LRP 475/93 June 1993

Papers contributed to the
20th EPS CONFERENCE ON CONTROLLED
FUSION AND PLASMA PHYSICS

Lisboa, Portugal
July 26 - 30, 1993



LIST OF CONTENTS

BETA LIMITS FOR TOKAMAKS WITH A LARGE
BOOTSTRAP FRACTION
by A. Bondeson

IDEAS IN TOKAMAK CONCEPT IMPROVEMENT
by W.A. Cooper and F. Troyon

MHD EQUILIBRIUM AND STABILITY OF DOUBLET
CONFIGURATIONS

by S. Medvedev, L. Villard, L.M. Degtyarev,

A. Martynov, R. Gruber and F. Troyon

ELECTRON CYCLOTRON RESONANCE HEATING
CALCULATIONS FOR TCV

by A. Pochelon, K. Appert, T.P. Goodman,

M. Henderson, A. Hirt, F. Hofmann, A. Kritz,
J.-M. Moret, R.A. Pitts, M.Q. Tran, H. Weisen

and D.R. Whaley

ALFVEN GAP MODES IN ELONGATED PLASMAS
by L. Villard, J. Vaclavik, S. Brunner, H. Liitjens
and A. Bondeson

PRESSURE AND INDUCTANCE EFFECTS ON THE
VERTICAL STABILITY OF SHAPED TOKAMAKS
by D.J. Ward, A. Bondeson and F. Hofmann

01

05

09

13

17

21



BETA LIMITS FOR TOKAMAKS
WITH A LARGE BOOTSTRAP FRACTION

A. Bondeson
Centre de Recherches en Physique des Plasmas, Association Euratom -Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne, Lausanne/Switzerland

I. INTRODUCTION. There is currently a strong interest in the possibility of operating a
tokamak in steady state with the major part of the current coming from the bootstrap effect,
supplemented by some "seed" current in the central region, e.g., from radio frequency current
drive. There are several open questions concerning such bootstrapped tokamaks, e.g., the beta
limits and the amount of current drive required. The bootstrap current tends to broaden the
current profile, which typically has detrimental effects on the confinement time and beta limit
[1]. A theoretical estimate for the beta limit of a bootstrapped tokamak limit was given in [2].
It was shown to scale as €1/2g2¢y¢ (1+x2), where g = B/Iy is the Troyon coefficient, Iy =
I[MA]/(a[m]Bg[T]) the normalized plasma current, x is the elongation and cpg quantifies the
efficiency of the bootstrap current generation. Although analytical estimates can be given for
Cpss and the behavior of g is quite well known, a realistic assessment of the bootstrapped
tokamak requires quantitative knowledge of what values of g and cpg can be obtained when the
current and pressure profiles are related by the bootstrap mechanism. Here, we address this
question by global numerical calculations and compute beta limits for bootstrapped tokamaks
with differently shaped cross section. The main result is that this beta limit is highly sensitive
to shaping and increases with elongation and triangularity.

II. PROFILE EFFECTS. In tokamaks operated at high current, the beta limit generally
increases with the internal inductance; g < 4/; is reported from DIII-D [1]. This is characteristic
of the "first stability” regime of high-n ballooning modes. The pressure profiles that are
optimal for MHD stability are rather broad with peaking factors (PPF = pgy/<p>) typically
around 2. (Experimentally, the highest beta values tend to occur for more peaked pressure
profiles, which may be in the second stability regime in the central region due to negative shear
[3]). At high poloidal beta, the bootstrap mechanism broadens the current distribution, which
is destabilizing for the n = 1 free boundary kink mode. On the other hand, for current profiles
with low shear in the central region, the high-n balloomng modes can enter into. the "second
stability” region. This transition is favoured by D-shaping and high q. The possibility that also
the external kink mode of toroidal mode number n = 1 could reach second stability was
suggested in [4]. Figure 1 shows the results of an attempt to test this, using the ERATO
stability code. The fi gure shows g-factors vs. internal inductance for the free boundary stability
of strongly D-shaped equilibria with broad current profiles, 0.5 < /; < 0.8 and 1.8 < gy <5 and
peaked pressure profiles, 3 < PPF < 4. In this paper, we use the following definitions for beta,
poloidal beta and internal inductance

2p9<p> 219<p> <BZ>
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where <*> means volume average and <B p>s = Mg Ip/ L, with L the plasma circumference,
denotes the line average on the surface. The moderate g-factors in Fig. 1 show that the free
boundary n = 1 mode does not reach second stability for equilibria of this type, even for very



high qg. Nevertheless, Fig. 1 shows some reminiscences of second stability, e.g., g increases
with decreasing inductance when the pressure profile is peaked. Thus, for highly shaped
equilibria with peaked pressure and broad current profiles, the /;-dependence is opposite to that
found in the standard regime of high inductance and broad pressure profiles. When the data
points in Fig. 1 are plotted vs. the pressure peaking factor we find that for PPF > 3, the g-
factors decrease strongly when the pressure is further peaked.
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FIGURE 1. g-factors vs. l; for peaked pressure FIGURE 2. Optimized 3 vs. bootstrap
profilesand A= 3, k=25, 6=06. fraction f for different cross sections.

