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ABSTRACT

An algorithm for approximating a given complex frequency response with
a rational function of two polynomials with real coefficients is presented,
together  with it extension to distributed parameter systems, the
corresponding error analysis and its application to a real case.



1. Introduction

In many situations it is possible to characterise a real system by measuring
its frequency response, using for example homodyne synchronous
detection or spectral analysis. The measured complex transfer function
may consist of a large number of data points and it may be useful to
express it in a more compact form, so that the system may be
characterised by a reduced set of parameters. The simplest case is that of
a single-input single-output linear and stationary system described by an
ordinary differential equation
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where u and y are respectively the input and the output, and {ag,...,an,bo,
....bm} are real coefficients which characterise the system. The transfer
function of such a system is obtained by taking the Fourier transform of
equation (1) and takes the form of a rational function of two polynomials
in jo with real coefficients:
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The data reduction task then consists of adjusting these coefficients so
that this rational function approximates the measured transfer function.

An algorithm has been specifically developed to perform this reduction
and is presented in the next section. Its extension to distributed
parameter systems is then derived (section 3) followed by an appropriate
error analysis (section 4). The application to the study of the JET plasma
response in the Alfvén eigenmode frequency range illustrates the power of
the method (section 5).



2. Algorithm

The core problem is that of approximating an experimental complex
function H(wyk) measured for a set of discrete values wi with a rational
function of polynomials in jo with real coefficients.

In the field of automatic control this approximation task is referred to as
the H.. method; H, denotes here the class of the proper analytic functions
which are real on the real axis and have no poles in the right hand plane.

They aim at setting up a controller for a plant whose performances have’
been specified in the frequency domain. Calculation methods have been
developed for this purpose [1]. Two difficulties arise when applying the
previously proposed methods to the present problem: firstly, the
calculation requires at some step the evaluation of the Fourier coefficients
of the function to be approximated, which may prove cumbersome if this
function is known only in a restricted frequency range. Secondly, the
method is not readily extensible to multi-variable systems. Thus the quest
for a better suited algorithm seems inescapable.

The problem may be posed in these terms: which rational function in jo
with real coefficiénts and with a given numerator and denominator
degrees minimises an adequate cost function that is chosen to quantify
the deviation of this function from the measurements. The function to be
found will be denoted by |
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A(jo) being normalised so that ay = 1. The differences with the
measurements are
e(wx) = H(oy) - Hiwy) , (4)

where k runs over the samples. If these are all independent, one obvious
choice for the cost function is the mean square of the error modulus:



-4 -
K
=RL g | * (o) e(mk (5)

The asterisk denotes the conjugate complex. Since the error is not a
linear combination of the coefficients to be adjusted, the minimisation of
this cost function is not straightforward and would require undesirable
non-linear programming. Instead a slightly modified definition of the
error can be used:

eo=Ae=B-AH _ (6)

This is now a linear combination of the sought parameters and the |
minimisation of the corresponding cost function is a simple linear
operation, namely the resolution of the overdetermined system of linear
equations '
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with respect to the parameter set {ag,...,an-1,.bo,...,bMm}, under the
constraint that thése parameters be real (see Appendix 1).

Modifying the definition of the error can be seen as a weighting of the
individual measurements with A(jok). This weighting is not favorable
since the modulus of A is small where the transfer function is large and
where important information is to be found. This undesirable effect may
by attenuated if an approximate value of A, Ag is known, in which case a
less biased error may be built:

e=fe=B_AH, (8)

At this point the following iterative procedure may be set up:'the cost
function corresponding to the error e; is minimum for the two
polynomials A); and Bj; these may in turn be used to define the next error:

62=—B———A+H. (9)
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The sequence of errors that this procedure defines in fact converges
toward the original error e:

=B Ay ' 10
e A Al —e, | (10)

in the sense that A;/A;.; tends toward 1 and Bj/A;.; towards the transfer
function to be identified, B/A, thus removing the unfavorable weighting
near the resonances. The most natural choice for the seed value of A; is Ag
= 1. ' '
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Fig. 1 Real and imaginary parts of the test transfer function given
by equation (11). Solid line: raw signal, dotted line: exact signal,
dashed line: best approximation.
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The algorithm is illustrated with a simple second order transfer function, . =

_ l4jo : | .
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to which a gaussian noise of 'standard deviation 0.2 has been added (Fig.

~ 1). Convergence is reached after a few iterations (Fig. 2). The difference

with the unperturbed transfer function is due to the presence of noise.
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Fig. 2 Convergence of the transfer function parameters for the test
case together with their error bars.

In this procedure the transfer function structure, i.e. the numerator and
denominator degrees, must be chosen. This may be determined by a
priori knowledge of the system dynamic. If not, inspection of the cost
function when the degrees of the numerator and the denominator are
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increased will show a clear saturation in the improvement of the cost
function (Fig. 3), when the adequate structure is encountered [2]. Thus
the transfer function structure can safely be chosen as the one with the
minimum number of free parameters which yields an acceptable cost
function.

