LRP 503/94 September 1994

Invited and Contributed Papers
presented at the

Joint Varenna-Lausanne International
Workshop on "Theory of Fusion Plasmas"
Varenna, Italy, August 22 - 26, 1994

by the Theory Group



LIST OF CONTENTS

- THEORETICAL ASPECTS OF EFFECTS OF
HIGH-ENERGY PARTICLES ON MHD MODES
Invited Paper by
L. Villard, S. Brunner, J. Vaclavik

- NONLINEAR INTERACTION OF LOWER HYBRID WAVES
C. Bruderer, J. Vaclavik, K. Appert

- A KINETIC MODEL FOR THE GLOBAL POWER TRANSFER
BETWEEN PARTICLES AND MHD WAVES
S. Brunner, L. Villard, J. Vaclavik

- LINEAR WAVE PROPAGATION IN RESISTIVE/HOT
TOKAMAK PLASMAS
A. Jaun, K. Appert, H. Liitjens, J. Vaclavik, L. Villard

- 3-D FOKKER-PLANCK CODE VALID FOR ARBITRARY
COLLISIONALITY AND ADJOINT FUNCTION FOR
BOOTSTRAP CURRENT CALCULATION
O. Sauter, Y.R. Lin-Liu, F.L. Hinton, J. Vaclavik

17

25

31

41



~ LIST OF CONTE ENTS N ] e

e ;THEORETICAL ASPECTS DF EFFECTS @F
' HIGH-ENERGY PARTICLES ON MHD MODES
,Invited Paper by Lty S

L Villard s Brurmer, J Vaclavtk

S

. \NONLINEAR IN’I‘ERACTION OF LoV TR HYBRID WAVES e

_C Bmderer J Vaclamk K Appe ,

A KINETIC MODEL FOR THE GLOBAL POWER TRANSFER? F

- BETWEEN PARTICLES AND MHD WAVES o

LS Brunner L. Villard, J Vaclavik i’

s LINEAR WAVE PROPAGATION IN RESiSTIVE/HOT

: "TOKAMAK PLASMAS

.“A Jaun K Appert H Lugjens,J Vaclauik L thlard

3D FOKKER-PLANCK CODE VALm F‘RJARBITRARY

\v

- COLLISIONALITY AND ADJOINT FUI "TI()N FOR
' BOOTSTRAP CURRENT CALCULATION "~

o .f‘O Sauter, Y.R LirvLiu FL. thton. J Vaclavtk

s

a4




Theoretical aspects of effects of high-energy
particles on MHD modes

L.Villard, S.Brunner and J. Vaclavik

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne
21, av. des Bains — CH-1007 Lausanne/Switzerland

1 Introduction

The destabilization of Toroidicity-Induced Alfvén Eigenmodes (TAEs) [1] by fast particles
in tokamak plasmas has been demonstrated both theoretically [2]-[6] and experimentally
[7)-[9] . In the context of fusion-oriented research one should be able to predict as
accurately as possible the conditions that can lead to such instabilities and to determine
whether the region in parameter space where instabilities are avoided is compatible with
the operation of a tokamak reactor. The expected density profile of fusion alpha particles
in such a device is largely unknown and can only be inferred from theoretical models based
on a number of assumptions on transport properties of plasmas yet to be produced. The
instability threshhold strongly depends on this profile, therefore we must address the
question of TAE stability for a wide range of fast particle density profiles and subsequently
examine the compatibility with a fusion plasma.

Experiments in which the fast particles were produced by intense NBI heating [7}-[9]
have shown that driving TAEs unstable can lead to rapid losses (bursts) of a substantial
fraction of the fast particles. Although it is not sure that it would be the case for fusion
alphas in a reactor, it is generally admitted that TAE instability should be avoided.

The possibility of exciting TAEs when they are stable is currently investigated at
JET. The saddle coils now installed in the machine serve as antennas. The planned
experiments aim at determining the spectrum of TAEs and their overall linear damping-
growth rate by diagnosing the plasma response. Even in the absence of fast particles
these experiments will be helpful in studying the damping mechanisms acting on TAEs.

From local theories [2]-[5] we know that three basic conditions must be met for insta-
bility:

1 The birth velocity v of fast particles must exceed the parallel phase velocity v, of the
eigenmode so that the fast particles can resonantly interact with the eigenmode.

2 The fast particle pressure gradient |dps/dr| must exceed a given threshhold so that
the drift frequency w* is larger than the eigenfrequency wy .

3 The fast particle induced growth-rate, |7y/w|sqsst , must exceed the sum of all damping
rates, |y/w|damp , due to the presence of the background plasma.

The damping mechanisms contributing to |y/w|demp considered in our model are :

a) resonance absorption (sometimes called “continuum damping” ), when the TAE eigen-
frequency matches a frequency of the Alfvén continuum;



b) ‘electron and ion Landau dampings due to the curvature drift and finite parallel electric

field;

c) transit-time magnetic pumping (TTMP) on electrons and ions due to finite parallel
magnetic field of the wave (compressibility).

In addition to these dampings the non-perturbative interaction with the kinetic Alfvén
wave has been investigated in Ref. [10] . It is not considered in this paper.

Local theories suffer from a number of shortcomings. First, the TAEs are not localized
at a given rational ¢ = (|m]+1/2)/|n| surface. They extend over the whole plasma cross-
section, with wavefield components (e.g. the normal electric field) peaking at all such
rational surfaces and other components (e.g. the poloidal electric field) having a broader
radial dependence [11] . Second, the eigenfrequencies and eigenmode structures depend
on global geometrical parameters (shape of the cross-section) and equilibrium profiles
(density and q profiles). Third, local theories usually use some kind of expansion in
geometrical parameters (a/Rp). A more accurate evaluation is needed in order to model
actual and future tokamaks.

In this paper we adopt a global approach similar to that of Ref. [6] . The TAEs
are computed globally in true toroidal geometry consistent with an ideal MHD equilib-
rium. Kinetic effects (damping and driving mechanisms) and fast particles are treated
perturbatively. More precisely, we first obtain the global eigenmodes and then use these
given eigenmode fields to evaluate the global overall wave-particle power transfer as-
suming given fast particle density profiles. The marginal stability point is obtained by
scaling the number of fast particles so that the overall power transfer is zero. The wave-
particle power transfers (to the electrons, bulk ions and fast ions) are evaluated using
the drift-kinetic equations (DKE).

The paper is structured as follows. In the next section, the plasma model in toroidal
geometry is briefly presented. The expressions for the DKE powers are derived for the
various species (electrons, bulk ions and fast ions) in the companion paper in these
proceedings [13] . In section 3 we show the results of our model applied to a wide
variety of plasma parameters. In particular, the critical volume-averaged fast particle
beta corresponding to marginal stability, < 85 >.r, is calculated for a wide range of bulk
plasma parameters (vo/va0, < B >,w/wes) and fast particle profile widths (s1/2). We
discuss the results in section 4 and draw some conclusions in section 5.

2 Model

We consider ideal MHD axisymmetric equilibria §0= TV + Vi x Vi where T is the
toroidal flux function, ¢ is the toroidal angle and the poloidal flux ¢ is a solution of the
Grad-Shafranov equation obtained with the bicubic finite element code CHEASE [12] .
The plasma is modelled as a cold, current-carrying plasma [14] neglecting electron inertia.
In the limit w/wy; — 0 it is equivalent to ideal MHD setting the adiabaticity index to
zero. The linearized equations for the electric wave field are written in the variational
form :
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The plasma is surrounded by a vacuum region V, enclosed by a perfectly conducting wall.
In the vacuum region an antenna is modelled by an infinitely thin sheet D(Z) on which

currents j, of given frequency w and toroidal mode number n are prescribed :

—

Joa = §(D)VD xVa (3)
a = Y on(f)expi(ny —wt) (4)

where § is the poloidal angle. The coefficients ¢, are obtained from the Fourier series
decomposition of the actual antenna currents. In this paper we consider the top saddle
coil antennas that are installed in JET. Different phasings of the saddle coil currents
give different toroidal Fourier spectra ay,. It is thus possible to select the desired mode
number n (mainly n = 1 or n = 2).

Special care must be taken because of the existence of the Alfvén continuous spectrum.
First, the solutions of Eq.(1) are singular at the magnetic surfaces where the antenna
frequency matches that of a continuum. Consequently the wave is resonantly absorbed
there, a process sometimes called “continuum damping”. We solve the problem by adding
a small imaginary part to the dielectric tensor in Eq.(1): w is replaced by w(1 + w),
with » > 0 to ensure causality. The operator in Eq.(1) is now regular but has lost its
hermiticity. The limit » — 0 is extrapolated from the numerical results of the LION code
and gives a finite damping rate if the wave frequency is in the Alfvén continuum. Second,
the discretization scheme must avoid spectral pollution. The use of hybrid elements in
the LION code ensures that [11] [14] .

The variational form (1) is written in toroidal axisymmetric geometry using a toroidal
magnetic coordinate system (b, X, ) where x is a general poloidal coordinate, and dis-
cretized with finite hybrid elements in the plasma domain. The vacuum, including the
antenna, is solved with a Green’s function technique. The LION code computes the wave-
field solution of Eq.(1) and the total absorbed power P for given antenna frequencies w.
A global mode shows as a peak on P(w) [11] .