III. NUMERICAL RESULTS. A beta-limit study for bootstrapped tokamaks has been
carried out with a partial optimization of the profiles. Profiles are specified for the surface
averaged toroidal current density I*(y) = <j¢/R>. Then, the pressure profile is chosen so that
the parallel bootstrap current [computed from the formulas of Hirshman [5] with Te=T;=T,Z
=1, and n = d(log T)/d(log n) = 1.5] is a fixed fraction of the total parallel current for all v,
~ except in the center where a cut-off has been applied to dp/dy. The resulting pressure peaking
factor is generally between 2.5 and 3. The total bootstrap current is computed as

C L <jpe*B> T ‘
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¢ = const

The current profile has been varied over a restricted set with I* = 0 at the edge to find an
optimum for the beta limit. With the pressure and cuirent profiles related so iliat the bootstrap
fraction is (almost) independent of v, the optimal current profiles are broad, in particular, for
strongly shaped cross sections. It appears that the geometrical effects of shaped cross sections
on the g-profile favour broader current profiles, and this is advantageous for the bootstrapped
tokamak. The numerical results are shown in Fig. 2 as B, vs. the bootstrap fraction f =
Iys/Ip- The curves represent three different cross sections, one JET-like with elongation k =
1.6 and triangularity & = 0.3 and two DIII-D-like ( = 2.5 and two triangularities & = 0.6 and
0.8) all at aspect ratio 3. The figure shows that D-shaping has a clearly favorable effect. The
results indicate that operation with a high bootstrap fraction should be of interest in strongly
shaped machines such as DIII-D and TCV, while this scenario gives very low beta limits in
weakly shaped machines such as JET. ‘



IV. THEORY. Analytical arguments [2] can be applied to the numerical results to
understand the dependence on shaping. The equilibria can be characterized by two figures of
merit which determine the beta limit of the bootstrapped tokamak. These are the Troyon coeffi-
cient g = B[%] / Iy and the bootstrap factor ¢y, defined by writing the bootstrap fraction as

f= Ilbj‘ = Chg gl2 |3p . 3)
P

The definition (3) is motivated by the following considerations. To lowest order in inverse
aspect ratio, the bootstrap current density is

jbs = ¢ &()172 Rg (dp/dy) : (4a)
where ¢ = [2.44(T+Tj)n' + n(0.69T,-0.42T;))/p. In the numerical examples, T,=Tj and 1 =

1.5, so that c=0.9. Assuming a flat g-profile and parabolic pressure profile, the total bootstrap
current can be integrated to give Iy, = 3.2n ¢ €1/2 Ryq<p>/Bg, which may be rewritten as

_ I[MA] qln BL%]
TosN = 3 r;]BO[T] =0.2c gl % Iy . (4b)

Furthermore, the definitions (1) imply B, = (B[%]/4I§) (L/2ma)2, thus (4b) gives (3) with ¢y
= 0.8c (qIn/5€) (2ma/L)2. In the case of an elliptical cross section and g = constant, the
geometrical factors in ¢y, almost cancel because gln/5e = (1+x2)/2 = (L/2ra)2. Consequently,
Cpg Should be independent of ellipticity and approximately equal to 0.8c. Of course, in general,
Cps also depends on the pressure and current profiles. Taking the square of the Troyon law the
beta limit can be expressed as 13[%][3p < (80x/¥) (L/2wa)2. In combination with (3), this
gives the following beta limit for the bootstrapped tokamak

Bl%] < €12g2  (cpe/dD) (L/2ma)2. 5)
It also follows that there is a limit to the bootstrap current set by MHD stability
Isn<€2g . (cpg4) LR2maYl ©6)

For weakly shaped cross sections, Eq. (6) gives rather low values of the bootstrap current.
Examination of the numerical results in Fig. 2 shows that for each geometry and self-similar
sequence of I*-profiles, gnax and cpg are approximately constant for bootstrap fractions f
between 50 % and 70 %. Thus, the 1/f scaling for the beta limit in (5) holds quite well and the
results can be summarized by giving gmax and cps. These are quoted together with B at 70 %
bootstrap fraction, J; and Iy in Table I for equilibria of different cross sections, with profiles
optimized as described in Sec. II. Table I underlines the favorable effect of shaping on the beta
limit of bootstrapped tokamaks. Note that even modest variations of g affect B significantly
because g is squared in (5). It appears that g is slightly reduced by ellipticity but increased by
triangularity. For the bootstrapped current profiles with <j,*B> = f <j*B>, g reaches the
highest values for rather low J; . The optimal current profiles are flatter the more shaped the
cross section is, as seen from the values of /; in Table I. Furthermore, g decreases if the
pressure profile becomes too peaked, say PPF > 3.



LS 5 Chs g P [%] Tos,N i

1.6 0.3 0.82 2.23 1.6 0.50 0.72
2.0 0.5 0.82 2.63 3.2 0.84 0.64
2.5 0.6 0.83 2.68 4.7 1.24 0.56
2.5 0.8 0.80 3.06 6.2 1.39 0.56

TABLE I. Characteristics of beta-optimized equilibria with 70 %
bootstrap current in different geometries at aspect ratio 3.

The bootstrap coefficient ¢y is insensitive to the equilibrium profiles, although broad
profiles give somewhat higher values because of the z:1/2/Bp weighting in (4a). As seen from
Table I, ¢y is also almost independent of the shape of the cross section and is close to the
simple analytical estimate 0.8. (cy increases somewhat with the peaking of the density relative
to the temperature, which has been held fixed in this study, although this dependence is weaker
at low aspect ratio.) The profiles of pressure and parallel current <jps*B> and <j*B> for the
case X = 2.5, 8 = 0.6 (with 70 % bootstrap current and 8 = 4.7 %) are shown vs. s = y1/2 in
Fig. 3. The current profile is nonstandard and very broad. It is clear that this type of profile
may be difficult to maintain and control in steady state.
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FIGUkE 3 Profiles of parallel current <Jj*B>, pressure and q vs. s = w2 for an eqiu'librium
with 70 % bootstrap current, B=4.7 %, x=2.5,6= 0.6 and A = 3 (see Table I).
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IDEAS IN TOKAMAK CONCEPT IMPROVEMENT

W. A. Cooper and F. Troyon
Centre de Recherches en Physique des Plasmas,
Association Euratom-Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland

It is experimentally observed that the transport properties of tokamak devices im-
prove with the transformer-induced toroidal plasma current. For configurations in
the parameter range of the ITER (International Tokamak Experimental Reactor) de-
vice, however, the toroidal current requirements predicted become very large ( 25M A).
Steady state operation is impossible and disruption phenomena triggered by these cur-
rents could cause severe damage to the vacuum vessel and other systems of the device.
It would be thus of great interest to devise a way to relax the toroidal currents needs
without degrading the confinement properties. One possible approach that we propose
here is the use of external helical windings to sustain a significant fraction of the edge
rotational transform. The tokamak, however, ceases to be axisymmetric and becomes a
three-dimensional (3D) configuration.

