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ABSTRACT - The presence of an electron beam in a quasi-optical
gyrotron cavity alters the structure of the fields from that of the
empty cavity. A computer code has been written which calculates
this alteration for either an electron beam or a thin dielectric tube
placed in the cavity. Experiments measuring the quality factor of
such a cavity were performed for the case of a dielectric tube and
the results agree with the predictions of the code. Simulations of
the case of an electron beam indicate that self-consistent effects
can be made small in that almost all the power leaves the cavity in
a symmetric gaussian-like mode provided the resonator

parameters are chosen carefully.



I. INTRODUCTION

The need for high average power sources of coherent millimeter wave
radiation has lead to the conception! of the quasi-optical gyrotron.2-4 The
quasi-optical gyrotron differs from conventional gyromonotrons® in that the
interaction between the radiation and the injected electron beam takes
place in an open, optical resonator as opposed to a cylindrical, tube shaped
cavity. The purpose of the open resonator is two fold. First, the resonator,
which is defined by two circular, spherical mirrors, can be made quite
large, thereby lowering the peak power dissipation in the mirrors relative to
that in a corresponding gyromonotron. Second, the use of an open resonator
effectively eliminates many modes which might otherwise compete with the
operating mode. While advances have been made in the design of
conventional cavity gyrotrons6-8 which minimize or eliminate mode
competition, the problem of power dissipation in the walls of these gyrotron
cavities is still severe. Thus, the advantage of the quasi-optical gyrotron in
controlling the peak power dissipation in the cavity is of importance.

All previous analyses!:2 of the operation of quasi-optical gyrotrons have
made the assumption that the radiation field is dominantly a superposition
of eigenmodes of the empty cavity with perhaps a small additional
electrostatic component.9.10 Equivalently, it is assumed that the power
extracted from the electron beam is converted to radiation in eigenmodes
of the cavity. Due to the open nature of the cavity, it is reasonable to ask
whether power from the beam can be converted to radiation which escapes
directly from the cavity.

A simple estimate can be given showing that this effect will become
important if one attempts to design a sufficiently low Q cavity. Consider the
beam to be a localized current distribution oscillating at frequency o,



j= —é— ex (x(x) e-lot 4+ c.c.) (1)

Here we have taken the current density, j, to point in the x direction of
a cartesian coordinate system in which the axis of the cavity is aligned
parallel with the y axis, and the magnetic field is aligned parallel with the z
axis. Neglecting for the moment the effect of the cavity mirrors one can
calculate the angular distribution and the amount of power radiated by the
beam!1,

PR = jdﬂ%‘:s%f—c— [dQ 1-nd | [ d9x 3 e-tinx | ’ (2)

where the integral is over the solid angle defined by the unit vector n,
giving the direction of the radiated power, k = w/c is the wave number of
the radiation, and c is the speed of light. Thus, the power radiated is
proportional to the square of the current, and its angular distribution
depends on the spatial distribution of the current density. A similar
expression can be obtained if one supposes instead that all the power is
radiated into a single mode of the cavity which in the vicinity of the electron
beam has the spatial form,

ex (uy(x) elky + u.(x) eiky) e-iot 4 c.e. , (3)
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representing two counter propagating waves with slowly varying envelopes
ut+. The expression for the radiated power is again proportional to the
square of the current, but also depends on the total power output coupling
T of the two mirrors (the combined power transmission coefficient of the

two mirrors) which define the cavity,
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Pc = . (4)
2¢T [ dxdzlu, |2
Here, we have assumed that the current is oscillating at a frequency which
corresponds exactly to that of the cavity mode in question.

In reality, the radiated field will be a mixture of both the free space
radiation implied by (2) and the cavity field (3). An estimate of the
importance of the free space radiation can be made by taking the ratio of (2)
to (4) for an assumed current distribution. To make this estimate we assume
the current distribution corresponds to that of a pencil beam, with a
gaussian distribution along the z direction (the direction of the applied
magnetic field) with a width equal to the spot size of the cavity radiation
field,

jx = o exp (22/rd) 5(x)8(y).