We know from kinetic theory in 1-D [15] that the inclusion of finite Larmor radius
effects (FLR) usually does not modify the overall plasma power absorption but drastically



changes the wavefields near the former Alfvén resonances : mode conversion to the Kinetic
Alfvén Wave (KAW) or to the Surface Quasi-Electrostatic Wave (SQEW) takes place.
Therefore this paper is concerned with TAEs that have no continuum damping. Such
cases arise when the profile of 1/¢,/p is rather flat (¢ is the safety factor and p is the
mass density) thus aligning the ¢ = (|m| + 1/2)/|n| gaps. Continuum damping of low
n modes was extensively studied in Ref [11] for a wide variety of shapes and profiles.
High n cases were analytically studied in Refs [16] [17] . Only for cases where the profile
1/9,/p is sufficiently peaked or hollow do the continuum gaps not overlap and one is
sure to have continuum damping. Otherwise we can have TAEs “threading” the gaps
and thus exactly zero continuum damping. It is safer to examine these cases since one
cannot be sure to exclude them in a reactor (neither the density nor the q profile are
easily controllable).

Considering the possible destabilization of TAEs by fast ions, marginal stability is
reached when the sum of the DKE powers [13] of the different species Pypecies 18 zero. For
a given TAE, a given n(s) profile shape and given T.(s) and T;(s) profiles, both P}ome
and Pj*heme are proportional to the number of fast particles, or equivalently to the fast
particle central density n;(0). The procedure to obtain the value n4(0)cr;; corresponding
to the marginal stability of a given TAE is the following: P., P;, P}*™° and P;*™ are
computed for given T,(s) and T;(s) and for a given ny(s) profile shape with an arbitrary
value of n;(0). We have then

_ Pe + Pt' ny
P}Loma o P}nhamo

(0)- (5)

ns(0)erit =

From this value of ns(0). and the given profiles ny(s) and T.(s) we compute the cor-
responding critical central fast particle beta S4(0)cri: and volume-averaged < Bf >cpit.
We note that n;(0)it < 0 means that the mode is always stable (i.e. stable for any
fast particle density). Thus instead of the necessary instability criterion of local theories,
w — w* < 0, we have the necessary global instability criterion Pjome 4 Pjrhome < (,

3 Results

3.1 Excitation of gap modes with JET saddle coils

We consider an up-down asymmetric equilibrium configuration representative of a “single-
null” discharge in JET. The parameters are: a/Ro = 0.36, k = 1.65, ¢o = 1.1, ¢» = 3.34,
p'(¥) = 2/3 of ballooning optimized p'(¥) profile, I, = SM A, < 8 >= 3.9%, fpa = 0.78.
In all the equilibria considered in this paper we keep the same shape of cross-section,
value of ¢o and I*(3) profile, where I* is the magnetic-surface-averaged toroidal current
density. Different equilibria are obtained by scaling the p’(1) profile.

We first evaluate the plasma response to the antenna excitation at various frequencies
in the absence of kinetic effects. Fig.1 shows the antenna coupling resistance vs frequency
for the case < B >= 3.9% and for two different possible antenna phasings. Note that
for standard JET parameters Ry = 3m, By = 3.45T, npo = 5 x 10®*m~2 a normalized
frequency Row/vao of unity corresponds to a frequency f = 400kHz. The dotted line
corresponds to two top antennas at opposite toroidal locations with opposite phasings,
exciting mainly n = 1 modes. The continuous line corresponds to all four top antennas
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Fig.1. JET saddle coils resistive coupling versus frequency for two possible antenna
phasings: two top antennas with (+,-) phasings (dotted line) and four top antennas
with (+,-,+,-) phasings. The labels a,b,c,d,e correspond to n = 1 modes and
A,B,C,D,E,F,G to n = 2 modes. The plasma parameters are Ry = 3m, By = 3.45T,
npo = 5 x 10®m=3, v = 1072, g9 = 1.1, ¢, = 3.34, I, = 5MA, < B >= 3.9%,
Bpot = 0.78.
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Fig.2. Contour plots of the real part of the binormal component of the wave electric
field, Re(E3), of TAE modes ”a” and ”b” for the same parameters as in Fig.1.
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Fig.3 Eigenfrequencies of TAE modes ”a” and ”b” versus S,y for the same parameters
as in Fig.1 except the p/(y) profile which is scaled by a constant factor.
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Fig.4 JET saddle coils resistive coupling (top) and compressibility (ratio of amplitudes
By /B, )(bottom) of TAE mode ”b” versus B, for the same parameters as in Fig.1
except the p'(1) profile which is scaled by a constant factor.



with (4, —, +, —) phasings, exciting mainly n = 2 modes. Saddle coils excite TAEs in the
frequency range f = 80 — 250kHz and EAEs (Ellipticity-Induced Alfvén Eigenmodes)
in the frequency range f = 250 — 500kHz. The different modes can have very different
couplings and this is due to different eigenmode structures. For example, the n =1
mode labelled “a” in Fig.1 has an “internal” structure (Fig.2a) with a relatively modest
wave amplitude at the plasma boundary and therefore a much smaller coupling than
the mode labelled “b” which has the structure of an “external” mode shown in Fig.2b
with a large wave amplitude throughout the plasma cross-section. We point out another
basic difference between these two types of modes. The eigenfrequency of mode “a” is
very close to the lower edge of the toroidicity induced gap. The mode ”a” is rather
insensitive to the position of the vacuum vessel whereas mode ”b” is very sensitive to
it: its frequency increases with a shorter plasma-wall distance and it does not exist for
a wall right on the plasma boundary. The TAEs studied in Refs [1], [3], [6], [18] , being
calculated with a fixed boundary, are of the *a” type (“internal”).

Before we analyze the consequences of these differences in eigenmode structures on
the fast particle destabilization, we point out another interesting difference in behaviour
from the point of view of the strictly ideal model. Fig.3 shows the eigenfrequencies of
the modes ”"a” and ”b” for a sequence of equilibria with varying pressure. The mode
”a” hardly changes its eigenfrequency and always remains just above the lower edge of
the continuum gap. The fact that its frequency decreases just reflects the opening of the
gap as the Shafranov shift of magnetic surfaces increases. Its coupling from the antennas
remains quite small and roughly constant. Mode ”b”, on the other hand, is very sensitive
to variations in the plasma equilibrium. Its frequency decreases strongly with increasing
Byol, by a factor 2 for Bpa =~ 2.4. For Bpe = 2.25 the two modes cross each other and for
still higher B,, mode ”b” enters the Alfvén continuum. The antenna coupling of mode
"b” exhibits a remarkable behaviour: it is linearily proportional to fBpe (see Fig.4). This
is an effect of the increased Shafranov shift and a stronger variation in By along field
lines as the equilibrium pressure is scaled up. The compressibility of the mode (finite
By) increases with B,oi(see Fig.4). The mode "b” also becomes less torsional: the ratio
of amplitudes E,/E, decreases from 15.4 for Bpo = 0.78 to 4.1 for B, = 2.14. Therefore
gap modes are “Alfvén modes” only in a loosely speaking sense. One cannot a priori
rule out the effect of TTMP on gap modes. This is why we chose to retain finite B in
our DKE model. A practical consequence is that it will be hard to see the mode “b” for
low fBpor values in the antenna excitation experiments. We note also that the frequency
decrease with increasing beta has been seen in the DIII-D experiment [19] . The factor
2 decrease that we found is of the same order as reported in Ref. [19] . The authors of
Ref. [19] have given another interpretation to this effect and named the high-beta TAE
modes Beta-Induced Alfvén Eigenmodes (BAE).

3.2 Stability of TAE modes in the presence of fast ions

In what follows we analyze the n = 1 stability of the lowest frequency modes correspond-
ing to modes "a” and "b” in Figs.1-4. From the point of view of the necessary condition
for instability w* > w, these are the most dangerous modes. Let us first consider the
mode "a” (Fig.2(a)) with the parameters Ry = 3m, npo = 5 x 10¥m~3, By = 3.45T,
T.o = 10keV, Tjo = 30keV, in the presence of fusion alpha particles. We consider fast
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Fig.5 Radial profiles of the wave-particle DKE power transfers to electrons (continuous
line), bulk ions (open symbols) and fast ions (dotted line: P}ome; filled symbols:
P}"’"’"“’) of TAE mode ”a”. T = 10keV, T = 30keV, fusion alpha particles with
ng(s) = 108m=3(1 — s2)?2, 51/, = 0.176, vo/v4o = 1.73. The radial variable s is
V¥ /s where 1, is the poloidal flux at the plasma surface. The other parameters

are the same as in Fig.1.

o
i "‘
0L
-
s o
i / "/.'
1 L Vph'Vthe s
o ¢ o
L
o. PSR T S S W ST N S WO WOE VAN A SO DU DU N SO SO
<0 02 04 06 08 1
S

Fig.6 Radial profiles of v,/vss; (dashed line), v, /v (dotted line) and k)| Ry (continuous
line) of TAE mode “a” for the same parameters as in Fig.5.
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Fig.7 Volume-averaged fast particle beta for marginal stability, < 3 ¢ >ery of TAE mode
“a” versus alpha particle profile half-width sy, for various ion temperatures Tj.
The other parameters are the same as in Fig.5. (The mode is stable below the
curves, unstable above).