We consider here a circular cross section tokamak with finite toroidal current on
which we impose a L = 3 external helical field to produce a triangular deformation of
the plasma that rotates toroidally. The application of L = 1 or L = 2 components, or
combinations thereof could also be considered. But we have decided to limit the scope
of the study so far to L = 3 components motivated by the fact that this class of field
only alters the external region of the plasma. The bulk of the plasma where the pressure
concentrates remains essentially a conventional tokamak. The basic conﬁguratlon has 8
periods and an aspect ratio A = 10, large enough to permit comparisons with analytic
calculations. The plasma boundary is prescribed as

Roo(1) + Ryo(1)cosu + 8cos(u — Nv) + 6cos(u — 3Nv), (1)

R
Z Ryo(1)sinu + bsin(u — Nv) — ésin(u — 3Nv), (2)

where Roo(1) = 10, Ryo(1) =1, § = —0.055 and N = 8. We use the VMEC equilibrium
code [1] to compute 3D equilibria that selfconsistently model tokamaks with externally
applied helical fields. This code imposes nested magnetic flux surfaces on the configu-
rations investigated. The coordinate system is (s,u,v) where 0 < s < 1 is the radial
variable, 0 < u < 27 is the poloidal angle and 0 < v < 27 /N is the toroidal angle. The
magnetic axis is at s = 0 and the plasma boundary is at s = 1. In order to calculate 3D
tokamak equilibria, we must prescribe two surface functions. One is the pressure profile
given by

p(8) = p(0)(1 — s — 0.55% + 0.5s*). . (3)

This choice makes the pressure gradients relatively weak in the outer region dominated
by the stellarator fields. The toroidal plasma current enclosed within each flux surface



8 is prescribed as

2rJ(s) = -1—85[27rJ(0)] (s - %ss + %35). (4)

The- normalised toroidal current shown in the results is defined as J(1)R;0(1)/®(1),
where 279 is the toroidal magnetic flux. The rotational transform profiles for a toka-
mak at §* = 1.55% and normalised toroidal current equal to 0.0433 are shown for a case
of an external L = 3 helical field (§ = —0.055) and for the axisymmetric case (§ = 0) in
Fig. 1.  This example illustrates the point that the bulk plasma is basically a conven-
tional tokamak, while the stellarator fields provide the rotational transform support in
the near force-free plasma edge. We define 8* = (V [ &®zp?)'/?/ [ d®z(B?/2), where V
is the plasma volume.

The TERPSICHORE package of codes [2] has been employed to investigate the
Mercier, the ballooning and the global external ideal magnetohydrodynamic (MHD)
stability properties of the 3D tokamaks under consideration. Within the parameter
ranges that we have explored, the ballooning modes yield more restrictive criteria on
local stability than the Mercier modes. The stability calculations are performed in the
Boozer magnetic coordinate system [3] and the parallel current density is calculated
to consistently satisfy the condition of charge conservation [4]. For the ballooning cal-
culations, the spectrum of modes in the Boozer coordinate system includes poloidal
mode numbers m upto 60. Nevertheless, we find that this is insufficient to correctly
converge ballooning eigenstructures in the outer edge of the plasma where the stellara-
tor fields dominate when the Shafranov shift approaches and exceeds 50% of the minor
radius for cases with 8* > 1.5%. Upto 84 mode pairs are employed to determine the
stability to n = 1 modes. An axisymmetric conducting wall is placed at 3 times the
average minor radius to simulate a wall at infinity. We find that for the configuration
examined, the coupling between different toroidal modes within the n = 1 family [2] is
weak. The calculations are performed on 48, 56, 68 and 96 radial intervals within the
plasma. The number of interval in the vacuum region corresponds to 1/4 that within
the plasma. The convergence is quadratic in the mesh size. In Fig. 2, we show the
converged eigenvalue for n = 1 external modes as a function of the normalised toroidal
current. Each curve corresponds to different values of the parameter 3*, ranging from
0.99% to 3.22%. The stability results we have obtained are summarised in Fig. 3. The
dotted curve in the figure constitutes the Shafranov shift equal to half the minor radius
in the normalised toroidal current and $* parameter space. The domain above this
curve corresponds to Shafranov shifts that are smaller and that below to shifts that are
larger. Two regions of stable ballooning operation are obtained. In the high current
region, the ballooning stability limits improve with increasing current This property
characterises typical operation in the first stability regime of a conventional tokamak.
The region is limited from above in the figure by the emergence of the ¢ = 1 surface
from the magnetic axis. In the lower current ballooning stable region, we find that for
fixed §*, the stability properties improve with decreasing plasma current. This would
characterise operation in a second stable regime. However, as the current decreases, the
Shafranov shift becomes increasingly large, leading eventually to convergence difficulties
in the equilibrium and stability computations. The external n = 1 global ideal modes
yield a more restrictive limit than the ballooning modes, as shown by the solid curve in
Fig. 3. For 8* > 1.5%, the limit imposed by the external modes is closely aligned with



a Shafranov shift of half the minor radius. The stable domain lies below the curve. One
important difference with the conventional tokamak second stability operation is that
a second stable window for the n = 1 modes is demonstrated here with a wall far from
the plasma [5].