Upon performing the integrations one obtains,

/2 1o ro
Pe=—F7—=T —= 0.25T—, 5
PRr/Pc 16va A Y (5)

where A is the wavelength of the radiation and we have assumed the spot
size rg is much greater than the wavelength A. For typical parameters the
transmission T is 0.1, and the ratio of the spot size to the wavelength is 4.
Thus, free space radiated power is a non negligible amount. This amount
will increase as one goes to smaller wavelength and larger output coupling.
The angular distribution of the free radiation power is such that it will
be difficult to collect in a controlled manner. In particular, for the pencil
beam, it follows from (2) that the power is directed in an asymmetrical

cone. The cone is narrow in the z direction because the current distribution



is extended along this direction (the direction of the applied magnetic
field). The cone is very wide in the x direction because the pencil current
distribution is localized in the x direction. Most gyrotron beams are not
pencil beams, but rather, are annular beams, with a radius of the order of
the wavelength of the radiation. Larger size beams will radiate into a smaller
cone reducing the ratio (5). However, for beams with size of the order of a
wavelength the cone will still be rather broad.

The purpose of this paper is to present a study of the modifications of
the fields of an open resonator by a distribution of currents such as would be
expected in a quasi-optical gyrotron. Section 2 of this paper presents a
mathematical formulation of the problem which is suitable for numerical
solution. Section 3 presents solutions obtained in the case in which the
current distribution is induced in a dielectric tube placed across the axis of
the cavity. In this case the presence of the tube alters the frequency and
damping rate of the modes of the cavity. The results of the calculation are
then compared with those of an experiment thereby testing the validity of
the calculation. Section 4 presents the results of calculations in which the
distribution of currents is determined self consistently for a gyrating
electron beam. It is found that for the parameters of present day
experiments, nearly all of the radiated power is intercepted by the mirrors.
Thus, the problem of free space radiation is not likely to be the cause of the
observed, poorer than expected, efficiency in quasi-optical gyrotrons.

II. MATHEMATICAL FORMULATION

A. Paraxial approximation

To study the perturbation of the fields by a small object (such as an

electron beam or a dielectric rod) in an open, quasi-optical resonator we



will assume that the paraxial approximation is valid. That is, we assume that
the radiation consists dominantly of two counter propagating beams aligned
with the axis of the cavity. This requires, in principle, that the scattering
object be sufficiently large and sufficiently transparent so that radiation
suffers only small angle scattering as it passes over the object. In terms of
the expression for the free power radiated (2) we require that the current
distribution be sufficiently smooth in the x-z plane so that the power is
radiated into a narrow cone directed along the y axis. This condition is only
marginally satisfied in the experiments and we will have to introduce some
ad hoc procedures to account for the large angle radiation. The present
method will be suitable for analyzing a high Q cavity in which the amount of
radiation which misses the mirrors due to scattering by the object is a small
fraction of the radiation incident on the mirrors. This scattered radiation
may still represent a large amount of power, which can be comparable to
that which is intentionally coupled out of the cavity, either by spillover, or
by partially transmitting mirrors. Thus, the calculation will apply to cases
where the hot Q of the cavity is changed by a factor of order unity from the
cold Q value.

We now describe the geometry under consideration. The cavity is
defined by two spherical mirrors with its axis chosen to coincide with the y
axis of a Cartesian coordinate system. The dielectric rod, or electron beam,
Is chosen to lie along the z axis in the vicinity of x and y = 0. We consider
the radiation to be plane polarized with its electric field dominantly in the x
direction. This polarization is the one that interacts most strongly with a
gyrating electron beam. The radiation will be affected by the currents in the
scatterer which are also directed along the x axis. We assume that all fields

and currents are oscillating at a single frequency, », and write,

1
E =5 ex (Ex elot 4 c.c)), (6a)



J =7ex Jx elot + cc)). (6b)
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We then write the scalar wave equation relating the components of the

current density and radiation electric field,
4r
VZEx+k2Ex=~ik—C Jx (7)

where k = w/c. Equation 7 is only valid if the radiation wave vector is
dominantly perpendicular to x. Otherwise, it is necessary to include other
components of the current density and electric field. We, however, will
assume that the radiation wave vector is aligned dominantly along the axis of
the cavity, and we will decompose the electric field into waves propagating
in both directions along the y axis,