particle density profiles defined by
ny(s) = nso(l — %), (6)

and vary the profile peaking by varying ;. Moreover, we define the quantity P(s) by
the relation

1
Pspec:'u =L P(S)CIS, (7)

where s = \/1/1, is the minor radius coordinate. Fig.5 shows P(s) of the different
species plotted versus s for k; = 22 which gives an alpha particle profile half-width
s172 = 0.176. As expected the destabilizing term Pj***™° peaks around s = 0.15 where
the alpha particle density gradient is maximal. The fast particle stabilizing term P}“’”‘"
shows a similar behaviour. The electron damping, on the other hand, is localized near
s = 0.8 (¢ = 1.5) where eigenmode gradients are very large (see Fig.2a). The ion damping
is maximal near s ~ 0.5. This can be understood from the factor exp{—(w/|ky|vii)*}
in P*m°, Due to the k variation with respect to s, the quantity w/|kyj|vens is minimal
near s ~ 0.5(see Fig.6). This example shows the importance of determining the overall
stability globally. Local stability criteria would give instability if applied near s = 0.2
but stability if applied near ¢ = 1.5 (s = 0.8). The influence of the eigenmode structure
on the stability plays a crucial role. First, through the profile of eigenmode wave fields
and their gradients (Fig.2). Second, through the profile of & (Fig.6).

For the same parameters as in Fig.5 (except the fast particle density profile half-width
s1/2 and the central ion temperature Tjo which are varied) we show in Fig.7 the critical
volume averaged fast-particle beta for marginal stability, < 8 >, plotted versus the
profile half-width s,/; for various central jon temperatures T;o. The stabilizing effect of
ion damping is clear for T}y > 20keV. We note a remarkable behaviour of < B; > vs

81/2. For 81/, < 0.35, flattening the fast particle profile is stabilizing as one can expect.
But for 0.35 < s;/2 < 0.55 flattening the fast particle profile actually destabilizes the
mode: the reason is that an increasingly large fast particle pressure gradient is present
near s = 0.8 (¢ = 1.5) where the eigenmode has a large amplitude (Fig.2a). This effect
is not small : < fB; > is about a factor 2 larger for s;/, = 0.35 than for sy/; = 0.65.
This means that about half of the fast particles would be lost if the fast particle profile
widens beyond s;/; = 0.35. For s;/; > 0.65, flattening the fast particle profile is again
stabilizing because of the reduced fast particle pressure gradient.

3.3 Dependence on the fast particle profile width s;/5, bulk
plasma f3, vo/v4 and w/we;

In this section we consider the same sequence of plasma MHD equilibria as before but
consider the case where both bulk ions and fast ions are deuterium species. Fast ions
birth energy is 75keV. The temperature and density profiles are chosen as T.(s) =
T.o(1 — $2)1/2, Ti(s) = Tio(1 — ?)1/2, n(s) = no(1 — 0.9s?)}/2 and ny(s) = nyo(1 — s?)*.
We keep the ratio T;/T. constant at 1.25. Different values of bulk 3, vo/vao and w/we
are obtained by varying the bulk density ng, temperatures Tjo and T.o and magnetic field
By each over a wide range of values:

By = 06-225 T
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no = 1.3—30x10"¥® m™3
Tw = 015-12.8 keV
To = 012—-10.3 keV

We set the major radius of magnetic axis at 1.8m. These parameters overlap those of
DIII-D TAE excitation experiments with NB injection [8] [9] [19] . We study the fast
particle critical beta corresponding to marginal stability of TAE modes "a” and ”b” for
a range of fast particle profile widths s/, obtained by varying the coefficient «;.

The damping on bulk species depends on the ratios w/|ky|vine, w/|k)|veni and w/we;.
The TAE eigenfrequencies w scale proportionally to the Alfvén velocity on axis v4g, so
the ratio w/|ky|vie is proportional to 1/8.,w/|kyj|ves: is proportional to 1/5;, and (w/wei)?
is proportional to 1/ng. Thus for given T.(s), Ti(s), n(s) profile shapes and for a fixed
Tio/Teo ratio the damping on bulk ions and electrons of a given TAE depends only on the
plasma beta and on the bulk density no. The DKE power on fast ions depends on the
ratio v,/vo and on the profile width s;/; through the parameter ¢ in Eq.(6). For a given
TAE mode, v, scales proportionally to v49. So the overall global stability properties of
a given TAE mode in a plasma with given profile shapes of T;(s), Te(s) and n;(s) and a
fixed Ti0/Teo ratio are determined by the plasma beta, the ratio w/wy (bulk density ng),
the fast particle profile width s;/, and the ratio vo/vao. The global stability of TAEs
depends also on the eigenmode wavefield structure as was illustrated in the previous
section.

Before studying the stability of TAE modes in the presence of fast particles, we have
analyzed the DKE powers on electrons and bulk ions. For a given TAE mode and a fixed
plasma beta, we found that P, depends linearly on (w/w)?, for any combination of T,
neo and By giving the same beta. So P, depends on f. and no. On the other hand we
have found that P; depends very weakly on w/w, and can be considered as a function of
B; only.

We show in Fig.8 the critical volume-averaged fast particle beta, < 85 >.,, plotted as
a function of the fast particle profile half-width s, 5, for various ratios of the birth velocity
to the Alfvén velocity on axis, vg/vae. All data in Fig.8 has been calculated with the
same equilibrium plasma beta of 3% and for the “internal” n = 1 TAE mode (“a” in Figs
1-3). The ratio vo/v4o was varied by changing the density no and the temperature T},
T.o as 1/ng, keeping By constant, so that 2 is constant. As in Fig.7, we have a remarkable

behaviour of < f; > vs s1/2. For s <0.35 widening the fast particle profile is stabilizing

because the fast particle pressure gradient is decreased. But for s S 0.35 the opposite is
true: although the fast particle pressure gradient term is decreasing, the destabilization
comes from the increasingly large fast ion pressure gradient near the ¢ = 1.5 surface
where the TAE wave field and its gradient are large (see Fig.2a). For s;/; near 0.6 the
two effects balance about each other and for still larger s;/; values the stabilizing effect
of flattening the fast particle profile dominates.

We note that for vo/v40 S 1the < B >cr is lower for s;/, = 0.7 (which corresponds
to ny(s) = nyso(1 — s?)) than for s;/; = 0.35 (which corresponds to ny(s) = nyo(1 — s?)%).
This particular behaviour is a consequence of the TAE mode structure. By no means
could a local theory predict such a behaviour. It may have implications on the evolution
of the fast particle contents in the discharge: if this mode is close to marginal stability
and if sy/, goes beyond 0.35, the loss of fast particles, flattening the profile, would make
the mode more unstable, so that fast particles would continue to be expelled until s, is
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Fig.8 Volume-averaged fast particle beta for marginal stability, < 8; >.., of TAE mode
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about 0.6. Only then can the fast particle profile build up again in the center. But in the
meantime, we see from Fig.8 that about half of the energy content of fast particles would
have been lost. Note that this may be related to the “bursts” of expelled fast particles
sometimes seen in the experiments [7]-[9] . Of course a nonlinear study is needed to
properly predict the time behaviour of fast particles [20] .

For the same parameters as in Fig.8, we show in Fig.9 the behaviour of < f; >
versus the ratio vo/v o for different fast particle density profile widths s;/,. For a given
$1/2, < By >er is a monotonically decreasing function of vo/v40. We note that this TAE
mode can become unstable even for values of vo/v4o as small as about 0.6. This is due
to the behaviour of |ky| of the mode, which is not exactly w/v4, but is lower in this
case due to the presence of “sidebands” in the poloidal Fourier mode numbers m: the
poloidal Fourier decomposition of the eigenmode wavefield shows actually a rather broad
m spectrum, due to the small aspect ratio, the elongation and shape of this configuration.

For a given fast ion profile width s/, = 0.4 and plasmas of different beta values we
show in Fig.10 the < B; > versus vg/vo, for the same parameters as in Fig.9 except
the plasma beta. For all B values < f; >, is a decreasing function of vo/v40. For vg/vao
close to 0.7, little effect of beta on < By > is seen: in this region of parameter space, the
stability is determined mainly by the competition between Pj***™> and P}°™ , and the
stability diagram corresponds in fact to a threshhold in vo/v40 of about 0.7. For larger
values of vo/v 40, increasing beta is always stabilizing through enhanced electron and ion
Landau dampings. We note that for vg/v4o < 2 and 8 = 1% we have < By >e> 0.44,
which is indeed larger than the estimated < B, > in TFTR D-T experiments [21] in
which no sign of TAE activity was reported.