In conclusion, we have investigated the ideal MHD stability limits of a tokamak de-
vice of aspect ratio 10 and circular cross section on which we have superimposed a
L = 3 external helical field to reduce the plasma current required to sustain the rota-
tional transform at the edge of the plasma at finite 5. We have demonstrated that the
helical fields and the plasma current combine to permit access to the tokamak second
stable regime, where not only the ballooning modes but also the n = 1 external modes
are stabilised. For values of 8* > 1.5%, the limit imposed by the n = 1 modes almost
coincides with a Shafranov shift of half the minor radius.
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Figure i: The rotational transform profiles in tokamaks with external L = 3 helical windings (upper
curve, § = —0.055) and without them (lower curve, § = 0). The normalised toroidal current is 0.0433
and #* = 1.55% in both cases.
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Figure 2: The converged eigenvalue of external n = 1 modes with conducting wall at infinity for a tokamak
with L = 3 helical windings as a function of the normalised toroidal current. The curves correspond to
values of the parameter 8* of 0.99%, 1.55%, 2.106%, 2.662% and 3.22% from low current to high current.
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Figure 3: The stability boundaries in a tokamak with external L = 3 helical fields in the parameter
space of normalised toroidal current versus @*. The dashed curve that bounds the upper left hand corner
constitutes the first ballooning stable domain. The region below the other dashed curve constitutes the
second ballooning stable domain. The region below the solid curve is stable to n = 1 external modes.
The domain above the dotted curve has a Shafranov shift smaller than half the minor radius.



MHD EQUILIBRIUM AND STABILITY OF DOUBLET
CONFIGURATIONS

S. Medvedev*, L. Villard, L.M. Degtyarev*, A. Martynov*, R. Gruber**
and F. Troyon
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Association EURATOM - Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne
21, Av. des Bains, CH-1007 Lausanne, Switzerland

* Keldysh Institute of Applied Mathematics, Russian Academy of
Sciences, Miusskaya sq. 4, Moscow 135047, Russia

*k R. Gruber, Gruppo Applicazione Scientifiche della Svizzera, Centro
Svizzero di Calcolo Scientifico, Via Cantonale, CH-6928 Manno,
Switzerland

1 The operational limits of tokamak configurations with single

magnetic axis imposed by ideal MHD stability have been intensively studied in
the last decade [1]. Much less efforts have been made to investigate plasmas
with external separatrix [2]. On the other hand, plasmas with external
separatrix are used in modern tokamaks to obtain better confinement. Doublet
configurations with two magnetic axes and a separatrix inside the plasma
may have different confinement properties than single axis tokamaks. Doublet
tokamak configurations were tried experimentally [3] but were not studied in
detail theoretically [4]. In order to determine the operational space of these
configurations allowed by ideal MHD constraints, a package of equilibrium and
stability codes has been developed with an appropriate treatment of the internal
separatri(i:. Some stability results for n =0 and n = 1 ideal MHD modes are
presented.

2. The poloidal flux function y(r,z) for an axisymmetric equilibrium
magnetic field B = Vy x V¢ + F(y)V¢ satisfies the Grad-Shafranov equation:
Vy io : dP 1 _dF
V.(rZ) = -7 Jo = rd\|l+rF('—l-\;’ 1)

where p(y) is the plasma pressure and F(y) the toroidal flux function. To solve
the equation one can prescribe the shape of the plasma boundary and the
current density profile jy specifying either dp/dy and FdF/dy or dp/dy and

. af ;. d
I*(y) Iy [pds |/ 3y S{’ds @

Sy

The plasma domain is decomposed into three subdomains: two
inside, and one outside the separatrix. In each subdomain a structured grid
with quadrangular cells is introduced. We use a variational finite difference
scheme that is the average of two finite element discretizations corresponding
to two different triangularizations [5].

The ma;?ping procedure is replaced with a grid adaptation scheme
on magnetic surfaces y = const. This was already successfully used in a
number of codes [5,6,7]. The iterative procedure combines grid adaptation and
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Picard iterations on nonlinearity. The Grad-Shafranov equation with
rescribed right-hand side is solved with an overrelaxation method. Then the
yperbolic x-point is determined and the separatrix is traced as \|{1= VYx-point. In

each of the subdomains a linear interpolation is used to match the gng points

positions with magnetic surfaces. Flux functions dg/d\y and FdF/dy or I* are
then updated on the new grid and the loop is repeated.

For code verification analytical solutions were used which are
superpositions of Solev'ev and vacuum solutions :

v = Yo-(@2-1§2 + 402r2-02)22
+ (a+br2)z+ccos(dz) r I1(dr), 3)
dp/dy = 8(1+a2)), FdF/dy = -8 a2 02

In Fig. 1 the grid adapted to magnetic surfaces is shown for y, = 0.6, r, = 1,
a=0.6,0=03,a=0, g: 0.1, ¢ = 0.7, d = 2. The external boundary is chosen to
coincide with the external separatrix.

A convergence rate N-2(N is the number of points in one direction) is
achieved for the coordinates of magnetic surfaces and those of the magnetic
axes. With grid packing near the separatrix the same rate can be reached for
the x-point position also.

For characteristic up-down symmetric equilibria with Ny = 64,
Ng = 64, (Ny, Ng — number of points in radial and poloidal directions) inside
separatrix and Ny, = 32, Ng = 64 outside, 15 iterations are needed to reach an
accuracy of 10-5 in y variations over the adapted grid. It takes 20 s on NEC SX-
3/22 at 240 Mflops.

3. A variational formulation of the linearized ideal MHD equations is
used for the stability code. The potential energy representation is based on the
following displacement vector representation [8]:

B _Bxv
_E) X%—+Y I§2W+Z§, 4)

where B = Vy x D.

Flux coordinates (y,0,6) in each subdomain and finite hybrid
elements are used to avoid spectral pollution [9]. The poloidal coordinate is not
fixed by a choice of the Jacobian but is defined by the equilibrium grid. Some
further modifications were introduced to improve code convergence: "spectral
shift" elimination [9] and numerical destabilization correction [10]. In the
vacuum region between the plasma and the conducting wall a
"pseudodisplacement” approach [11] is used.