Ex(x) = % (E+(x) elky + E_(x) e'ikY). (8)

The amplitudes of the forward and backward propagating waves then
satisfy the paraxial equation,

\ .
(VJ_:I: 2ik%) E: = - 21k 25 g, exp @ iky) , (9)
where
2 32 32
Vi=3Z +32

is the Laplacian transverse to the axis of the cavity.
The system of equations for the field is completed by expressing the
boundary conditions on the surfaces of the two mirrors. The locations of the

surfaces of the two mirrors are given by
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2
y=-(d-3%: /Red

for the right and left mirror respectively. Here x; = (x,z) gives the location
of a point relative to the y axis, and R¢; and Rer are the radii of curvature of
the mirrors. We assume that the surfaces of the mirrors are not perfectly
conducting, but rather, they are partially reflecting and are characterized by
reflection coefficients pr and p;. Here pr and p; are defined such that for
perfectly conducting mirrors pr = p;= 1. As a result, the amplitudes of the

forward and backward propagating waves are related by

1 2
dr - §X_L
E.(x),ds) = - pr exp Zik—Rcr—— E. (x), dp) (10a)
and
1 2
dl - EXJ_
E,(x,,d) = - p; exp 2ik—R‘c"l— E. (x;, dp. (10b)

Note, that consistent with the paraxial description of the fields, we may
take the mirror surfaces to be located at dr and -d; when evaluating the
amplitudes of the wave fields, but must include the deviations from these
values due to the curvature of the mirrors in evaluating the rapidly varying
exponential factors. The above relations hold for x; values on the surfaces of

the mirrors only. That is, for
2 2
X SRmr and x| <Rmy

where Rmr and Ry are the radii of the right and left mirrors.



To solve the field equations we assume, for the moment, that the
current distribution on the scatterer is known. Then, the amplitude of the
forward propagating wave on the right mirror can be expressed as the sum
of contributions from the scatterer and the amplitude of the forward

propagating field on the left mirror.

E; (x1.df) = j d2 x'l Kix,, x'J_. ot) E+(x'l,-d1)
Lm
(11)

- J' dSx' K(xy, x|, o'r) 4_c1£ Jx (x') elky’

where the Green's function kernel satisfying the paraxial equation is given

by

(x) - x'_L)2
S (12)

: 1
izl x), 0) =5 &P ( 26

and ot and or are given in terms of the distance between the two mirrors

and the distance along the axis from a point on the scatterer to the right

mirror,

Ot =_i(_(_1_11':'il) (13a)
o = e -Y) (13b)

A similar expression can be written from the backward propagating wave,

E. (x1, -d) = [d2x Klxy, X}, o1) E-(x,,dy)
Rm

- Jd3x' K(x,, x'J_, ) 4—Cn- Jx ) elky' . (14)
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where o is given by,

o=y (15)

We will now make the additional approximation that the size of the
scatterer is small compared with the distance to either of the mirrors,

' idr ' id
01-501-:? GlEGl='T{_.

An equivalent approximation is to disregard the transverse Laplacian in
Eq. (9) while calculating the field in the vicinity of the scatterer. Thus, we
can calculate from (9) the change in amplitude of the forward and backward

propagating waves upon traversing the region of the scatterer,
*. 4w N ilew’
AEi(x)) =- [dy " JxlxLy) et (16)

In terms of this change in amplitude, AE.(x), the field on opposing mirrors
expressed in Eq. (11) is rewritten,

Ei(xL, d) = [ d2x; Kxy, x), 61) E+lx,-d))
Lm

(17)
+ J. d2x, K(x,, x;, oy) AE+(xiL)

with a similar equation applying to AE.(x).