- Loss function

Fig. 3 Cost function for different transfer function structures.

3. Distributed parameter systems

It can be shown [3] that the transfer function of a distributed parameter
system at different positions is characterised by a common denominator
but distinct numerators. The proposed algorithm is easily extended to
such a system. The overdetermined system to solve may be rewritten
keeping the previous statement in mind:

N- M
(o) Hlog,xg) = - 21 an (jor)" H{wk,x)) + 2 bm(x1) (jeo)™
n=0 m=0 (12)

k=1,.Kl=1,..,L
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and the definition of the corresponding cost function adapted:
o2=11 3 ¥ [Bowx) g 0 (13)
k

Here x1 denotes the measurement positions.

.Transfer function

Fig. 4 Real and imaginary parts of a two valued transfer function
with a small amplitude second value. Solid line: raw signals, dashed
' line: best approximation.

There are two situations in which the simultaneous analysis of many
measurements may be advantageous. The statistical error decreases with
an increasing number of treated signals, thus making possible the analysis
of poor signal to noise measurements without reducing the noise level or
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increasing the number of data points. In a similar way, combined analysis
of good signals together with noisy signals or signals with a small
amplitude may improve the estimation of the transfer function of the

latter. The reliability of these estimations must then be tested against an
appropriate error analysis, developed in the next section.

This is illustrated in the following example: the transfer function of the
previous exarhple with a noise level of 0.1 is analysed together with a
similar transfer function, 10 times smaller in amplitude but with the same
noise level, reaching then 100% (Fig. 4). It is, however, still possible to
extract the transfer function of the smaller signal with a 15% standard
deviation.

In coding the algorithm for'multiple transfer functions, it is worth taking
advantage of the fact that the independent variable matrix in the linear
equation set (12) is sparse with a density decreasing with the number of
analysed signals. Thus the algorithm will gain both in execution time and
in memory usage if an appropriate solving method is chosen.

4. Error analysis

Any experimental data analysis should include an estimation of the error
of the extracted parameters, giving some insight into the reliability of the
results. A substantial amount of this information is contained in the
covariance matrix of the estimated parameters.

This covariance matrix for the coefficients in the fitted rational function
may be calculated using standard linear regression techniques, assuming
that all samples of the measured transfer functions are independent and
have the same probability distribution. For high transfer function orders
however the interpretation of the polynomial coefficients is not
straighforward and it may be easier to work with the parameters of the
partial fraction decomposition:
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The covariance matrix of the parameter set {aN,...,ao.bM....,bo} will be -
denoted by Cap and that of {ry,... JIN.P1,.. ..PN.do,...,dm-N} by Crpd. The
calculation to convert the two covariance matrices is as follows.
Differentiating the first form of equatipn (14) gives

-B Z dap (jo)* + A Z dbm (jco)m

dH =- Il—O . m=O : . _ ( 1 5)

and the s_econd form:
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where Qn denotes”
Qn = __A____ ] . (17)
aN (10) - Pn) .

Equating the coefficients of each power of jo of both forms of the
differential together with some linear algebra (Appendix 2) yields the
Jacobian of the mapping, J. Conversion of the covarlance matrix then
follows the usual rule:

Crpd =J Cad'. (18)

5. A specific application

The Alfvén Eigenmode Active Diagnostic (AEAD) of JET [4] aims at
characterising the various Alfvén eigenmodes in different plasma
‘conditions. Alfvén waves are externally driven by AC currents in the
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antennae. The frequency range covered runs from 30 kHz to 500 kHz.
The plasma response is recorded via parameters with appropriate
temporal resolution, mainly the poloidal magnetic field and the voltage on
the antennae used in reception. The synchronous homodyne detection
electronics mixes the diagnostic signals with two reference signals in
quadrature to produce the real and imaginary components  of the
response. Applying the same processing to the exciting AC current allows

to build the transfer function. "

It is necessary to specify exactly the expected form of the transfer
function, thus avoiding an inadequate set of free parameters both in size
or in their definition.

In the presence of a single resonance with resonance frequency wg and-
damping rate v, the transfer function will take the form

+dle
H(w) = @o . 19
e e (19)
o Wo 0)2

For small damping rate (y << wg), ¢ and d are proportional respectively to
the in-phase and in- quadrature components of the signal. Both
coefficients are real for real signals.

