LRP 488/93 December 1993

Stabilization of External Modes in Tokamaks
by Resistive Walls and Plasma Rotation

A. Bondeson and D.J. Ward






|

STABILIZATION OF EXTERNAL MODES IN TOKAMAKS
BY RESISTIVE WALLS AND PLASMA ROTATION

A. Bondeson* and D.J. Ward

Centre de Recherches en Physique des Plasmas
Association Euratom-Confédération Suisse
Ecole Polytechnique Fédérale de Lausanne
21, Av. des Bains, CH-1007 Lausanne, Switzerland

ABSTRACT

It is shown that low-n pressure driven external modes in tokamaks can be fully
stabilized by resistive walls in combination with sonic rotation of the plasma. The
stabilization depends on the excitation of sound waves by the toroidal coupling to Alfvén
waves and is affected by ion Landau damping. Two-dimensional stability calculations

are presented to show the gains in the beta limit resulting from this wall stabilization.
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An important limitation of tokamak performance is that of B = 215<p>/<B2>, set
by ideal magnetohydrodynamical (MHD) instabilities. Troyon et al! found numerically
that the beta limit is proportional to the plasma current, Bmax = & Ip[MA]/a[m]BO[T].
This scaling has since been well confirmed experimentally, although there remains some
disagreement concerning the numerical coefficient g. Conventionally, the beta limit is
computed by requiring ideal MHD stability for static equilibria without accounting for any
stabilizing effect of conducting walls. The original computations! gave g = 2.8, and
subsequent studies with improved optimization procedures have led to higher estimates of
g up to 3.5 or 4. However, experimental work on the DIII-D tokamak?2 has reached g=
5, and MHD stability analyses show that at least some of these discharges are unstable to
modes of low toroidal mode number n.3 Since the pressure limit is set by robust, global
instabilities, kinetic corrections due to drift frequencies, finite Larmor radii or trapped
particles can be estimated to be small. It has been pointed out that the high normalized
betas confined in DIII-D can be explained theoretically by assuming stabilization by a
perfectly conducting wall at the location of the actual resistive wall.4 This has been
verified by detailed MHD stability analyses for certain DIII-D discharges.3 However, the
stabilization by resistive walls is not well understood theoretically and conventional
wisdom holds that ideal MHD instabilities are only slowed down, but not completely
stabilized, by resistive walls. Here, we present some first theoretical results on
stabilization of toroidal pressure driven external modes by resistive walls. Qur main
conclusion is that this type of mode can be completely stabilized in tokamaks with sonic
plasma rotation and that the gain in the confined pressure can be significant.

Itis well established that resistive walls do not change the stability boundaries of
the axisymmetric "vertical" instability and the "cylindrical" external kink mode, when the
plasma has no resonant surface where k;, = (m/q - n)/Ry vanishes (m = poloidal mode
number, q = safety factor and Ry = major radius). Resistive walls can slow down the
growth of these instabilities so that it takes place on the resistive time scale of the wall, Tw
= L/R, but do not change the stability boundary from their wall-at-infinity value.
Furthermore, the growth rates of these modes are not affected by sub-Alfvénic plasma
rotation.d By contrast, tearing modes can be wall-stabilized in the presence of rotation
provided the rotation frequency exceeds both 1,1 and a characteristic tearing growth
rate.5 Generally, the stability boundary is not changed by resistive walls and plasma
rotation when the rotation frequency remains small compared with the local Alfvén
frequency kjv, throughout the plasma. As a consequence, plasma inertia does not

influence the growth of the mode. This condition is clearly violated by the toroidal



3

pressure driven external kink modes for which k;, vanishes locally at the resonant
surfaces where m = nq. Evidently, there will be layers around each resonant surface
where the rotation frequency exceeds the local Alfvén frequency and where the plasma
response to a wall locked mode is dominated by inertia.

The toroidal pressure driven modes are more complicated than the cylindrical
tearing mode because of the toroidal coupling between different poloidal harmonics and
between the Alfvén and sound waves. Therefore, we have used numerical computation
to study the wall stabilization in toroidal geometry. The spectral codes MARS7 and
NOVAS have been modified to include a resistive shell in the vacuum region surrounding
the plasma. Toroidal rotation has been modeled by making the resistive shell rotate rather
than the plasma. Thus, the equilibrium is static, which allows us to separate the effects
of wall stabilization from other modifications due to the plasma rotation. We assume that
the rotation frequency is much larger than any resistive growth rate so that the plasma can
be treated as ideally conducting (this excludes resistive modes rotating with the plasma).