B.  Self-field

Equation (17) and its counterpart for the backward propagating wave

are sufficient for calculating the field pattern on the mirrors, far from the
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beam. However, to self-consistently determine the beam current we must
have an expression for the electric field at the beam which includes the
self-field induced by the beam current.

The indefinite versions of Eq. (16) can be used to find the self-field at
the beam for sufficiently smooth current distributions. If we represent the
amplitude of the incident forward propagating wave at the scatterer as
E.(x),-0), then the field at a point in the scatterer can be written,

y

Ev(xLy) = Esxi-0) t [dy 2F Jptx,y) etiy | (18)

c

This expression is well behaved for smooth current distributions. It is
not well behaved if one assumes, as we would like, that the current is
distributed on an infinitely thin annulus. In this case, the self-field term in
the above exhibits a square root singularity as x approaches the radius of the
annulus. As a result, quantities such as the electric field energy density and
the ohmic power density, j - E, diverge. However, no such divergence occurs
in the expression for the electric field on the opposing mirrors, that is
Eq. (17) is still valid. The discrepancy is related to the fact that the paraxial
approximation assumes that the radiated power is emitted in a narrow cone
around the axis of the cavity. A singular current distribution, such as that of
an annulus, radiates power in a large cone, whose angular width goes to
infinity in the paraxial approximation. As a result, if we were to calculate all
the power passing through the plane of the mirror, y = dy, it too would
diverge for a singular current.

The physical resolution of the problem is that the power is restricted
to a cone with a maximum angle of 90 degrees. Such a restriction has a
negligible effect on the fields calculated on the mirrors, but it requires a
modification of the way in which the self-field is calculated at the beam. One

way to eliminate the divergence at unphysical angles is to smooth the
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current distribution over a distance of a wavelength, before the scattered
radiation is calculated. Smoothing over a wavelength eliminates radiation
that, in the paraxial approximation, is radiated into unphysical angles.

To determine an appropriate form of the smoothing function, we
return to the expression for the power radiated into free space Eq. (2) by a
current distribution such as the one considered here. Since the power
radiated must equal the volume integral of J - E we can define a component

of the local electric field amplitude
Eg = % ex (Esx exp(-iwt) + E;x exp(io)t))
which is associated with the far field radiation,
- k2 \
Esx = 1oo [dQ (1 - 0 - e?) [d3x Jy etlnxx) (19)

This definition leads by construction to the power balance relation

PR = - Jd3x <J Eg>=- i— jd3x (JxE;x +c.c), (20)

where PR is the power radiated by the current distribution, Eq. (2). The
actual self-field of the beam consists of a superposition of the field given by
Eq. (19) and reactive components which lead to no net power radiation. For
example, a portion of the field is electrostatic. While this field does not
contribute directly to the power extracted from the beam it has an indirect
effect on the power extracted from the beam, since it modifies the electron
trajectories and consequently the current density. We will not include this
effect here so that we may focus attention on the power radiated direction
into different angles in the far field. The effect of the electrostatic self-field

on quasi-optical gyrotron operation has been studied previously.7.8
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We first change variables in the angular integration in Eq. (19) from the

solid angle Q to the two components ny and n; of the unit vector n,

k2 . . dnxdnz 2
Esx=-m_[d3x Jx(x") }I_Inyl (1-nx) x
y (21)
exp(ik(nx(x' -x)+ny (y - y) + nglz' - z)))
where ny = & 1- n,2g - ng and the integral over ny and n, corresponds to

n52, > 0. The paraxial result, Eq. (18), is obtained by assuming that the

dependence of Jx and x' and z' is smooth on the scale of a wavelength such
that the Fourier transform of Jx is concentrated at small values of ny and n,.
The following approximations are then made in the integrand in Eq. (21): (1
- n,2() = 1; ny=+ 1 (small scattering angles) and the range of integration for
Nx, Nz is allowed to run from - oo to ee.