Inverse iteration and a direct matrix solver are used to find the
eigenvalues. The solver is based on the PAMERA code [12] modified to treat
connectivity conditions between subdomains and to exploit the banded
structure of matrix blocks. The connectivity conditions at the x-point are
written as X =& ¢ Vy = 0.

For grid dimensions inside Ny1 = 128, Ng; = 128, Ny2 = 128, Ng2 = 128
and outside separatrix Ny3 = 32, Ng3 = 256 the computation of one eigenvalue
takes 70s at 900 Mflops on a NEC SX-3.

4, In Fig. 2 the adapted grid is shown for an up-down symmetric
equilibrium with vacuum (or pressureless currentless plasma) outside



11

separatrix. Note that the angle between separatrix branches is n/2 at the x-
point. Stability of n = 0 and n = 1 external modes was computed for such type of
equilibria. For n = 0 two unstable modes are present when the conducting wall
is far from the plasma. The most unstable mode corresponds to displacements
of upper and lower parts of the plasma in opposite directions (Fig. 3a). The
mode with lower increment corresponds to mainly vertical displacement of the
whole plasma (Fig. 3b). The distance wall-plasma boundary needed to stabilize
n = 0 modes is about equal to the plasma minor radius for a wall shape similar
to the external boundary. This distance is close to the value needed to stabilize a
single axis plasma inside the separatrix taken alone (the elongation is 1.5 for
the case considered).

Limiting B-values against n = 1 external mode were also computed
for the case I*(y) = 1-y, q, = 1.05, aspect ratio of internal plasma 4.2, elongation
of internal plasma 3.0. First, the ballooning marginally stable pressure profile
was computed. Then dp/dy was scaled to get n = 1 external mode stability. At
marginal n =1 stability we get g =B a Bo/iolp = 3.5. The limiting B -value
against external n = 1 mode is barely effected by the presence of the mantle. Let
us note that there are two unstable n = 1 modes with different increments even
for an up-down symmetric doublet plasma corresponding to a single unstable
mode in a single domain plasma. The two modes differ mainly in mode
structure outside separatrix.

5. The validity of the developed codes was demonstrated with various
convergence studies, checking against analytical solutions and benchmarking
with other codes. Stability criteria for high-n ballooning and localized Mercier
modes were implemented. Automatic pressure profile optimization against
ballooning mode stability can also be performed. Preliminary studies of doublet
configuration stability have shown that both n = 0 and n = 1 external modes are
not more unstable than for a single plasma with nested mangetic surfaces and
half the elongation. Future work should investigate doublet g-limits and n=0
stability in more detail including the effect of up-down asymmetry.

ment: This work was partly supported by the Swiss National
Science Foundation.
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Fig.1. Up-down asymmetric equilibrium with grid adapted to magnetic
surfaces. Corresponds to the analytic solution Eq.(3).
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ELECTRON CYCLOTRON RESONANCE HEATING
CALCULATIONS FOR TCV

A. Pochelon, K. Appert, T.P. Goodman, M. Henderson, A. Hirt, F. Hofmann,
A. Kritz*, J.-M. Moret, R.A. Pitts, M.Q. Tran, H. Weisen and D.R. Whaley
Centre de Recherches en Physique des Plasmas, Association EURATOM -
Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, Av.
des Bains, CH-1007 Lausanne, Switzerland

* Lehigh University, Bethlehem, Pennsylvania, U.S.A.

The TCV objective is to study the influence of elongation and strong
shaping on tokamak performance. In particular, the experimental pro-
gramme will concentrate on the creation and control of highly elongated
plasmas (xk=b/a<3, R/a=3.7, B=1.43T), on the study of their operational
limits and on their confinement properties.

As a consequence both of the large variety of possible plasma configu-
rations and because of its flexibility, ECRH is the most suitable heating
system for the TCV tokamak. All plasma shapes, including those with high
elongation, can be heated using rotatable mirrors. In addition, the localiza-
tion of the energy deposition possible with ECRH can be used for modifica-
tion of the current profile (through control of the electron temperature
profile) and hence for the creation of the broad current profiles necessary
for vertical stability at high elongation [1]. An ECRH pulse length of 2s has
been chosen so as to be of the same magnitude or greater than current
diffusion times.

For the EC frequencies, the choice of extraordinary propagation modes
in second X2 (83GHz) and third X3 (118GHz) harmonics permits heating
at the nominal toroidal magnetic field (1.43T) in a high density plasma.
With cut-off densities of 4.3 and 11.5x1019m-3 respectively, combined X2
and X3, heating at fields between 90% and 100% of the nominal value is
possible at high elongation. A power of 3MW in X2 and 1.5MW in X3 is
planned.

Ray-tracing calculations of the resonance accessibility from the various
TCV ports with realistic beam divergence have been performed using the
TORAY code [2], employing (weakly) relativistic description for both dis-
persion and absorption. Accounting for plasma configurations from circular
to fully elongated and imposing various density profiles, these calculations
lead to the selection of horizontal to oblique lateral launch for second har-
monic heating and current drive and quasi-vertical top launch for X3 high
density heating.

X2 heating: Wave power in X2 can reach any region of the plasma when
launched from the upper lateral ports, since room for mirror adjustment
permits a wide range of poloidal launch angles. The EC power is nearly
100% first-pass absorbed and can be deposited in the central region
(x=r/a<0.4) if the density is below cut-off on axis. By adjusting the mirror,
X2 launched from the same upper lateral ports, can efficiently be absorbed
close to the plasma edge at high density (70% first-pass absorption limit at
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x~0.85-0.9 in ohmically heated plasma at x=2), making it appropriate for
profile control.