In the next three figures (11,12 and 13) we show the corresponding results of Figs
8,9,10 but for the n = 1 “external” mode (“b”). In Fig.11 the values of < B5 >., are
plotted versus the fast profile width s;/2, for a given bulk beta of 3% and for various
values of vo/v40 obtained by varying nio and T.o, Tio as 1/no. For sy/2 < 0.4, < By >cr

is increasing with sy, as the fast jon gradient decreases. For sy2 S 0.4 the behaviour
of < B > versus sy/; depends dramatically on the value of vo/vae. For vo/v 40 < 1.5,

< B; > monotonically increases with sy/3. But for vo/vao S 1.5 the opposite is true.
This particular behaviour, which is quite different from that of the “internal” n = 1 mode
(Fig.8), must be related to the global eigenmode wavefield structure, which is rather flat
in the center but has maximum amplitude in the outer region(Fig.2b). For vo/v40 above
1.5, the ratio vo/v, in the outer region is above unity for this mode: fast particles, if
present there, will be destabilizing. This is the reason for the decrease in < ff > versus

s1/2 for 8172 S 0.4. For vo/v4o below 1.5 the ratio vo/v, is below unity in the outer region
where the mode amplitude is large and therefore no destabilization occurs by flattening
the fast particle profile.

In Fig.12 < B; >. is represented versus vo/v40 for various profile widths s,/5. For
this bulk beta value of 3%, < B; >.r is decreasing with vo/v 40 in all cases. We note that
this mode can be destabilized for values of vo/v40 as low as about 0.8.

The behaviour of < B > versus vo/vao for this “external” n = 1 mode has a
remarkable dependence on plasma beta, which is shown in Fig.13. For large vo/v40 the
TAE is stabilized when beta increases, due to enhanced electron and ion Landau damping.
On the other hand, increasing beta is destabilizing for small vo/v0: the minimum vo/v40
for instability goes from 1 for B = 1% down to 0.7 for # = 5.5%. Increasing beta is lowering
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Fig.11 < B > of TAE mode “b” versus fast ion density profile half-width s,/; for
various values of vg/v 40 and fixed plasma bulk beta of 3%. Other parameters: same

as Fig.8.
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Fig.12 < f; >. of TAE mode “b” versus vo/vgo for various values of syj;. Other

parameters: same as Fig.8.
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Fig.13 < 5 >, of TAE mode “b” versus vg/v 4o for various values of plasma bulk 4 for
a fixed fast ion density profile half-width s,/ = 0.4. Other parameters: same as

Fig.8.
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the eigenfrequency of this mode (see Fig.3). Consequently the parallel phase velocity is
decreasing and more fast particles can destabilize the mode. Therefore the threshhold in
vo/v.a0 is going down with increasing beta for this mode. This is not the case for mode
“3” (see Fig.10) because it is rather insensitive to beta (see Fig.3).

4 Discussion

Our model is based on a certain number of assumptions and simplifications that we can
summarize as follows. First, the kinetic effects have been considered as a small pertur-
bation of the ideal TAE wave fields. The dissipative contributions of the kinetic effects
have been taken into account (damping and drive) but not their effect on dispersion.
Since those cannot be considered small in the vicinity of Alfvén resonant surfaces, we
have restricted our analysis to cases where TAEs have no Alfvén resonances and thus
no continuum damping (in other words, no conversion to KAW or SQEW). In this sense
our results can be considered as a pessimistic evaluation of the TAE stability especially
for low n modes for which continuum damping is most efficient, since it goes as n=3/2 for
high n [16],[17] . Second, we have neglected trapped particle and finite drift orbit width
effects.

On the other hand, we have solved the problem globally in exact toroidal geometry
and we have shown that this approach can give very different results from those of local
models (see e.g.Fig.5). The global eigenmode wavefield structure is an important factor
determining the instability threshhold. In particular, < By >.- can be a non-monotonic
function of the fast particle density profile width and in many cases flattening the fast
particle density profile is destabilizing (Figs 8 and 10). This may have consequences on
the existence of bursts of expelled fast particles that are seen in some experiments [7]-[9]

We have identified and studied two types of TAEs: type “a” (internal) and type “b”
(external) having different wave fields (Fig.2) and therefore different stability properties
(Fig.8-13). They behave differently with respect to equilibrium plasma parameters, in
particular the plasma 8. They also couple differently to an antenna (Fig.1): type “a”
TAEs couple rather weakly and independently of 3, wheras type “b” TAEs couple better
and approximately proportionally to 8 due to the increased compressibility of the mode
(Fig.4).

Finite B affects the TAEs and their stability in the following way. Increasing g is
always stabilizing type “a” TAEs in strengthening the damping on bulk species (Fig.10).
The effects on type “b” TAEs are more complex. The real part of the eigenfrequency
decreases with 8 (Fig.3). This was seen in the DIII-D experiment [19] and already
computed for circular cross-sections [11] . Therefore the parallel phase velocity decreases
and more fast particles can resonantly interact with the wave and destabilize it. This
destabilizing effect competes with the increased damping on bulk species with increasing
B and the final result can be summarized as a decrease in the vo/v4 instability threshhold
(vo/va < 1) and an increase in < f; > for vo/vao above unity (Fig.13). We note that
the vg/v40 instability threshhold below unity (~ 0.7) is in a good agreement with DIII-D
experiment [9)] .

The parameters determining the TAE stability are: vo/v.a0, 8 and no, for the damping
on bulk species and, in addition, By and s;/; for the drive and damping on fast ions.
Although the computations presented in this paper were not made with the intent to
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analyze a particular experimental shot, we can give some clues as to how our results
should be interpreted so that a comparison with experiment can be made. The time
evolution of a discharge should be analyzed as a motion in the 5-dimensional parameter
space vo/v4o, B, no, By, s1/2 (note that additional parameters such as plasma shape,
current, density and temperature profiles could also be important but were not varied
in this paper). The instability threshholds calculated with our model can be viewed as
< By > surfaces function of the four other parameters. Instability occurs when the
trajectory of the discharge crosses a < By > surface. Let us consider the example of
NB injection and, for the sake of simplicity, let us assume that s;; is constant. As NBI
is switched on, there is a 5 increase, a bulk f increase and quite frequently a density
increase, which implies an increase in vo/v4o if Bo is kept constant. Let us consider the
stability of type “b” TAE (Fig.13). The trajectory of the shot projected on Fig.13 is
then a line going in the upward right side direction. But J is increasing, which means
that if vo/v4o is of order unity or even lower and f; of the order of 1%, the instability
threshhold will be crossed for any value of 8.We note that these values of Ay and vo/v40
are in close agreement with the DIII-D experiments (see Fig.10 of Ref. [9] ). There may
be other shots that evolve in such a way that the bulk B increases fast enough so that
the shot trajectory remains below < f; >.. at any time; this can happen even if vo/v40
is much larger than 1. Although this is also in qualitative agreement with experiment [9]
, a more careful comparison should be made, including the study of higher n modes.

5 Conclusions

We have developed a hybrid fluid kinetic model for the quantitative prediction of the
global linear stability of low n TAEs in the presence of a fast ion population. We have
applied this model to a wide variety of cases in order to study the dependence of the TAE
stability on a certain number of parameters which were varied over a wide range. The
critical volume-averaged fast ion beta corresponding to marginal stability, < By >, was
studied versus the four parameters: vo/v40, B, o and sy/,. Typical values of < 8y >,
are, for vo/v40 near unity, of the order of 1%, which is in rather good overall agreement
with the DIII-D experiment [9] . Only for extremely peaked fast ion density profiles

(s12 < 0.2) can < By > become of the order of 0.1%. The finite 3 effects on type “b”
(external) TAEs are a strong decrease in real eigenfrequency, a decrease in the vo/v40
threshhold and a stabilizing effect for vo/v40 above unity. All of these is in agreement with
experiments so far. More work is necessary to further assess the validity and applicability
of our model, in particular a more detailed case-by-case analysis of some experiments.
The saddle coil experiment at JET will also provide interesting material for a comparison
with theory. In the future, the stability of higher n modes will be analyzed and our model
will be applied to predict instability threshholds in reactor tokamak plasmas (ITER).
Acknowledgments

This work was partly supported by the Swiss National Science Foundation.

References

[1] CHENG, C.Z., CHANCE, M.S., Phys.Fluids 29 (1986) 3695.



- 16 -

2] FU, G.Y., VAN DAM, J.W., Phys Fluids B 1 (1989) 1949.
[3] CHENG, C.Z., Phys.Fluids B 3 (1991) 2463.

[4] BELIKOV, V.S., KOLESNICHENKO, YA.L, SILIVRA, D.A., Nucl.Fusion 32
(1992) 1399.

[5] BIGLARI, H., ZONCA, F., CHEN, L., Phys.Fluids B 4 (1992) 2385.
[6] FU, G.Y., CHENG, C.Z., WONG, K.L., Phys.Fluids B 5 (1993) 4040.
[7] WONG, K.L., FONCK, R.J., PAUL, S.F., ET AL., Phys.Rev.Lett. 66 (1991) 1874.

(8] HEIDBRINK, W.W., STRAIT, E.J., DOYLE, E,, ET.AL., Nucl.Fusion 31 (1991)
1635.

[9] STRAIT, E.J., HEIDBRINK, W.W., TURNBULL, A.D., CHU, M.S., DUONG,
H.H., Nucl.Fusion 33 (1993) 1849.

[10] METT, R.R., MAHAJAN, S.M., Phys.Fluids B 4 (1992) 2885.
[11}] VILLARD, L., FU, G.Y., Nucl.Fusion 32 (1992) 1695.
[12) LUTJENS, H., BONDESON, A., ROY, A., Comput.Phys.Commun. 69 (1992) 287.

