22—23+24)/4 @
ag=(—r1—rz+r3+ry) /4 Ps = (—21— 22 + 23 + 24) /4
a4 =(r1—ra—r3+ry)/d Pa=(21—22— 23+ 2) /4

The contribution from a given cell to the integral on the left-hand-side of Eq. (2)

can be approximated by choosing the lowest order bilinear test functions defined on the

square —1 < { < +1, -1 <np < +1L:

where

Ai(z)=(1—-2)/2,
Az(z) =(1+72)/2,

and expanding the unknown function ¢(&,7) in terms of the same bilinear functions

¢ (€m) = d1A1(E) A1 (n) + b2 A2(E) A1 (n) + ds A1 () A2 (n) + B A2 (€) A2 (n) (6)

3 (-1,1) (1,1)

- (-1,-1) (1,-1)

Figure 1: The isoparametric transformation (r,z) — (n,¢). The 4
corners of the quadrilateral cell 1, 2, 3 and 4 are respectively mapped
to the points (—1,-1), (1,-1), (—1,1) and (1,1).

where (@1, @2, ¢3,P4) are the finite element solution for the potential ¢ on the four

nodes of the cell. The derivatives are computed, using the chain rule and Eq. (3):

g? (2 + 0!477) 6_ + (B2 + ﬂw) 6 :

P ©
= = (as+ a4€) 3— +(Bs + ﬂ«f)
The right-hand-side of Eq. (2) is obtained by noting that the charge density p can

be written in terms of the particle coordinates (rp, zp),p = 1,..., Np as

p(r,z) = ZQP”5(T —rp)é (2 —2p)

=1

and thus

J[porrz = Z v [€ (g 2),1 (1, 29)] (8)

which simply reduces to the standard CIC charge assignment [1] when the cell in (r, 2)
is rectangular.

Repeating the procedure of calculating the integrals just described, for every cells,
a linear system of equations for the potentials ¢ defined on the mesh nodes is obtained.
The electric field E = ~V¢ on the particle position, needed in the particle pushing,
will be computed locally in the following way.

e Obtain the particle coordinates in the isoparametric space (£p,7,) from
(rp, 2p) by inverting the Egs. (3).
e Interpolate the local electric field

(B¢, En) = —(04/8¢,06/0n)

on the particle using the prescription that 9¢/9¢ (0¢/dn) is piecewise linear
(constant) in n and piecewise constant (linear) in £, consistently with the
approximation chosen in Eq. (6).

¢ Finally invert Eqgs. (7) to obtain the field components (E,, E,).

Note that this way of interpolating the field on the particle produces discontinuities
for the electric field as the particle crosses the cell boundaries. It has however, the

advantage that the scheme is completely local and can be easily parallelized.

3. The solver algorithm

The isoparametric finite element discretization of the Poisson’s equation, described in
the previous section leads to the problem of solving Az = b where z is the vector of
the unknown potentials ¢ on the mesh nodes, b is the known source vector and A is
a symmetric positive definite matrix. When the computational domain 2 is a single
quadrilateral of N = Nj x Na cells (where Ny and N are the number of intervals in
the directions z and r respectively), A is a band matrix. By ordering the elements
first in the direction of increasing z for example, the half bandwidth of A is simply
m = Ni + 2. In that case, the linear system can be solved by computing first the

Cholesky factorization

A=LLT (9)

where L is a lower triangular matrix with the same half-bandwidth m. The solution
vector z can then be obtained by successive forward and back substitutions to solve
the triangular systems

Ly=b, LTz=y. (10)

The factorization and solve steps could be done by calling the LAPACK [7] routines
SPBTRF and SPBTRS. One can show that the number of floating-points operations re-
quired for the factorization is approximately m (m being the matrix half-bandwidth)

times larger than that required for the solve step.

The alternative is to decompose the computational domain into N, smaller
quadrilateral sub-domains. With this technique, more complex shapes of Q could be
considered. On the other hand, we will also use this decomposition method, even in
the case of a simple rectangular domain for parallelization.

By numbering the interior nodes of every sub-domains before the points (which we
will refer to as connectivity points) on the boundary between a pair of sub-domains,

the matrix A acquires the following block structure:

A 0 Vi

A= F (11)
0 Ay, Vn,
vl ... V§ D

where the diagonal matrices Ay are band symmetric positive definite, the off-diagonal
matrices V3 are sparse and the connectivity matrix D is symmetric positive definite.
Writing the solution vector z = (z1,...,zn,,24)¥ and the right-hand-side vector b =

(b1,...,bn,, bd)T, the linear system could be expressed in a more explicit form as

Agzr + Vezga=bx, k=1,...,N,

N,
ZVkT:Ek-i-Dxd = by
k=1

which can be reduced to

Apzp =by —Vizrg, k=1,...,N, (12q)
N,
Dzyg=10b4— Z VEA;lbk (12b)
k=1
where
N,
D=D-> V{4 (13)
k=1