The effect of refraction due to relativistic effects was analysed in
detail for Ol in [3]. For X2, ray-tracing results based on both the cold
plasma and the relativistic plasma approximation are compared in Fig, 1. At
incidence angles very oblique to the resonance, relativistic effects pro-
foundly modify the ray trajectory and hence the absorbed power. Refraction
including relativistic effects restricts somewhat power deposition at x=0
just below cut-off density on axis, due to the reflection at the resonance.
Higher Te results in more rounded trajectories with refraction being ex-
perienced earlier.

X3 heating: In contrast to X2, X3 is launched from a port at the top of the
vessel giving a beam path quasi-parallel to the resonance, Fig. 2. This re-
sults in geometrically enhanced first-pass absorption [4], even for mildly
elongated plasmas. Launched from the top port, X3 power results in effi-
cient central deposition for a broad range of density. With a moderate elon-
gation, x=2, and density ne,<7x1019 m-3, first-pass absorption of 60% is
achieved in an ohmically heated plasma (see Fig. 3) and is more than 95%
absorbed in a supplementary heated plasma (Te~2xTeon). For full elongation
k=3, first-pass absorption increases to 80% and 100%, respectively. Due to
the small imaginary refractive index, relativistic effects on refraction are
not significant in X3 and there is no visible change of ray trajectory at the
resonance.

- ng: The accessible density ranges and corres-
ponding radial deposition locations of X2 and X3 permit the simultaneous
use of X2 and X3 gyrotrons for combined heating in plasmas with central
density below neo,~7x1019 m-3,

Maintaining n = O vertical stability at high elongation and low plasma
current requires current profile tailoring. Off-axis heating is used to pro-
duce a local decrease of resistivity. An estimate of the power deposition
profile required to obtain stable current profiles has been made assuming
the Rebut-Lallia transport model. This power deposition profile is compa-
tible with EC absorption calculations and, for a particular case at x=2.5,
vertical stability is achieved with 4MW of ECRH power.

Power loading on the walls: A simple 1D model of the scrape-off layer, to-

gether with field line tracing of various magnetic equilibria, is used to com-
pute the total power conducted and convected to the divertor target tiles
for the case of 2s ECRH pulses at the full power of 4.5MW. The calculations
predict peak power densities of 1 to 7MW/m?2, the power deposition de-
pending strongly on the divertor configuration (principally X-point to wall
separation). Estimates of the resulting temperature rise indicate this is al-
ways below the threshold for the carbon bloom in the absence of severe tile
misalignments. '
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TCA X1-O1 HFS heating results: The results of X1 and O1 heating at 39GHz
in TCA can be used as an indication of the validity of the relativistic effects
on refraction observed in X2 ray-tracing calculations. The beam in TCA was
launched from a top high field side (HFS) steering mirror [5] movable in
both the toroidal and poloidal directions. Thomson scattering and a soft X-
ray absorber method were used to measure electron temperatures [5].

The effect of perpendicular (¢=0°) and toroidally oblique (¢=24°) in-
jection on the central electron temperature in a series of TCA shots with
varying density with X and O-mode HFS launch was examined. It was obser-
ved that the X-mode behaved as expected classically, with small first-pass
absorption for perpendicular injection and increasing absorption with in-
creasing toroidal angle (see Fig. 4). The same trend is obtained in (relati-
vistic) TORAY runs, in which rays cross the resonance without refraction.

In contrast, the O-mode was not observed to behave classically. The
latter implies maximum absorption for perpendicular injection and mono-
tonically decreasing absorption for an increasing toroidal angle. This is not
shown by the measurements in Fig. 4, where O(0°)- and O(24°)-results are
compared. However, the experimental trend agrees with TORAY single-ray
simulations, Fig. 5a, showing: a) a maximum in the absorption for toroidal
angles ¢ between 15° - 30° (due to geometrical absorption enhancement),
b) an abrupt 3D "relativistic” direction change at the resonance, further in-
creasing absorption for rays at angles between ¢~15°-20° (see Fig. 5b-5c¢)
and ¢) a decrease in the absorption below the classical level (horizontal in-
jection) for angles ¢<10°. Multiple-ray calculations are in progress to com-
plement these single-ray results, which show that, in the case of HFS O-
mode injection, relativistic effects on refraction can result in a decreased
absorption for small angles and an increased absorption for medium and
large angles, a general trend which appears to be confirmed by the experi-
mental results.

Acknowledgements: This work was partially supported by the Swiss
National Science Foundation.
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ALFVEN GAP MODES IN ELONGATED PLASMAS
L.Villard, J.Vaclavik, S.Brunner, H.Liitjens, and A.Bondeson

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne
21, av. des Bains - CH-1007 Lausanne/Switzerland

1. Introduction. In the context of the potential destabilization of Alfvén eigen-
modes by fusion particles in tokamak reactors*—3, it is crucial to develop a qualitative
and quantitative theoretical prediction of the behaviour of these modes. Experiments
are being planned at JET to excite gap modes using saddle coils. The aim of this paper
is twofold. First we investigate the feasibility of gap modes excitation with saddle coils
in typical JET type equilibria (single-null, up/down asymmetric configurations). Second
we derive expressions for the wave-particle power transfer (in particular fast particles
such as fusion alphas) that are ready to be used in global calculations of the damp-
ing/growth rates. Previous works on this type of instability® were theoretical analytical
estimates of local growth rates.