[13] BRUNNER, S., VILLARD, L., VACLAVIK, J., A Kinetic Model for the Global
Power Transfer between Particles and MHD Waves, in these proceedings.

[14] VILLARD, L., APPERT, K., GRUBER, R., VACLAVIK, J., Comput.Phys.Rep. 4
(1986) 95.

[15] APPERT, K., HELLSTEN, T., LUTJENS, H., SAUTER, O., VACLAVIK, J., VIL-
LARD, L., in Plasma Physics (Proc. 7th Int.Conf.Kiev, 1987), Invited papers, Vol.2,
World Scientific, Singapore (1987) 1230.

[16) ROSENBLUTH, M.N., BERK, H.L., VAN DAM, J.W., LINDBERG, D.M,,
Phys.Rev.Lett. 68 (1992) 596.

[17) ZONCA, F., CHEN, L., Phys.Rev.Lett. 68 (1992) 592.

[18] POEDTS, S., KERNER, W., GOEDBLOED, J.P., KEEGAN, B., HUYSMANS,
G.T.A., SHWARTZ, E., Plasma Phys.Control.Fusion 34 (1992) 1397.

(19] HEIDBRINK, W.W., STRAIT, E.J., CHU, M.S.,, TURNBULL, A.D,
Phys.Rev.Lett. 71 (1993) 855.

[20] BERK, H.L., BREIZMAN, B.N,, YE, H., Phys.Rev.Lett. 68 (1992) 3563.

[21] STRACHAN, J.D., ADLER, H., ALLING, P., ET AL., Phys.Rev.Lett. 72 (1994)
3526.



-17 -
NONLINEAR INTERACTION OF LOWER HYBRID WAVES

C. Bruderer, J. Vaclavik and K. Appert

Centre de Recherches en Physique des Plasmas,
Association Euratom-Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne,

21, av. des Bains, 1007 Lausanne, Switzerland

1 Introduction

Lower hybrid current drive has proved very successful in a2 number of experiments [,
2, 3]. Power absorption occurs through electron Landau damping; lower hybrid waves
are therefore well suited for current profile control. The wave spectrum extends {rom the
minimum ky needed for accessibility up to a maximum value above which strong absorption
at the plasma edge occurs [4]. This spectrum corresponds to a range of resonant parallel
velocities extending from a few times thermal up to relativistic velocities. There is still
no satisfactory explanation on how a consistent population of suprathermal electron is
generated with a launched spectrum corresponding to velocities well above the bulk of the
distribution function [5].

S. Succi et al. [6] had shown that plasma current was extremely sensitive to the presence
of a small, high-N}| component in the r.f. power source spectral distribution. In this paper,
we show that a model including nonlinear interactions is able to produce an upshift in the

parallel refraction index sufficient to drive significative currents.
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2 Model

Electrostatic perturbations are considered, in a cold, homégeneous plasma in slab geometry.
The basic equations are the fluid and Poisson’s equations in reciprocal (Fourier) k-space.

Tons are assumed to be unmagnetized as wg << W << Wee.

2.1 Nonlinear part

—

The nonlinear part of the equations has terms in ky x k) that are very large; a3 dimensional

description is therefore necessary. As there is only one anisotropic direction, the problem

can be reduced to 2 variables, u and v, given by the following relations:

u = az+fz
(1)
v o= ay+,@z
with o? + 2 = 1 and f? = sin®G/(1 + sin(2¢) cos®d), where z is the direction of the

magnetic axis, § and ¢ are given in Fig.1. The new wave vectors satisfy:
ke = oK,
ky = CI.K._, (2)
by = B(Ku+Ky)

X
/{ ; Fig.1
by /¥ / K Wave vectors of modes
. 22 z with same frequencies

generate a cone

in (z,y,z) space
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Formally,the nonlinear problem can be reduced to the following system:

Ne

—

— P — -+ ve
O +M =R where Pp= (3)

L2

—

vy

R representing the quadratic nonlinear terms.

The solution considering both polarizations of the lower-hybrid branch reads:
(I{, ) Zc“ (I{, )¢n (j}) e—:’wn(K)t (4)

where @, are the linear orthonormal eigenvectors and the frequencies satisfy the dispersion

relation:
w2- 4 w2 sin2d
(5)

L+ (%e)z

The nonlinear evolution of the coeflicients ¢, (I{ , t) is given by:

- -4f — - . -
[atCn (]{, t)] = ¢n (I{) R e:w,,(]()t | (6)
NL

w2=

2.2 Quasilinear Part

Electron Landau damping is taken into account quasilinearly. Since electrons are acceler-
ated in the parallel direction, the distribution function is considered in a one dimensional

approximation. Its evolution is governed by:
1 _
= (2+ Z) wods [53 (vf +0, f)] +0.Dind0f (1)

In Eq.(7), the first term on the right-hand side is the 1D Fokker-Planck operator including

electron-electron and electron-ion collisionnal effects, without pitch-angle scattering. Z
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denotes the charge state and v = (loghw3,)/ (47nov3,,). The second term is the quasilinear

diffusion term:

2

dK K, [ K =

Dy (v) =7 ( — ) §{w= — k"v W (]{) (8)
(27‘-)2 l Is I ( K )

W (1:% ) dK,dK, representing the linear wave energy density.

Taking ion viscosity into account, the quasilinear evolution of the coefficients ¢, (1—'%) reads:

Bica (Kt = (I (Kt —ﬂ—qkz e (Kot +—f@— (9)
QL 4

2, (1:%, t)

where I' = Jwsign (l;”) (l__;:_l_)z 3uf|v-_-u/k|| is the electron Landau damping term, n the vis-
cosity coefficient and S an external source which drives the waves. All quantities through-
out Eq.(7) to Eq.(9) are normalized according to k — kfAp,t — t[wpe,¥ — VURe, [ —
frofvd,., W — WiannoT .2},

Symbolically, the waves evolve as :

Bica (J?,t) - [a,cn (J?,t)]m + [atcn (1?, t)]QL (10)

3 Results

A single charged deuterium plasma at low density (n. = 7 x 10'"®m~2) in a toroidal field of
3 T, with cold ions and electrons at a temperature of 1 keV is considered. The frequency
range of the numerically representable spectrum extends from wry = 2.37 X 10° rad/s to 2
wiz. In order to reach steady state in reasonable computational times, the collision term in
(9) has been chosen to be 10v/4 ( 0.97 X 10° rad/s). The viscosity term has been chosen so
_that its value at thermal velocity is comparable with the collision term. Initially, the linear
wave energy represents 6% of the electron thermal energy, and corresponds to a maximal

local perturbation in density of 37 % for the ions and 3 % for the electrons. 99.95% of the
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4 Conclusion

A 3D nonlinear wave code including quasilinear evolution of the electron distribution func-
tion has been developed. We have shown that nonlinear interactions are able to fill in the

spectral gap.
In the results shown, the power input is very high, because the collision frequency has

been arbitrarily raised in order to run the case in reasonable computational times. A faster

converging time evolution numerical scheme has to be implemented.
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We present here the calculations that lead to the power absorption formulas used in
the companion paper [1] in the study of possible destabilization of Alfvén modes by
high-energy ions.

We consider a hot plasma in axisymmetric equilibria ]§0= TVe+ Ve x Vi where T
is the toroidal flux function, ¢ is the toroidal angle and ¢ the poloidal flux function. The
plasma is perturbed by EM fields (E,E) The evolution equation used for the plasma
species is the Drift Kinetic Equation (DKE)

DI [0, 0 0 ,d0 dud] % o
Dt~ et '355+dtae+dtaylf(x’e”"t)‘“o’ (1)

where X is the guiding center, € = 5(vf +v1), p = vi/2B,, U= v €B + VE + V4
v5=E X(EO + B)/B?, vy= (m/qB) €p X (vi/2+vﬁ)VlnB, B =|Bo+ B | the
total magnetic field and €p= (1_5;0 + ]}) /B. Furthermore we define the unit vectors:
€)=Bo /| Bo |, €n= V/IV9|, &= (Ve x V§)/|Ve x V| and €y=¢) x €n.
Equation (1) is first solved to obtain a stationary distribution function. To lowest

order in the Larmor radius expansion one obtains

F= F(’(,b,é,ﬂ)- (2)

In particular for electrons and bulk ions a local Maxwellian distribution is chosen

_Nw) (L,
= AW p( 2vzh(¢>>’ ®)
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with density N and thermal velocity squared v? = 2T/m. For the fast particles a

slowing-down distribution is assumed [2]

F o= NO)go s =), @
- @
c : (6)

3 ?
47 ln KE-O-) + 1]
Ve
where H is the Heaviside function and vy the birth velocity of the fast particles (vo =
1.3 - 10"m/s for fusion alphas).