The factorization algorithm (known as the asymmetric block factorization in the
literature [6]) can be described as follows, together with the sequence of calls to the

LAPACK routines:
1. Initialize D « D

2. For each k = 1,.‘.,,N,

2.1. Factor Ay = LzL} (SPBTRF)
2.2. Solve (L LT)W =V, (SPBTRS)
2.3. Modify D « D - VITW

3. Factor D = LpL] (SPOTRF)

We have introduced a temporary matrix W in the step 2.2. To avoid defining a whole
matrix, one can solve (step 2.2) and compute D (step 2.3), column by column. In
addition to save memory storage, it is possible to reduce the number of operations
since V} is sparse and may have many null columns. At the end of the factorization,

only the matrices Ly, V% and Ly need to be kept, from which the solution of the linear

system is straightforward:

1. Foreach k=1,...,N,

1.1. Solve (LxL])yr = bx (SPBTRS)
1.2. Compute by «— bz — V,‘T Yr

2. Solve (LDLg)wd =bg (SPBTRS)

3. Foreach k =1,...,N,

3.1. Solve (LxL¥)t = Vizq (SPBTRS)

3.2. Compute zp = yp — ¢t

Here, t is a temporary array. During the solve step, by is overwritten by y, (step 1.1)
and then by x (step 3.2) while by is overwritten by z4 (step 2), since the right-hand-side
array b usually is no more required.

In the parallel implementation, we consider only the solve phase since the factor-
ization (which could be performed on a serial machine) needs to be done only once.
In addition to the factorization just described above, the inverse of the connectivity
matrix D is computed by calling for example the LAPACK routine SPOTRI. The data
partition among the N, processors can then be done in the following way. The sub-
matrices (Lg, V}) and the partial right-hand-side vector b, are assigned to processor k
(k =1,...,N,). The N. x N, matrix D1 (where N, is the number of connectivity
points) is subdivided into N, rectangular sub-matrices I_);l of ri contiguous rows and
N, columns and distributed to the N, processors, with r; given by

_ { int (N./N,) +1, for mod(N,, N,) processors;

T) int (Ng/N,), for the remaining processors.

A copy of the full right-hand-side vector by is given to every processors. With this
data partition, the parallel solve algorithm could be formulated for the processor k as

follows.

1. Do in parallel

1.1. Solve (Lka)yk = by (SPBTRS)
1.2. Compute 83 «— VkTyk

2. Compute the sum reduction across every processors sy «— 3 s

3. Do in parallel

3.1. Compute bg «— bg — s

3.2. Compute z4 = Dy1b; (SGEMV)
4. Redistribute z4

5. Do in parallel
5.1. Solve (Lx L)t = Vx4 (SPBTRS)
5.2. Compute 7 = y — ¢

Note that the steps 1, 3 and 5 are completely parallel. The step 2 involves communi-
cations across all the processors while the redistribution in step 4 involves only the few
processors that need the elements of vector z4 to perform their back-substitution. The
BLAS-2 routine SGEMV was invoked to perform the (rectangular) matrix-vector product
in step 3.2. It is noteworthy that at the end of the solve, the solutions at the interior
points and at the boundaries of a sub-domain k are available to the processor % so that

the derivatives of the solutions (as defined in section 2) could be calculated locally.

4. Results on T3D

In the following, a rectangular domain of N; X N3 mesh cells is considered. We use a
one-dimensional partition such that each sub-domain has equal size as shown in Fig. 2.
This particular partition was chosen because in PIC simulation of beams propagating
along 2, the number of particles in these sub-domains is practically equal and constant
in time, except during the start-up phase.

It is possible to estimate the size of the different matrices stored in each processor
as follows. Denoting the half-bandwidth of Ly as my ~ N;j/N, and the total number
of connectivity points as N = (N3 + 1)(N, — 1), N, being the number of sub-domains

(processors), we have:

PEO PE1l PE2 PE3 N2

N1

Figure 2: One-dimensional partition of a rectangular domain for a four
processors case. The entire domain is meshed into Ny X N cells.

e Local matrix L.

N N2
[Lk] ~ mk—lNz ~ e

N, N? N, (14a)

¢ Connectivity matrix D;l.
~ NiN, (14b)

while the number of non-zero elements of the sparse matrix V} is negligible in most of
the cases considered here.
The operation count per processor Nop, for the solve algorithm described in the

previous section can then be estimated. The result,

(15)

_ 4Ny NN,
N°P=8[Lk]+2[D;1]z2N1N2(Ly 2 ')

Mt ™M
shows that the number of floating-point operations decreases almost as 1/N2? (N, being

the number of processors) down to a minimum at

N, = Nexiy = $/4N2 /Ny, (16)

where it starts to increase linearly with N,. Hence, this method cannot be very efficient
if used with a number of processors largely exceeding the critical number N;;. On the
other hand, it is very suitable for thin domains satisfying N1 > Na.