2. Antenna excitation of gap modes. In order to compute ideal-MHD up/down

asymmetric equilibria, modifications have been made on the CHEASE code?. In the
actual version, plasmas with a separatrix cannot be computed and the computational
boundary only approaches it. The equilibrium quantities are transferred to the global
wave code LION®. The LION code solves the weak variational form of the wave equation
with a linear finite hybrid element discretization. It computes the continuum absorption
(in a non-perturbative way) and electron Landau damping due to parallel dynamics and
to curvature drift in a perturbative way. The plasma is surrounded by a pure vacuum
region enclosed by a perfectly conducting wall. In the vacuum region, the saddle coils

are modelled by a thin current carrying sheet D(z) = 0. The antenna current is written
as

7.= 6(D)VD x Va
a(9, <p) = Ean(G)e‘(""'“"), an(O) =y 06, <6< 02,

where 8, and 0, define the poloidal positions of the toroidal sections of the saddle coil and
 is the toroidal angle. The coefficients o, are obtained by making the toroidal Fourier
decomposition of the actual saddle coil currents. The axisymmetry of the equilibrium
allows us to compute the plasma response separately for each n. First the solution of
the wave equation and the coupled power P,(w) are computed with oy = 1 for each n
and for various frequencies w. To obtain the coupling impedance of a particular toroidal
antenna (or antenna array), we evaluate

AW = 5 (T 1RW).

where I,, are the Fourier coefficients of the antenna current and I, is the total antenna
current amplitude. It is planned to have up to 8 saddle coils in the JET torus. Each of
the coils extends almost 7/2 in the toroidal direction. With different relative phasing
of these antennas, different Fourier coefficients I, are obtained. It is thus possible to
select the dominant toroidal wavenumber n of the excited TAEs. An example of antenna
coupling calculation is shown in Fig.1. The plasma parameters are By = 3.45T, Ry = 3m,
a=105m, k =163, n. =5 x 10%m=3(1 — 0.9s%)%5, g = 1.1, ¢, = 3.34, I = 5.0M A,
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B = 3.9%, Bpot = 0.78. Only the top saddle coils are activated. The dotted line in Fig.1
corresponds to the case of 2 top saddle coils at opposite toroidal locations with currents
in phase opposition (+-), and the continuous line corresponds to the case of all 4 top
saddle coils with currents in (+-+-) relative phasing. The 2 (4-) case excites mainly
n = 1 modes but no n = 2 mode, wheras the 4 (+-+-) case excites mainly n = 2 modes
but no n = 1 mode. It will therefore be possible to distinguish between TAEs having
neighbouring frequencies but different n’s (e.g. the n = 1 TAE at f = 161.7kHz and
n =2 at f = 164.5kHz). The JET saddle coils excite both TAEs (f = 80 — 250kHz)
and EAEs (f = 250 — 450kH z). Some of the eigenmodes couple rather poorly to the
saddle coil antennas. For example, let us compare the modes labelled (a) and (b) on
Fig.1. These are n = 1 modes. Fig.2. shows their respective eigenmode wavefield
structures. The mode (a) has a rather large m = 1 component from the magnetic axis
up to the ¢ = 1.5 surface where it has strong gradients. The mode (b) has a more global
structure and a comparatively larger amplitude near the edge. The mode (b) has the
same phase from the magnetic axis to the outer (low lield side) edge wheras the mode
(a) has a change of phase near the ¢ = 1.5 surface. The two types of modes are also
seen for n = 2 and were also seen in circular plasmas®. Which mode is the most easily
destabilized by fast particles is a question that will need careful further studies. The
“internal”-like mode (a) is probably more sensitive to the fast particles in the center,
whereas the “external”-like mode (b), if destabilized, could be more effective in expelling
fast particles from the center to the outside. The damping of these modes will probably
be affected in a different way by the different parameters. The “internal” mode may be
more ion-Landau damped for sufficiently high 7; plasmas, wheras the “external” mode
may be more sensitive to electron-Landau damping for cases where v4 = vy, in the outer
region.

3. Damping and growth rates. To evaluate the growth rates 4 of the waves
calculated by the LION code, it is necessary to establish a relation between the total

~

time-averaged power P absorbed by hot species and the given EM fields (E‘, B)iy=-P
[2W, where W is the total energy of the wave. Working in the Alfvén frequency range,
it is convenient to describe the evolution of the species using the drift kinetic equation
(DKE). The equilibrium distribution functions of the guiding centers for electrons and
ions are taken as local Maxwellians (functions of 1 = poloidal flux). The a-particles are
described by a slowing-down distribution®:

F= N(¢)§%H(vo -v),

where H is the Heaviside function and v, the birth velocity of the alphas.The fluctuating
distribution function is then evaluated for given EM fields from the linearized DKE

using a perturbation method. The parameter b, = B,/| Be |, where B, is the poloidal
component of the magnetostatic field, and the parameter | vy |/A w, where vy is the

magnetic curvature drift, A\; the wavelength perpendicular to By and w the frequency
of the EM fields, are considered small. Integrating the resulting distribution function
over the guiding center phase space, one can evaluate the total time-averaged power
exchanged between the particles and the EM fields”. As the EM fields are provided by

an ideal-MHD calculation, the component of E parallel to the magnetostatic field is zero
and must therefore be obtained from a more general model. This can be done using the
quasi-neutrality condition for electrons and ions. For the electrons and ions, we obtain:

= wzvﬂ, 2
P = \/7_760 dax L exp —z2 x (as ies : + ) ’

B:.'E'-iwgn
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where w, is the plasma frequency, ) the cyclotron frequency, ky the parallel wave number,

20 = w/kyven, ,8—_1— (Vx ?IIO) , 2||0=§0 /Bo and Z = Z(w/|ky|vise) the dispersion func-

tion. For the a-particles we also consider the contributions due to the inhomogeneities
of equilibrium:
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and V' is equivalent to |V1|0/0% except that it operates only on density and tempera-
ture.

4. Conclusion. It was shown that saddle coils can be used to excite low n TAEs
and EAEs in typical single-null JET plasmas. Toroidal mode number selection can be
done by different phasings of the antennas. Some of the eigenmodes couple weakly but
may be important to study. In the future, the expressions developed for global growth
and damping rates will be used in the global calculation of gap modes.
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Pressure and Inductance Effects on the Vertical Stability
of Shaped Tokamaks

D. J. Ward, A. Bondeson, F. Hofmann,
Centre de Recherches en Physique des Plasmas,
Association Euratom—Confédération Suisse, EPFL, Lausanne

In previous work [1] it was shown that the combination of triangularity and high £, is
strongly stabilizing for axisymmetric modes in highly elongated (2.5 < x < 3.0) tokamak
plasmas. The effect of pressure in dee shaped plasmas reduces the driving energy of the
instability. In contrast, in an inverse-dee pressure is highly destabilizing. In a pure
ellipse pressure has a negligible effect on the free space growth rate, but is somewhat
stabilizing in the presence of a resistive or ideal wall. The purpose of the present note is
to extend the study of shape and profile effects to cross-sections of moderate elongation
in the range 1.6 < x < 2.