The linearized DKE is then solved to obtain the fluctuating part of the distribution

function in terms of the EM fields

a — a ~ :; a de
(at + Vg E—({) f=- (v.q .aX a 66) fo, (7)
where

Vo = ) €|+ Vo, (8)
> f? E‘ X f?
v, = v||—§:-'- + B2 0, (9)
(;6 _ q — - 6B||
% = E 'Ugo - B +[l:—az’- (10)

As the unperturbed system is homogeneous in time and the toroidal direction, one can
consider fluctuating quantities of the form expi[ny — (w + in)t], where > 0 ensures
causality. Equation (7) is solved using a perturbation method. The operator vgo -V =
O(¢), on the left hand side is considered as perturbative. Furthermore, to avoid an
integration along the field line, the differential operator _€|| -V, is replaced by its magnetic-
surface-averaged value < V) >= ik, where

= $pmeonst A (IVIEul® + VY Es[?)

$=conat dl| El

The integrals in Eq.(11) are evaluated along a closed path in the poloidal plane on a

(11)

Y = const surface. Another possibility instead of using Eq. (11) would be to make the
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rough approximation w? = v Ak”, since TAEs are Alfvén waves. But k) obtained in this
way can be wrong by a factor up to 3. The reason is the “sidebands” created by toroidal
coupling: simple models give resonances at one third of the Alfvén speed.

Solving to second order in ¢ and retaining only the most dominant element among

comparable terms leads to

F= mwi?)g{ (QEs — ivyV,Ey) VaF (12)
OF

2
vl o V1
+ [ch”E" + ("'2" + ‘Uﬁ) ﬂl -F —ZW?BH] E
L (%4 2) (3. V)EV.F
—ia-‘;c’ o Y i bVn ’
where w, = gBo/m, o = w + in — kv, and ﬂ—l: (Vx —e'“)J_.
One can now derive the power absorption formula. The total power exchanged be-

tween the particles and the perturbing EM fields averaged over time reads

de sk
dt speczes ?

Prpecies = §Re / dar = T = BXPo. (13)
Inserting Eqs (10) and (12) leads to the following relations

h h
Papeczea = P, s + P;gecr:::o, (14)

species

1 2 1 (v? oF
phme = 9m / dl“nfﬂo B+ - (7* +vﬁ) (B E) - lBu!

5o (19)

2
q
mww. o

inhomo 1 1 (v} > = LW vl
pinh = —§§Re/df [v"E” + o (—; + vﬁ) BL-E —Zw—c?LBM] x (16)

1 2 —
L_)_ (% + v|2|) (IBJ. -V)E; + 'U”VPEIT} V.F.

The resonant denominator can be written as

1 1 1 1 w

—_— = — =P —iT 6(’0————). 17

Qo w—Ro+in w—kpy TRl Ry (n
Globally, only the resonant particles can exchange energy with the EM fields. The
principle value in the above relation can therefore be discarded when evaluating the

absorbed power.
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For a Maxwellian distribution the power reads

W’Ut

homo 2
P \/—60/d3$4w2|k |eXP(_zo) X (18)
{ }
wiv ot
Pinhomo — ﬁeogm/dsxV’ p th exp(—zg) { [QZOUE%E" + (1 + 233) ﬂ-l. - E _in”] X
i

"8ww3|k|||
[(1 + 223) (BL -VE]) + 220;5;VpEﬁ]‘+ [,31. ‘E —in“] (8L -V)E,’,"} ;

—

22— Ey + (1+2]) B - E
th

2 |- .,
+|6L-F

(19)

where w? = Ng?/meo, 20 = w/kjvs, and V1, is equivalent to V, except that it operates
only on density and temperature. For the slowing-down distribution resonant particles

can exist only if the phase velocity is below the birth velocity (|v, = w/ky| < vo), in that

case
omo wzC ]' 2
prme = = 6"/ &z |k||| {|vp|s+vs va“+ —v2f, - E (20)
2]0 — -t % . * P — Il Ed — ) 2
+—Re|fL E +iwB va"+-—ﬂl-E + 2 |8L-E —iwBy| ¢,
wc " wc wz
. w?C % S v — V.E
thomo - _ * P . P pL|
T eoi‘fm/dsanlk“' o {Io (v,,E” +-—=p8.FE ) (wwc V)E, + —k” )

+ VoE
o9y + 21) )

2{% [(:B.L E +sz,,)(

- . ’1)2 —% 2 d pud —% . *

" o2 (=) (22)

v
|vp] v3 +vd

If the EM fields are calculated from an ideal MHD model as in the code LION [3], E} is

where I, =

zero. In that case Ej; must be obtained from a more general model. The starting point

is the quasi-neutrality condition

N.=N; . (23)
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As the thermal velocity of the electrons can be comparable to the phase velocity (vihe ~
|vp|), it is reasonable to evaluate the dominant term of N. using a kinetic model. For

this reason f,;..,.n 15 integrated over velocity and leads to

ﬁe= 9 eN, [wwce

M WWee

(1-2)E,— .l_Z (,B_L E. ——sz") (k"‘:the)2 (1-2) 8, - E] ;
(24)

2
kyv,.

where Z = 7 (’E,Tu_) is the plasma dispersion function [4]. However, to evaluate N:
one can use a cold fluid model for the ions as vy < |vp|. Due to their relatively large
mass, the ions dominate the motion perpendicular to the magnetostatic field. Solving the

equation of motion in the perpendicular plane, one obtains for low frequencies w < w;

?: ¢ [EJ_ X ’é'" -—i% E'J_] ’ (25)

MiWei ct

and using the equation of continuity for the ion density gives

Ni= -

: [v Eu 2255, - E. -—wc,B”] (26)

miWe;

Inserting these density relations in the quasi-neutrality condition leads to

2
[|Vthe

(27)

kyv? 1 W o = - -
By = — WVihe (-__.. : . )
I Do, {1 — zwc;v EiL+BL-EL)+

Finally, using the above expression in the power relation for electrons and ions gives

2
Pphomo . \/_60/(13$4w2|kl l exp — zO (Iaspectesl + ﬂ.l. ) ’ (28)
= =5 ((ZV-E+4E) (29)
Gelectron = 1-2 zwa_ iR L Ny )
fZ-'e 1 ) - g . Te
Qion = T1-Z (ZZ Ei+ 8. EJ.) - w (1 + f—Z"-._) By

-EL. (30)
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Pinkomo can be neglected for these species. This is related to the fact that in the frame of
the present work w > w* for electrons and ions, where w* is the characteristic frequency
of the drift mode.

Note that the contributions of Ej| to the power absorbed by the ions are proportional
to T./T:. As the average kinetic energy of the fast particles is very high as compared
with the energy of the electrons, the contributions of Ej to the power absorbed by the

fast particles can therefore be neglected. In this way, one can write for the fast particles

2 C vt - |2
homo  __ 2 3 wpf 4 2 .
P = €°/d Tyl {llvpla + v3 * 2va01 Pr-E 3y
+ 2wv3I08‘m (B" BL-E ) + 1 ,BJ. }
Pinhomo — 7T €o d3 ! {( 4 )
i T 0gm [ &V, 2 I kulw"’ L+v2)BL-E (32)

+ (vﬁ% + f) (ﬂl - E —in")} (BL -V)E;.

The expressions (28)-(32) have been written in toroidal axisymmetric geometry and im-
plemented in the LION code.
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the Alfvén resonance, resulting in a conversion of the energy from one to the other. The
qualitative picture of the fluid model which predicts a singular behavior of the fields at the
Alfvén resonance is then different in the hot model, where the singularity is replaced by a
conversion to the short wavelength kinetic Alfvén (KAW) wave or the quasi-electrostatic
surface wave (SQEW) [3]. The continuum damping obtained in the fluid approximation
can be different from the corresponding kinetic damping. This happens when the emitted
kinetic wave is so weakly damped that it appears as a standing wave. An intrinsically
kinetic effect which does not have a fluid counterpart is known as ”radiative damping”;
it also consists of a coupling of the gap mode to kinetic modes.

Another example where the wavefield structure and the energy deposition cannot
be calculated from the fluid models is found in the ICRF range of frequencies. The
conversion of the fast magnetosonic wave to an ion Bernstein wave at the ion-ion hybrid
resonance can only be described by models including FLR effects.

Motivated by these examples, the new toroidal code PENN has been developed,
taking into account FLR effects up to second order in k, py, where k, is the transverse
wave vector and py, the Larmor radius of the species. This allows for a non-perturbative
treatment of the kinetic waves such as the kinetic Alfvén and the ion Bernstein waves.

After a short description of the new model, this paper shows validations in two
limiting cases: the cold and hot-plasma models in fully toroidal and cylindrical geometry,
respectively. In the first case, waveforms and eigenfrequencies of TAE gap modes in a
realistic DIII-D equilibrium are compared with those obtained with the LION code. In
the second case, an Alfvén wave heating scenario exhibiting wave conversion is computed
in the large aspect ratio limit and compared with results from the cylindrical code
ISMENE (3].

Confident with these validations, preliminary results are then given for kinetic calcu-
lations in a low aspect ratio equilibrium, showing how a TAE mode might be modified

by FLR effects.

3 MODEL

The wave propagation problem which is under discussion here consists in the resolution
of Maxwell’s equations in a medium where the linear response to a field perturbation is

determined by the dielectric tensor €.