The partial fraction decomposition will also be used, giving a
representation in terms of complex conjugate poles and residues:

H(e) = LI r* . 20
(@) 5(iw-p+jm-p* (20)

The following relations link the two parameter sets, writing p = pr +j pi
and r = ry 4j 1y

wo =|p]| .
Y= -Dr : 2
c = {frPr + 1ipy) (21)
IpP?
= Ir

Ipl
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Again for small damping rate (pr << py), the real and imaginary parts of the
residue are proportional respectively to the in-quadrature and in-phase
components of the signal. |

For a local quantity which varies with position, the transfer function
depends on some spatial coordinate x; this dependance only enters
through its numerator; its denominator is the same at any position
(Section 3); this implies that the poles are the same for all positions while
the residues depend on the spatial coordinates:

e |
H(o,x) = o) + dx) gl(,r(x) F 1) ) (22)
1+2YJ9 @2 2{jo-p jo-p*
o Wo (Dg

If more than one resonance falls in the measured frequency range, the
global transfer function is the superposition of all individual transfer
functions:

N-1
TH( = LN ? (_ra(x) r*ax) | _ néo buk) )" = Bjw,x)
H(w,x) 2 2 \jo - p +ja) - p* N A(jco) . (23)
n=1 n n z an(jo))n
n=0

N/2 being the number of resonances. Numerator and denominator
degrees are N-1 and N respectively.

Some measured quantities may be sensitive to direct pick-up from the
exciting current. This is in particular the case for the magnetic
measurements. This adds a term equal to the intensity of this direct
coupling to the transfer function:

(24)

_ Bjo,x) _ B(jo,x)
H(w,x) = Ajo) + D(x) = Ajo)

Here D is a real scalar depending on the measurement location. This
transfer function can also be reduced to a ratio of two real coefficient
polynomials whose numerator and denominator have equal degrees.
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To summarize in all cases the expected transfer function takes the form of
a rational polynomial function in jo with real coefficients. These
coefficients depend on the measurement location for the numerator but
are fixed for the denominator. ' '

The proposed algorithm is routinely used to extract form the frequency
response measurements the characteristics of the resonances. Fig. 5
shows a typical response recorded by 15 magnetic probes located at
different positions.

The selected frequency range contains a single resonance but ‘the
numerator degree of the fitted transfer function has been increased to 5
to account for a more complicated background signal than a simple
contribution proportional to the exciting current. Note -that the signal of
probe #9 is a good example of a low amplitude signal whose analysis is
made possible by a simultaneous processing with other good signal to
noise ratio signals.

6. Conclusion

The problem of approximating a complex transfer function measured for
discrete values of the frequency by a rational function of jo has been
addressed. A dedicated iterative algorithm has been developed to avoid
non-linear minimisation programming. The method is readily extensible
to distributed parameter systems. It has been successfully applied to the
characterisation of Alfvén eigenmodes on JET and one can find numerous
applications in other fields. '

This work is partly supported by the Fonds National Suisse pour la
Recherche Scientifique, within JET/CRPP-EPFL Task Agreement.
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Fig. 5 An Alfvén eigenmode resonance measured by 15 magnetic probes.
Solid line: real part, dotted line: imaginary part, dashed line: best fit
approximation.
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Appendix 1. Mixed real and complex linear regression

The problem is to solve a linear regression of complex variables with real
coefficients

y=x-a, : - (25)

with y e CNx1 ' x e CNxK 3 ¢ REKxl A general formulation of the cost
function is

| (52.= (w-eprt-(w-e), o (26)

with e = x - a - y and w a given complex weighting matrix, that may be
diagonal for simple Wéights or even the id_éntity matrix for uniform
weighting. This cost function reaches its minimum under the constraint
that a is real, for |

a = Rel(x*t - w*t). (w - x))! Rel(x*t - w*t) . (w - ). (27)

Calculation of the,s‘e coefficients may take advantage of the symmetry of
the matrix to be inverted and use Choleski decomposition.

Appendix 2. Partial fraction decomposition Jacobian

The linear algebra hidden in Section 5 to compute the Jacobian of the
mapping between the denominator and numerator coefficients {ay,...,aq,
bMm,...,bg} to the residue and pole representation
{r1,....tN.P1....PN.do,...,dM-N} is derived here. The first step is to show that
polynomial multiplication is a matrix operation if polynomials are written
as scalar products of the form:

A ={joN...., 1) (aN,...a0) . | (28)

Explicitly the product of two polynomials A and B writes:
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The implied matrix is an M+N+1 x N+1 asymmetric Toeplitz matrix
generated from the B coefficients that will be symbolised by T(B,N).

The two forms of the differential given in Section 5 may then be written
as

A? dH = (joM*N,...,1) - (-T(B,N) T(A.M)) - (da.....dao,dby.....dbo)t (30)

A? dH = ((joM*N,....1)-

az—NT(A,N-n)-( * ) %‘2“-( e )
QN INGN

0 0

T(A%2,M-N)| - (31)

(dry,..., dI‘N",'dpl,...,de,ddo,...,ddM_N)t

Denoting the two central matrices respectively Gap and Grpda and equating
both expressions yield

(dry,...,drn.dp1,....dpn.ddo, ....ddy.n)t =

: t (32
Grpd - Gas - (daN,...,dao,dbM,...,dbo)

and thus to the sought Jacobian

J = Gihd - Gap - (33)
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