The primary results from Ref. [1] are shown in Fig. 1. Here an upper limit on the
growth rate of the vertical instability is specified (such an upper limit is imposed by
limitations of the active feedback system), and we find that the stability boundary in
terms of the operational parameters [; and (3, is very nearly linear. This boundary
defines a region of stability (toward low [; and high §,) for a given shape of the plasma
cross section. This stability boundary is nearly independent of the details of the current
profile, and also independent of the aspect ratio if the boundary is plotted in terms of
l; vs. €f,. We see from Fig. 1 that the slope of this boundary increases strongly with
increasing triangularity, and decreases with increasing elongation.

Here we present some first results from a comprehensive study of the effects of tri-
angularity, pressure, and profile effects in moderately shaped (x = 1.6-2.0) tokamak
plasmas surrounded by a resistive wall. These results again show the stabilizing effect
of triangularity and pressure.

The resistive wall stability calculations are performed using the NOVA-W [2] stability
code with equilibria calculated using the CHEASE equilibrium code [3]. For the cases
shown in Figs. 2 & 3, the resistive wall is specified to be conformal to the plasma
shape, and to be at a distance from the plasma at the midplane of 1.4 times the plasma
minor radius, d = 1.4a. The resistive wall has a ratio of resistivity to wall thickness of
n/6w = 4 x 10739

The plasma—vacuum boundary is specified as
Rfa=A+cos(f+6sinf+ Asin20) , Z/a = ksing (1)

where « is the elongation, § is the triangularity, and ) is a squareness parameter (used
in some of the cases shown in Fig. 1). The following definitions are used for the poloidal
beta, B, = (4/ oI Ro) [y p d*z, and internal inductance, l; = (2/u3I2Ro) [, B3 d*z.

Figure 2 shows results for equilibria with elongation x = 1.8 for several different
values of triangularity ranging from § = 0 to § = 0.5. The resistive wall growth rate «y
(in s~1) is plotted vs. B,. For each value of triangularity two pressure profile specifications
are used: one peaked, with pressure peaking factors PPF =~ 3.3, and one relatively flat,
with PPF =~ 2. The same current profile is specified for all cases in this figure yielding

Figure 2 shows the stabilizing effect of high £, in all cases except for the pure ellipse
with a peaked pressure profile. This stabilizing effect increases strongly with triangu-
larity. Only at very low values of (B, do the high-triangularity equilibria have higher
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growth rates than those at lower triangularity. Here, at 8, = 0, the § = 0.5 equilibria
have growth rates higher than those at § = 0 by about 15%. Furthermore, the shape
of the pressure profile has only a modest influence on the stability. The stabilization by
pressure and positive triangularity is somewhat stronger for the broader pressure profiles.

Figure 3 shows results for the same shapes and wall but with a narrower current
profile, so that l; ~ 0.95. Here, the growth rates are higher than in Fig. 2 (note the
difference in the scale) owing to the reduced coupling of the current profile to the wall.
For the low-triangularity cases there is a much larger increase in the growth rates as the
inductance is increased than for the high-triangularity cases. In fact, the growth rates
at B, = 0 for the § = 0 equilibria almost double in magnitude as I; is increased from
I; = 0.75 to l; ~ 0.95, whereas the growth rates for the § = 0.5 equilibria increase by only
about 20%. Note that for this high-inductance current profile, the higher-triangularity
cases are more stable than the low-triangularity cases for all values of 3,.

We find that the results for cases with higher elongation (x = 2) give the same
trends, but naturally with higher growth rates. One clear conclusion is that with any
nonzero triangularity the most unstable equilibria are those with 8, = 0. Therefore,
low-pressure operation gives the most restrictive conditions on the vertical stability for
a given configuration. We consider now these zero-pressure cases and the variation of
growth rate with respect to the resistive wall distance.

A Figure 4 shows how the growth rate varies with respect to the normalized distance d/a

of the resistive wall for various values of triangularity and with 8, = 0. We see that for
the cases with the broader current profiles (I; ~ 0.75) the growth rates for equilibria with
different triangularities are quite similar, with the high-triangularity cases being slightly
more unstable. However, equilibria with narrower current profiles (I; =~ 0.95) show a
much greater variation in growth rate with respect to the amount of triangularity, and
the high-triangularity cases are more stable. In fact, the curves for 6 = 0.5 are fairly
close in magnitude for the broad and narrow current profiles, as mentioned above. The
curves are shown for both the x = 1.8 and the x = 2 equilibria. At zero triangularity
the xk = 1.8 equilibria with /; & 0.95 have growth rates quite close to those of the x = 2
equilibria with I; =~ 0.71, whereas at triangularity 6 = 0.5 the growth rates for the
Kk = 1.8 cases remain well below those for the x = 2 cases for the broad and narrow
current profiles.

CONCLUSION

The combination of high triangularity and high B, is strongly stabilizing for the
vertical instability in tokamak plasmas surrounded by a resistive wall. For narrow current
profiles triangularity is stabilizing even at 8, = 0. Only with broader current profiles at
very low values of B, do the high-triangularity cases have larger growth rates than the
low-triangularity cases (and only by about 10-15% at zero pressure). Also, the variation
in resistive wall growth rate with respect to changes in the internal inductance is much
smaller at high triangularity. We conclude, therefore, that high triangularity is generally
beneficial for vertical stability in elongated tokamak plasmas.
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