Elapsed times measured on the T3D are shown in Table 1. The time spent for the
operation zg = D;lbd (SGEMV) needed to solve for the connectivity points is indicated

separately from the total time and labeled as “Conn. time”. Apart from the data at

N. of Proc. Total time (ms/step) Conn. time (ms/step)

2 800.287 0.352

4 254.469 1.096

8 59.747 5.481

16 24.584 8.151

32 24.926 18.153

64 106.447 102.448

128 153.988 88.713

Table 1: Timing of the parallel solve algorithm for the 256 x 64 problem.
The total times and the times to solve for the connectivity points are
obtained by taking an average over 100 executions of the solve loop.

N, = 64, this connectivity time grows linearly as expected from the second term in
Eq. (15). The overall behavior of the total time is roughly proportional to the numbers
of operations, Eq. (15), and in particular, the minimum is well described by Eq. (16).
The same is true for a 1024 x 140 case which is shown in Table 2. Note that it was not
possible to run the latter case with a number of processors outside the range shown
in the table due to the present memory limitation of the T3D processors (2 Mw). A
summary of the results is depicted in Fig. 3.

Using the number of operations per processor Nop as given by Eq. (15) and Tables
1 and 2, the speed of computation (expressed in terms of Gflops) for the solver can be
estimated. This is shown in Fig. 4 as a function of the number of processors. The solid
line represents a speed of 10 Mflops per processor. Single-processor code optimization
is expected to yield an improvement of this figure by a factor of 2 to 3. This effort,

however, will be postponed until a final version of the solver is adopted.

10

N. of Proc. Total time (ms/step) Conn. time (ms/step)
16 638.406 32.740
32 190.902 72.122
64 190.131 153.014

Table 2: Timing of the parallel solve algorithm for the 1024 x 140

problem.
1 R R
r
:
= 0.1 -
[!]
= | -
=
175}
0.01 N A N A PR | N a PRSP |
1 10 100

Number of Processors

Figure 3: Solve time in seconds versus the number of processors on the
T3D for the 256 x 64 problem (lower curve) and the 1024 x 140 problem
(upper curve)

5. Conclusions

In this paper, we have presented a direct method to solve Poisson’s equation for a
2D cylindrical geometry of arbitrary shapes. Only the parallelization of the solve step
of the algorithm was considered and tested on a 128 processor Cray T3D system. It
has been shown that this method is well suited for a moderate number of processing
elements, Eq. (16), only; in our case, this number is of the order of 32 to 64, Fig. 3.

The reason for the limitation is the inappropriate treatment of the connectivity matrix,

11

) 1 3 + S E
8" [*
& 7
-
Q
&, 3
w 0.1 -
0.01 . — 1 . s
1 10 100
Number of Processors

Figure 4: The computational speed in Gigaflops versus the number of
processors on the T3D for the 256 x 64 case (¢) and the 1024 x 140 case
(4). The solid line is given by a rate of 10 Mflops per processor.

Eq. (13), as a full matrix. An important improvement of the method could be achieved
by noting that D is symmetric and has a band structure. In the benchmark problem

considered, the half bandwidth is m = 2N, which implies that the size of D is
[D] = mN, = 2Na N, ~ 2NZN,.

With a scalable solve routine (equivalent to the SPBTRS routine), we would expect that
the time to solve the connectivity points is a constant function with respect to the
number of processors, in contrast to the linear increase obtained when D is assumed to
be full. Parallel methods to solve such a system have yet to be found.

So far, the factorization of A; and the inverse of D have been obtained using the
serial machine. A minor improvement of this code consists in making it less dependent
on the serial machine. This implies the parallel factorization of D using for example
SCALAPACK [8)]. For this, however, a 2D secondary partition has to be introduced for D

which may quite substantially increase the housekeeping,.

12

Acknowledgments

This work was supported in part by the Swiss National Science Foundation and by

the Cray Research Parallel Application Technology Program. It is a pleasure to thank

the Cray personnel for their cooperative attitude, in particular we would like to thank

Drs. K. Ghosh and M. Roche.

References

1.

C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, McGraw-
Hill Inc., 1985.

R.W. Hockney, J.W. Eastwood,Computer Simulation using Particles, Adam Hilger
Inc., 1988.

R.W. Hockney, “A Fast Direct Solution of Poisson’s Equation using Fourier Anal-
ysis”, J. Assoc. Comput. Mach. 12, 95 (1965).

O. Buneman, “A Compact Non-Iterative Poisson-Solver”, SUIPR report No. 294,
Stanford University, 1969.

G. Strang, G. Fix, An Analysis of the Finite Element Method, 1973.

A. George, J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Prentice Hall Inc., 1981.

E. Anderson et. al., LAPACK Users’ Guide, SIAM, 1992..

J. Choi, J.J. Dongarra, D. Walker, R.C. Whaley, “ SCALAPACK Reference Man-
ual”, Version 1.0Beta, ORNL/TM-12470, 1994.