Sonic rotation complicates the stability problem by coupling to sound waves, and
it has been pointed out that the MHD equations predict an unphysical resonant behavior
of the sound waves.® For realistic temperature ratios, the sound waves are strongly
damped by ion Landau damping,® and an accurate calculation requires a description that
is kinetic along the field lines. However, reasonable approximations of the kinetic
behavior can be obtained by adding dissipative terms to the fluid equations.10 We have
applied three such modifications of the scalar pressure, ideal MHD equations. Two of
these consist of adding a damping term for the Lagrangian pressure perturbations. The
perturbed pressure is split into a convective and a Lagrangian part, P1=-&Vpo +p1Ls

where

dpj/ot =-T'pgVev-vpy . (1)

The damping rate v is either taken to be a fixed number or to represent a thermal
diffusivity following the Hammet-Perkins approximation,!0v = X Ik Venil- As a third
alternative, we use a term representing parallel viscosity in the equation of motion along
the field lines so that v, = (By/By) ¢ v is computed from

avylot = - (B+Vp)1/Bopg - ¥ [k;vnil vy ' 2

By comparison with the guiding center results in Ref. 9, one can show that this
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formulation with ' =3/2, x =V = 1.77 and v = 0 gives a good approximation for the
perturbed perpendicular pressure induced by Lagrangian perturbations of the magnetic
field strength.

We now present results from numerical solutions of the MHD eigenvalue problem
modified according to Eq. (1) or (2). The resistive shell rotates toroidally with the
angular frequency @y and its time constant 1, is far longer than any MHD time scale or
O, 1. Using the MARS and NOVA codes, we search for eigenvalues in the complex
plane. When the pressure exceeds the stability limit with the wall at infinity, we find two
classes of modes that can potentially be unstable: (a) one which has zero frequency in the
frame of the plasma and hardly penetrates the resistive wall: the "plasma mode" and (b)
one which penetrates the wall and rotates slowly with respect to it (slip frequency =
O, D) << Wroy): the “resistive wall mode”. The resistive wall mode rotates with respect
to the plasma at a frequency close to the imposed rotation frequency W A typical
example of how the growth rates of the plasma and resistive wall modes depend on the
wall radius d is shown in Fig. 1. The two modes are influenced in opposite ways by the
wall distance - the plasma mode is destabilized as the wall is moved further from the
plasma, while the resistive wall mode is stabilized.

The plasma mode rotates quickly (frequency = @y >> 1y,"1) with respect to the
wall. It does not penetrate the wall and behaves as if the wall were ideal. The plasma
mode is unstable on the ideal MHD time scale when the wall radius exceeds the usual
ideal MHD threshold for wall stabilization, djges;. This marginal wall position
approaches infinity at the conventional beta limit and decreases with increasing pressure.

The resistive wall mode becomes increasingly stable with inreasing wall radius.
This counter-intuitive behavior can be understood by a large aspect ratio calculation of A'
at the resistive shell. We consider a magnetic perturbation in the vacuum, dominated by
one poloidal harmonic m (assumed > 0). The perturbed magnetic flux function Y
satisfies V2w = 0 in the vacuum region and the poloidal harmonic m is a linear
combination of r-™ and r™. The growth rate of the resistive wall mode is given by y=
tw'l dA'y, where A'y=[y'(d,) - ¥ (d))w(d). If we write the logarithmic derivative of y
at the plasma edge r = a as (W/AY)=y = - (m/a) (1 + 2) (with z=x + iy, x and y real and y
# 0 because of the rotation) a simple calculation gives A',,

(dAy/2m) [1-(2/dy?™] = z/(w-z) = [(wx - X2 - y2) + iwy] / [(w-x)2 +¥2] , (3)

where w = 2/[(d/a)2m - 1]. As the radius of the resistive shell d increases from the
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plasma radius a to infinity, w decreases from +° to 0.