The result is

Esx = % (Es+ eiky + Es- e-lkY)
where

[-.-]

Y fay dx oy ety (22)

Est(xy.z) = - %
which differs from Eq. (18) only by the presence of a reactive field. That is,
the expressions for the self-fields given by (18) and (22} lead to the same
radiated power.

As mentioned, the problem with the above procedure is that for non
smooth current distributions their Fourier transforms are not negligibly
small for all values of nx and the behavior of integrand for ny = 1 must be
treated.

A modified evaluation of Eq. (21), which we will use here, proceeds as

follows. We again assume the Fourier transform of the current distribution is
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peaked at small values of n; owing to the smoothness of the current in the
direction of the applied magnetic field, but we allow nx to be arbitrary.
Further, we replace ny by + 1 in the exponent in Eq. (21). (This allows for a
separation of the x and y dependencies of the self-field.) The result is the
following expression for the self-field,

Est+(x,y,2) = - %—% Idx' Hr(x - x') fdy' etlky' Je(x'\y'.2) . (23)

Thus, the effective self-field at a point x is determined by smoothing the
current distribution over a range of x' values. The smoothing is determined
by the weighting function,

1
kd ;
Hrx - x') = 21?1{ (1- ni)l/2 elkng(x-x7) . (24)

The weighting function, Hrt, has unit area and a width equal to one
wavelength.

To carry out the smoothing procedure within the context of the
present formulation, we consider the current density variable, Jx, appearing

in Eqgs. (6) - (18) to be the smoothed version of a local current Ju
Jx(x,y,2z) = J'dx' h x - x) Jy x.y.2) . (25)

The smoothed current density, Jx, produces an electric field, Ex, via
Eq. (8), and the corresponding radiated power can be calculated from the
product of Jx and Ex. If the local current Ju is the respose to an electric
field E, then we require that the power described by the product JyE, be
equal to that given by the product JxEx. This can be accomplished by
choosing the electric field Ey to be a smoothed version of the field Ey,
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Eptlxy.2) = [dx h (x - X) Ex Xy,2) . (26)

Here, the smoothing function h is assumed to be a real, even function of its
argument. Under these definitions, the rate of power transfer for the

smoothed and unsmoothed quantities is the same,

Pp = - % jd3x (J; (E,elky + E_e-iky) + c.c.)
(27)
=- %jd3x (J;(Ew elky + Ey. ethy) + c.c.) .

That is, if the unsmoothed current Jy is the response to the smoothed
electric field Ey+, the rate of work done on this current is the same as that
done by the unsmoothed field E:+ on the smoothed current Jx. In tern, due
to the properties of paraxial equations, this rate of work also equals the
power radiated.

It now remains to determine an appropriate form of the smoothing
function, h. To do this, we will pick h so that the power radiated by a given
local current matches, in a way to be discussed, the expression (20), when
Eq. (23) is used to determine the self-field. In Egs. (20) and (23), the
current density variable should be understood to be the local current
density Jy. Making this replacement we arrive at a modified expression for

the power radiated into free space,

2
PR =5 ) [ dzdxdx’ Hr (x - x) | [dy j, ety | (28)

H

This same quantity can be obtained within the context of the paraxial
approximation from Eq. (27) if we take Eq.(22) to determine the

unsmoothed electric field for a given smoothed current density, and then
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express the power radiated in terms of the unsmoothed current Ju- The

result is identical to Eq. (28) provided one makes the replacement
Hrlx - x) = [ dx" h{x - x") h{x" - x) . (29)

Thus, using the property that the Fourier transform of a convolution is the

product of the Fourier transforms of the convolved terms we have

1

hix - x') = k;i’r:x 1 - ni)1/4 exp (iknx (x - x")) . (30)