A straightforward finite elements discretization of Maxwell’s operator in terms of
the electric field results in additional unphysical solutions which have disastrous effects
in the range of frequencies we consider: gap mode calculations would find the global
physical modes as well as a high number of numerically produced spurious modes, with
no easy way to distinguish the ones from the others. This phenomenon is called “spectral
pollution” [4]. This problem can be solved by using a Fourier decomposition in the
poloidal direction [2], or with a discretization based on 2D finite hybrid elements [1],
[5]. The linear hybrid finite elements used so far are, however, insufficient to discretize
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operators involving up to 4th order derivatives, and no straightforward generalization
exists for cubic hybrid elements.

An elegant way to avoid the problem related to the spectral pollution consists in
writing Maxwell’s operator in terms of the electromagnetic potentials (A, ®) [6], [7):

—

7 (w2 4r

R M

where the Coulomb gauge has been used explicitly and has to be further imposed on the
domain boundaries. w is the excitation frequency of the antenna source currents which

are chosen such as to satisfy the condition v- j:;t= 0.

In order to separate the plasma response along the static magnetic field from the
one across, it is advantageous to introduce the local unit vectors (e, E{,,E'“) such that
é;::% I/ 6 ||, EZ:e—fl X &n, Eﬁ:ﬁo /Bo, where ¥ is the flux function defining a Grad-
Shafranov equilibrium. The dielectric tensor for the cold resistive plasma model can
then be derived [3] from the standard resistive two fluid theory as

ercold 31 iz + p[fz—V)] 0
€ =1+4| —iea+p[fa+V €1+ pha2 0 (2)
0 0 €3

() asig)e -k
€ = » Wzr‘-f_";-z- € =1 0. €1 €3 = t—2%

= (2) A Bii =% -V x &

Note that the ﬁmte electron mass has been neglected here, resulting in a change €3 =
w?

aw—_:fTﬂL z—l— so as to avoid the SQEW wave [3] which does not exist in the model

used 1n the code LION Here c, )i, w,. and v,; have the standard meaning and c4 is the

Alfvén speed.

The kinetic model [8] has been derived directly from the linearized Vlasov equation
assuming a Maxwellian distribution of the species. It takes into account FLR effects up
to second order in k; p;, and equilibrium gradients up to first order in py/L, L being a
characteristic length of the equilibrium. The dispersion and damping resulting from the
Maxwellian distribution of the particles are expressed in terms of the dispersion function
Z. All this is summarized symbolically here by the expression:

—kinetic - lnca
ek (9 () o

The working coordinates are chosen as (s = \:\If /%,,0,¢), where the radial variable

s labels the flux surface whereas 6 and ¢ are the standard polar and toroidal angles
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respectively. ¥, is the flux at the plasma-vacuum interface. Solving Maxwell’s equations

(eq.1) in terms of the perturbed potentials (Z, ®) and computing the fields (E, E) by
simple differentiation, it is possible to define the power absorbed by the plasma PP, the

normal Poynting flux S,, the vacuum power P**¢ and the power emitted by the antenna
Pant as

e W 2r s — — % =,
Pris(s) = = [ do ["ds|J|(| B |LE -€- E) (4)
o] 2x — —% —
Su(s) = -8-;/0 dO)J V S||(E % B)a (5)
vac __ i 112 — Nz
pre=2 [ (I BIF-IEIP) (6)
Pant = -% ant dV j;t * Z* (7)

where J is the Jacobian. For the resistive model for the plasma, it is possible to check
the balance of powers all over the plasma radius s € [0;1] according to

$Sa(s) = PP(s) (8)

A local power balance cannot in general be defined for the hot plasma model. It is
however possible to check the consistency of the solution at the plasma-vacuum interface
using the power balance

P 4 Pont = i, (s = 1) (9)

4 NUMERICAL IMPLEMENTATION

In order to compute wavefields in situations relevant for experiments, an interface has
been developed with the equilibrium code CHEASE [9], which solves the Grad-Shafranov
equation using arbitrary pressure and current profiles. The smooth solution, provided by
the Hermite bicubic finite element discretization further processed with a cubic spline
smoothing, guarantees a good representation of second derivatives of the equilibrium
quantities.

A mesh is further extended in the vacuum region to the wall, which is chosen here
to be at a constant distance of the plasma edge.

The 4th order partial differential equations (eq.1) are also discretized with Hermite
bicubic finite elements. The standard procedure is used, choosing the same elements for
the basis and the test functions in the weak variational form corresponding to (eq.1). The
finiteness of the solution on the axis and the Coulomb gauge at the boundary are imposed
naturally through the variational form. On the axis, the electrostatic potential is chosen
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to be zero and the vector character of A and V ¢ is imposed explicitly. The essential
boundary conditions on the perfectly conducting wall reduce to vanishing tangential

components of Z and e é.

5 VALIDATIONS

Two types of comparison are shown here: one using the cold resistive model (eq.2) in
an up/down asymmetric elongated single null equilibrium typical of DIII-D, comparing
eigenfrequencies and wavefields of TAE gap modes with the results obtained using the
finite hybrid element code LION [1]. This is a strong check for the discretization of
Maxwell’s operator in a complicated geometry. The second check is performed using the
kinetic model (eq.3) in a circular cross-section and large aspect ratio limit. An Alfvén
wave conversion scenario is reproduced and the wavefields are compared with the hot
cylindrical code ISMENE (3]. This leaves only a part of the terms which are toroidal and
kinetic unchecked, as the kinetic expressions have to combine in a rather sophisticated
way to recover the cylindrical limit.

Using the cold resistive model (eq.2), a scan in frequency in the gap region shows
two peaks in the antenna load, identified as two TAE modes at 41.5 and 70.5[kHz].
This is in good agreement with a similar calculation performed with the code LION,
which situates the modes at 42.4 and 69.1[kHz]. A comparison of the wavefields shows
excellent agreement in the dominant component E,, as well as in the weaker component
E, which is shown in fig.1 for the higher frequency mode. Note that the fields shown

CRPP
LION

o PENN
Figure 1: Level line plots for Re(Eb) with 5% damping in PENN and 1% in LION.

Other parameters are Ry = 1.8m,Rfa = 2.7,k = 1.63,¢0 = 1.1,¢, = 3.1,8 =
1.1%, Bpot = 0.19, By = 0.741T, I, = IM A, neo = 4.1.101(1 — 0.952)%5m~3

here are independent of the antenna shape and position and reflect only the eigenmode
structure.

As a check for the numerical consistency of the solution, the local power balance
(eq.8) is computed from the plasma center to the wall. The power absorption is strongly
localized near the plasma edge as can be seen in fig.2 (right); the numerical resolution
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4 NUMERICAL RESOLUTION 4 POWER DISSIPATION
b
FR c Py c
§2 §2
o o
& 5
&1 a &1 .
0 [+]
0 5 10 15 20 25 30 35 40 45 50 0 02 04 _ 06 08 1 1.2
radial mesh index radial variable s

Figure 2: Self-consistency check showing (a) the local resistive dissipation, (b) the
power integrated from the center Im(PF'®) and (c) the normal Poynting fluz Re(S,)
plotted versus the radial variable s (right) and the radial mesh indez (left).

was nonetheless sufficient thanks to a packing of the radial mesh near the plasma edge
resolving the skin depth and the structure of the mode (fig.2, left). The agreement
between the local powers (eq.8) is better than 1.6 % all over the plasma radius, while
the balance checked at the plasma edge (eq.9) is better than 1.9 %.

A good check of the hot model (eq.3) can be performed in the large aspect ratio limit,
computing the wavefieldsin an Alfvén wave heating scenario where the fast magnetosonic
wave converts to a kinetic Alfvén wave. Using the 1D cubic finite element code ISMENE

with a radial resolution N, = 100 and assuming a poloidal mode m = —1, it is possible
to compare the fields obtained with PENN in 2D using a helical antenna excitation
m = —1, here with a numerical resolution N, = 18, Ny = 18:

Re(En) Re(E|)) Re{En)

Figure 3: Level line plots for Re(E,) and Re(E)) using PENN (left) and ISMENE
(right). The parameters correspond to a large aspect ratio model for the TCA toka-
mak with f =3MHz,q0=1.1,q, = 3.3,1, = 112kA, By = 1.5T, f = 0,n = npg =
3.10¥m~3, T,y = 800eV, Tjo = 500V, n = no(1 — 0.98s2)%7, T' = Ty(1 — 0.84s%)?
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Abstract

We have developed a 3-D code, CQL;, [1], which solves the drift-kinetic Fokker-Planck
equation along the magnetic field line on a given flux surface. It is 2-D in velocity space and 1-
D spatially along B. Therefore no bounce-averaging is performed and the model is valid for
arbitrary collisionality and axisymmetric tokamak equilibria. The adjoint function
formalism has been adapted to calculate the neoclassical bootstrap current, assuming small
banana width compared with the minor radius. We compare the results of our code with

published analytical formulae and with the results of the modified bounce-averaged code
CQL3D.