Let us first consider the case of no rotation, y =0, and the plasma unstable in the
absence of a wall, x > 0. For this case, Eq. (3) shows that the resisive wall mode is
unstable (A'y, > 0) for a <d < djgea = a[1 + 2/x]1/2m, As the wall radius increases, Ay
— +oo when d — djge,1, and at this wall position, the resistive wall mode connects to the
ideal MHD instability, which is unstable for d > digear- In the region of ideal instability,
plasma inertia is non negligible and modifies (W'/Y)p=q 50 as to keep A'y, = + oo,

When the rotation frequency is finite, y is non zero. This eliminates the zero in
the denominator of Eq. (3). Consequently, A'y, remains finite and complex for all wall
distances, and the resistive wall mode does not join the ideal instability. Thus, rotation
effectively separates the resistive wall mode from the plasma mode. The growth rate of
the resistive wall mode remains O(z,,"1) for all d, and if Tw >> T, the plasma response
can be computed neglecting the small slip frequency with respect to the wall. (Because of
the damping added to the sound waves and the toroidal coupling of sound and Alfvén
waves, the solution in the plasma remains well behaved as Re(y) = 0, i.e., the
continuum resonances of the ideal MHD equations have moved into the stable half plane.)
Figure 1 shows that the resistive wall mode is stabilized when d exceeds a threshold,
which, according to Eq. (3), is given by dpe = a [1 + 2x/(x2+y2)]1/2m_ Although the
present discussion is oversimplified, e.g., by only considering one poloidal harmonic, it
demonstrates the separation of the plasma and resistive wall modes by rotation and shows
that they behave in opposite ways with respect to the wall distance. It is clear that the
optimum wall position is some distance away from the plasma.

We conclude that, when a rotating plasma exceeds the pressure limit with the wall
at infinity, there are two stability limits for the wall radius, dres and djgey;- The plasma is
stable when ds < d < d;ge,y, and this condition must apply for all n (except n = 0 which
is usually stabilized by active feedback on the resistive shell time scale). We have
computed stability limits including rotation and resistive walls several MHD equilibria.
Generally, the effect of wall stabilization is stronger when the pressure profile is broad so
that the beta limit is set by external modes. An example is given in Fig. 2 which shows
djgeat and dpeg versus normalized pressure g for n = 1 and 2 and rotation frequency
Oro/0p = 0.06. The computations were made for an equilibrium with JET shape
(elongation = 1.7, triangularity = 0.3 and aspect ratio = 3) and a low pressure peaking
factor, pg/<p> = 1.7. The current profile was adjusted to keep qg = 1.2 and g, = 2.55.
The resistive shell was conformal with the plasma boundary and we used the parallel

viscosity model (2) with x = 1.77.
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In Fig. 2, d;geqy is smaller for n = 2 than for n = 1, thus the outer stability limit for
the wall position is set by n = 2 not by n = 1. In fact, n = 3 gives an even more
restrictive dige,. However, the present model is somewhat unrealistic for high-n modes.
First, strong shaping, such as in DIII-D, can cause a transition to second stability for
large and intermediate n. Second, experimentally, the plasma is rotating rather than the
wall, and the velocity profile in the plasma is sheared, which is expected to stabilize high-
n ballooning modes.11 Thus, the stability boundaries of the high- and intermediate-n
modes should be more sensitive both to the profile of the plasma rotation and to
geometrical effects. Although a general conclusion cannot be drawn from the example in
Fig. 2, it is clear that the most restrictive d; ., can be set by toroidal mode numbers larger
than 1. On the other hand, our computations indicate that the inner limit, deg, is
generally set by the n = 1 resistive wall mode. An important reason why the present
mechanism of wall stabilization influences the overall beta limit is that it is effective for
low-n modes, in particular, n = 1, for which shaping effects alone are not enough to
produce second stability.12

For the equilibria in Fig. 2, the highest g-factor that is stable to bothn =1 and n =
2 at the prescribed rotation frequency is about 4.2, to be compared with the threshold of
3.1 in the absence of wall stabilization. The effect of wall stabilization is strongly profile
dependent, not only because of the different effects of the wall on internal or external
modes, but also because of the spectrum of n's that can become unstable. For equilibria
with similar pressure profiles as in Fig. 2, we find that when q, increases, dyeg forn = 1
moves closer to the plasma boundary, and the maximum normalized beta is increased.