Due to the ad hoc nature of the smoothing process, we will represent h(x -
x) as a Gaussian with a width equal to a wave length instead of numerically

evaluating the transcendental function defined in Eq. (30),

k k2x2
hix) = — (—n ) (31)
V8 ¥
This choice preserves the properties,
Idx Hrx) =1

i

HT(0) =

implied by Eq. (29). The result is that the correct value of the power
radiated is obtained in the limiting cases of a smooth current distribution or

a rod like current distribution.
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C. Representation of fields

Having introduced the smoothing procedure we now describe the
particular coordinate representation for the fields in this resonator. The
scattering object will have a cylindrical geometry whose axis is parallel to
the z axis, and thus transverse to the axis of the cavity. Therefore, for
efficient numerical solution of the governing equations, we will find it
necessary to transform back and forth between systems of polar coordinates
aligned parallel to the y and z axes. For example, the fields are most

naturally represented and manipulated in a system of polar coordinates (r,

0, y) where
r=(x2 +22)1/2 (32a)
and
X
tanf = . (32b)

In this coordinate system the amplitudes of the forward and backward
going waves can be represented in terms of a Fourier series expansion in

the angular variable, 6,

Eilxi, y) = Y E:ilr, L y) el (33a)

l
with

de
E+lr, Ly) = [5, e1® Es(x1, y) . (33D)
Similarly, the increments of radiation growth (AE+(x)) can also be

represented in a Fourier series,

AE; (x1) =) AE: (r, ) ell® (34a)
with :

AE+(r, ) = fg—?—t el AR, (x) . (34Db)
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With this representation the integral equations relating the fields on
opposing mirrors separate into a system of one dimensional integral

equations. For example, Eq. (17) becomes

E.(r, |, df) = j21tr'dr' Kir, r', ot) E; (r', 1, -d)
Lm

(35)
+ .[21tr'dr Kir, ', o) AE, (', 1),

where the Kernels can be expressed in terms of ordinary Bessel functions of

order [,

-ielln/2  cpy (r2 +r?)
! = i—— 36
Kiln. 1 o) = =5 ol Jl(lol)exP( 2161 ) (36)

The boundary conditions, Eq. (10), also separate when fields are expressed
in this polar coordinate system.

Our procedure for numerical solution of the governing equations will be
the following. The fields in the resonator will be represented in polar
coordinates with a Fourier decomposition in polar angle as in Egs. (33) and
(34). The currents in the scatterer are most easily calculated in a polar
coordinate system aligned parallel to the z axis. Thus, the fields at the
scatterer need to be transformed from their cavity axis polar representation
to the Cartesian representation (as in (33a) and (34a)) and then smoothed.
Once the fields at the scatterer are known, the currents in the scatterer can
be calculated and smoothed. From these the change in field amplitude given
by Eq. (12) can be evaluated first in Cartesian coordinates and then
transformed to the cavity axis system as in Eq. (34b).

The solution is made self-consistent by iterating the above described

procedure many times. We begin with a guess for the amplitude of the
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waves leaving each of the mirrors and the amplitude of the self-field. The
current in the scatterer, which is the response to these fields, is then
calculated. This gives a new value for the self-field and allows one to
determine the amplitudes of the fields incident on the mirrors. The
procedure is then iterated until a steady state solution is achieved. During
this iteration process, the value of the wave number k must also be updated
in order to determine the frequency of oscillation of the mode. In addition,
various convergence factors are introduced to realize a numerically stable
algorithm.

In the next two sections, we will give examples of numerical solution of
the governing equations for the cases in which the scatterer is 1) a thin

dielectric annulus and 2) a gyrotron beam.
III. EFFECT OF A DIELECTRIC SCATTERER

The first series of calculations that we have performed were to
determine the effect of an annular dielectric tube on the modes of a quasi-
optical cavity. This problem was chosen since the results of the calculation
could be compared with those of a relatively simple experiment.