1. Introduction

The neoclassical transport coefficients and in particular those for the bootstrap current
are widely used for data analysis or for MHD equilibrium calculations with large fraction of
bootstrap current. Analytical formulae exist [2-6], but they are valid either at low collisionality
(ve*<10-3) or at low inverse aspect ratio e. Bounce-averaged Fokker-Planck code, such as
CQL3D [7] or ADJ [8], can be used to obtain these coefficients for arbitrary € and realistic
axisymmetric tokamak geometry. Considering only the pitch-angle scattering collision
operator, the code DKES [9] solves for arbitrary collisionality in a stellerator type
configuration. The aim of CQLy, is to solve the Fokker-Planck equation with the full collision
operator, including like-species collisions. In this way, no conditions on the ratio of the
collision frequency to the bounce frequency is assumed and the transport coefficients can be
determined for arbitrary ve*. In this paper, we present the adjoint function formalism used to
easily calculate these coeffficients for the bootstrap current [10]. We also compare our results
with analytical formulae.
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2. Basic equations and bootstrap current coefficients

Using the adjoint function formalism [11,12], we shall obtain the parallel current
determined by the perturbed distribution function solution of the linearized Fokker-Planck
equation written as follows (Eq.5.21-24 Ref.2):

of,
Vil bv fe1- Ci(fel) = - (vp-V¥de —%,9 + % v fe0 EI? o

ofio

\// bv fi1 - Cu(fll) = - (vp'V¥)i :If @)

with
Cé: Cele + Celi: Linearized collision operator (Rosenbluth potentials)
v
vp' Ve = I(y) vy bv( ‘Q% )

ofs0 ~foo[alnn°°+ do 0<P> +( v2 _%alnTo'O
v v T ov vi 2 Ay
E{) : Ohmic parallel electric field ; Ly) = R By,

]

and where vT2°=2T2/m5 and Qg=qgB0/mg are the thermal velocity and cyclotron frequency of
species 6. We then introduce the following transformation, where uj; is the ion parallel flow:
2 vy ujy
ge1=fe1'—“‘2_fe0+§0‘k Ak feo 3)
. v
with To
10pe 1 0pj

P =I
peaw+pea\y ; a1 =Iy) vy / Qe

1 dTe
A2=T;W ; a2=a1(v2/vT20-5/2)
__% Kily)
niTe I(y)

nj Ui) 0<0> 1 opj I(\v)
B \ oy  Nigj gy B2

4)
<B2> ; a4 = a3 B2/<B2>

Ki(y) =

In this way, Eq.(1) reduces to:

A
vir b-Vge1 - Celo(gev =8 (5)
where @)
Ve1V a 2. §2) _vi

! _al
Ce0=Cee+~3 3¢ 2 5=

ge E
S= Te” viy fe0 - CL(2 ok Ak fe0)
3Vr vite 1 16\];neZie4lnA_ V2rBy

Vei(v) = ——=; — = ; Ve* = .
41 V3 Te 3 m% v.13e e BpO VTe Te 83/2

The flux surface averaged parallel current < j; B >, including the ohmic and bootstrap
contribution, is given by:
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<jyB> = <B I v/ (ge fe1 + gi fi1) d3v >

<queV//ge1d3v>-Z<BJ.qu//akfeod3v>Ak (6)

where we have used the quasi-neutrality condition. We now introduce the following adjoint
equation obtained from the adjoint operators of the left hand-side of Eq.(5):

-y ﬁ-Vxe - Celo(Xe) = qe vyy Bfeg ¢))
In this way, the first term of the right-hand side of Eq.(6) becomes:

1
</ %;eo— [- vy ﬁ-V - Cel()](Xe) ddv>

<Ige1QeV//Bd3V>

=< fk- [vy Q-V - Celo](gel) d3v >

= < feO S ddv> (8)

where we have used the property of adjoint operators and the relation:
I hClye) dv= Lface‘o(feo h) d3v

Thus, once the adjoint function ye is known, solving Eq.(7), we can compute the parallel
current simply by integrating the source term of the original equation, Eq.(6), multiplied by
Xe/fe0. Using the relations given in Eq.(4) and the following definition of the transport
coefficient for the current: <j; B> = oneo <E2 B> + L31 Aj + Lg2 Ag + L34 A4, the coefficients
can be identified to:

q 1
Oneo = o< J vif xe d3v > ©)
L31 = -Ipe- <J.f0 e0(oc1fe())d3v>
VT3
= -Ipe+< eriveoal—v-fd3v> (10)
Lzgg =-< j %%Celo(az fe0) dsv >
3
= IXeVeoal[Z; &(—5 2-— -h(v )]d3v (11)
Ve
L34 = -Ipe- J Ceo(a4 fo0) d3v >

3
I J‘ . Te B2 3
-Ipe+< xezlve()ozl;:;—ag;d v > (12)

where h(x) = x-3 [ 10 erflx) - 10 x erf'(x) - 4 x2 erf(x)] and ve0=3Vn/(4Zjte). Thus the code CQLy,
has been modifed to solve Eq.(7) and compute relations (9-12). This required the inclusion of
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the linearized collision operator. We have also modifed the code CQL3D [7] to solve the bounce-
averaged version of Eq.(7), which enables us to compute more rapidly the transport coefficient
in the banana regime, using the bounce-averaged form of Eq.(9-12).

3. Results

We show only results for the first two coefficients, opeo and L31, that is the neoclassical
parallel conductivity and the contribution of the pressure gradients to bootstrap current. The
superscript CQL3D or CQLy, denotes that the correspondmg coefficient has been obtained with or
without bounce-averaging Eq.(7).

In Fig.1 we show oneo/0Spitzer Vs. \/:, with ne= 1018 m-3 angd Te=3keV, in a low
collisionality limit. We see that cCQL3D (solid circles) follows well Hirshman et al formula
[3]. On the other hand, cCQL// (open circles) is slightly shifted upwards and follows well
Hinton and Hazeltine formula [2] (crosses), which is valid for small collisionality including
O(\R(ve*)) terms, whereas Hirshman formula [3] has terms O(ve*). As v¢*<0.02, mainly the
O(\/v_e*) terms modify the banana regime conductivity. Moreover, we have fitted the results of
CQL3D in terms of fT, the fraction of trapped particle as defined by Hirshman [5]:

1/Bmax

3 A dA
=1-fp=1-3<B2 f——u——-— 1
fp=1-fc = 1-7<B4> 0<(1_)~B)1,2> (13)

In this way we obtain:
oCQL3D / ggpty (1) = F33(F1) = 1- 1.3574 fr + 0.5859 £2 - 0.2285 £3 , (14)

where we have constrained the coefficients such that F33(0) = 1 and F33(1) = 0, corresponding to
the limits €50 and e—1, respectively. Note that F33(fT) would be undistinguishable from the
results of CQL3D in Fig.1. Then, if we replace fT by:

fr _ fT
1+Vvex+025vex (1405 \Jve* )2’
we obtain the solid line shown in Fig.1, which follows well the results obtained by CQLy. We

see that frei\ represents the effective fraction of trapped particles, which is reduced by collisions.

Note that oneo for arbitrary collisionality was already obtained with CQLy by solving directly
Eq(l) with VD = 0[1].

28 ver) =

(15)

In Fig.2, we show L31 vs vex for £€=0.023. We see that CQL3D (solid circles) and
Hirshman formula [5] (dashed-dotted line) give the same ve*—0 limit for L31, on the contrary
to formulae of Refs.2 (dashed line) and 4 (dotted line). On the other hand, L%?L” (open circles)
follows relatively well the latter formulae, valid for large collisionality.

In Fig.3, using the same labels as in Fig.2, we show the results obtained for L3 1/“\[6— for
the same parameters as in Fig.1. First, for the banana limit (ve*=0), we see that LC§L3D
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follows well Hirshman formula [5]. We have fitted the CQL3D results in terms of fT and we
obtain:

LGFP = Fo1r) = 162r-084 £ + 02253 a4

This fit is represented by the crosses in Figs.2 and 3. Taking the same formula in terms of f?rff
(solid line, Figs.2 and 3), we see that it reproduces well the results obtained with CQL,, both

versus ve* (Fig.2) and e (Fig.3). Therefore, we see that felff (Eq.(15)) does represent the

effective fraction of trapped particles in the whole parameter domain (e, ve*). This enables us to

have a simple analytical formula valid for the four limits: €50/ 1 and ve*—0/ o, and also for

intermediate values of € and ve*. Note however that further studies for different tokamak

equilibria and for very large ve* are needed in order to better determine the dependence on \/:z—e:
and ve* of the denominator of Eq.(15).

In Fig.4 we show a contour plot of the adjoint function %e(vy, v1) for two cases shown in
Fig.2: ve*=0.04 (Fig.4a) and ve*=4 (Fig.4b). As expected, we see that when the collisions are
more important, the solution tends to a Maxwellian, independant of the pitch-angle, which
reduces the effective trapped region. Moreover, this happens first in the low velocity region
which explains why the coefficient L31, proportional to xe v/ / v3, is more sensitive to ve* than
Oneo, Proportional to )¢ v/, This is seen by comparing Figs.1 and 3.

4. Conclusion

We have modified two codes, CQL3D and CQLy, to solve the adjoint equation used to
easily calculate the neoclassical conductivity and bootstrap current coefficients. In this way we
can obtain these coefficients in banana and arbitrary collisionality regimes, respectively, for
realistic axisymmetric tokamak equilibria. We have shown that the codes reproduce correctly
the analytical formulae in the limits of small ve* or small . We have also shown how CQLy is
able to connect these limits for intermediate values of ve* and €, which enabled us to determine

simple formulae for opneo and L3} in terms of an effective ratio of trapped particles (Eqs.(14-
16)).
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