A considerable uncertainty comes from computing the perturbed pressure from
fluid rather than kinetic theory. Figure 3 shows the results of different fluid
approximations for the same equilibrium as in Fig. 2 and @/®4 =0.06. Stability limits
are shown for the n = 1 resistive wall mode using the model of Eq. (1) with v/@ A=
0.0025 and v/wp = 0.025 and the parallel viscosity model (2) with I'= 1.5 and x = 1.77,
0.885 and 0.1. The Hammett-Perkins approximation with y = 2/ gives a result almost
identical to the pressure damping model with v/®, = 0.025. Thus, the two pressure
damping models (1) give rather similar results, while the parallel viscosity model gives a
stronger stabilizing effect. Furthermore, if the sound waves are eliminated by setting I' =
0, the wall stabilization becomes very weak for ., /0al < 0.06. We conclude that the
stabilization by resistive walls and rotation is sensitive to the dynamics of sound waves
and an accurate theory must be kinetic along the field lines (e.g., drift kinetic). The
Alfvén and sound waves are coupled by geodesic curvature in toroidal geometry.13
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Also shown in Fig. 3 is a comparison case with half the rotation frequency,
Oro/®@p =0.03 (and T = 1.5, x = 1.77). The stabilization is much weaker for this lower
rotation frequency and is almost lost when ®,o,/wa < 0.02. Thus, there is a threshold
behavior with respect to the rotation frequency. For the type of equilibria we have
examined, W,/ needs to be about 0.05 to give a significant stabilizing effect. This
corresponds to a minimum rotation frequency of about 20 % of the sound frequency at
the q = 2 surface.

Figure 4 shows eigenfuntions for different values of the damping coefficients to
illustrate the coupling of Alfvén and sound waves and the effects of damping. If the
dissipation coefficients for the sound waves are small, the displacement exhibits sharp
peaks around the surfaces resonant to the coupled Alfvén-sound continuuml3 at @ = oy
In the limit of vanishing damping coefficients and mode growth rate, these resonances
approach a 1/(y—y) behaviour for the parallel displacement and loghy—y ! for the
normal displacement. Realistic values of the damping coefficients broaden the
singularities to the extent that they can just barely be distinguished in the normal
displacement.

In summary, we have shown that resistive walls in combination with plasma
rotation can give wall stabilization leading to experimentally significant increases in the
beta limit. The effect is more pronounced for broad pressure profiles and at high qa- The
wall stabilization raises the pressure limit of the low-n modes, in particular, n = 1. This
makes the mechanism particularly attractive as ballooning modes can reach a second
region of stability for large pressure and low shear, while the n = 1 mode does not access
second stability without wall stabilization.1? The numerical example shown in Fig. 2
indicates an increase in the beta limit by about 30 % by the wall stabilization. Increases
of similar magnitude are observed on DIII-D, and some of these are believed to be due to
stabilization by the DIII-D vacuum vessel.3 Our numerical computations show that a
certain minimum rotation frequency is needed for a significant effect. For typical
tokamak parameters, W,/ needs to be about 0.03 - 0.05 or larger. We note that this
condition is generally satisfied in DIII-D discharges where the Alfvén frequency is
typically in the range 1 x 105571 t0 2 x 106 5°1 and @y, is between 60 x 103 s-1 and
200 x 103 s-1,
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Figure 1. Growth rate Yyes and slip frequency A®peg = Opo; - Bpeg Of resistive wall

mode and growth rate of plasma mode ¥;4e, versus wall radius for n = 1 mode with g
about 30 % above free-boundary limit. This graph was calculated using the Hammett-

Perkins approximation with y = 2/x.
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Figure 2 Marginal wall position versus Troyon factor g for the plasma (filled
symbols) and resistive wall modes (open symbols) with toroidal mode numbers n = 1
and n = 2. The plasma mode is stable for d < d¢ris and the resistive wall mode for d >
dcrie- The region stable to both the n = 1 and n = 2 modes is bounded by the n = 1
resistive wall mode and the n = 2 plasma mode.
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Figure 3. Marginal wall distance versus Troyon factor g for the plasma mode
(marked "ideal") and the resistive wall mode using different assumptions. Curves (a - €)
apply for @y, /wp = 0.06. (a - b) give results for the pressure damping model (1) with (a)
v/ima = 0.025 and (b) v/wa = 0.0025. (c-e) give results for the parallel viscosity model
(2) with (c) x = 0.1, (d) x = 0.885, and (e) x = 1.77.
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Figure 4. Radial dependencies of the m = 1, 2 and 3 Fourier components of the
displacement normal to the flux surfaces, &, and parallel to the magnetic field, &y, fora
wall locked mode when W, /@4 = 0.06. (a) gives &, and (b) &, for the "physical"
damping coefficient k = 1.77. (c) gives &5 and (d) &, for weak damping x = 0.1. Note
the almost singular behaviour near the MHD continuum resonances in the weakly damped

case (c-d).