The current density inside the dielectric material is linearly related to
the local field intensity and the dielectric susceptibility of the material,

%Eju = - ik(t—: - 1) Eux . (37)

where Ejx is the local field within the dielectric tube. For a relatively weak
dielectric (le-11 << 1) tube the fields inside and outside the dielectric are
essentially the same. For a strong dielectric, le-11 > 1, the field inside the
tube is shielded to some degree. If the tube is a thin annulus, the shielding
can be estimated by assuming the field outside is predominately polarized in
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the x direction and equating the tangential and normal components of the
electric field and the electric displacement vectors respectively. Letting x

and y be the coordinates of a point on true annulus of radius r, we have

erb

where Eyy is now the field just outside the dielectric.
In the calculation, the scatter is broken into a large number, N,
(typically 60) of small rods and the current in each rod is proportional to

the cross-sectional area of the scatterer.

Ju= % ;: Ii(z) 8(x - xy) 8(y - y1) (38)
i=1
where
X; +ey,
Liz) = -1 kCAEfn- 1) > Epx (xi, y1, 2) . (39)
ery,

Here, xj and y; are the location of the ith rod, and A the cross-sectional area
of the scatterer.

The system of equations described in the previous section along with
the constitutive relation Egs. (38) and (39) was then solved to determine
the complex eigenfrequency of a cavity with parameters relevant to
experiments carried out at the CRPP. The parameters of the mirrors
defining the cavity are given in Table 1. Here both mirrors are taken to be
spherical, the left one being perfectly reflecting and the right one partially
transmitting (lpr| = 0.95, corresponding to a power transmission
coefficient of 10%). In the experiment the right mirror was in fact a
grating12.13 with radius of curvature equivalent to that of Table 1. The phase
of pr was chosen so that resonant frequency of the cavity without the

dielectric tube agreed with the simulation.
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Figure 1 shows the effective cavity transmission coefficient

'2"’d) (40)

Teﬁ=1-CXP(T

where y is the temporal damping rate of the mode, as a function of the
strength of the scatterer. Here the strength of the scatterer is measured by

the parameter

I = 16A(e - 1)

Y (41)

where ro is the nominal spot size at the center of the cavity and A the
wavelength.

Figure 1 shows the effective transmission coefficient for the lowest
order transverse mode with a frequency near 92.4 GHz for annular
scatterers with two different radii and varying strength. As can be seen, the
effective transmission coefficient is 0.10 when the scattering strength goes
to zero. This transmission results almost entirely from the partial
reflectivity of the right mirror. Due to the large size of the two mirrors,
virtually no power spills around the mirrors in the absence of the scatterer.
As the scattering strength is increased, scattered radiation spills over the
sides of the mirror increasing the damping rate of the mode and
consequently the transmission coefficient. Also shown on this plot are
experimentally determined values of the transmission coefficient. The
method by which these numbers were obtained will now be described.

To bench mark the code the quality factor of a Fabry-Pérot Resonator
was measured at low power. The resonator consisted of a spherical mirror
and a diffraction grating mounted in a -1 order Littrow arrangement. 13 Its
two way loss T (T = 10%) is determined by the groove depth and the

diffraction angle 6 (6 = 28°). The other parameters of the resonator are:
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g-factor = -0.71, separation between the grating and the mirror = 40 cm,
mirror and grating size = 10 cm, nominal spot size rg = 0.93 cm. The
coupling of microwave power into the resonator was performed by
launching a gaussian beam with the correct waist on the grating. A fraction,
10%, of the power was thus transferred to the resonator. The quality factor
Q and the implied two way loss T were determined from the resonance
curve obtained by changing the microwave frequency in the vicinity of
92.4 GHz.

To simulate the electron beam, cylindrical tubes of Teflon (length = 10
cm >> spot size,l wall thickness = 0.5 mm) were placed across the axis of
the cavity. The location of the tube could be moved along the resonator axis.
Tubes with different outer diameters (2.1 mm to 3.74 mm) were used to
produce different degrees of scattering. Figure 1 presents the variation of
the two way loss T versus the scattering strength I. The simulations and
experiments were not performed for exactly the same parameters. In
particular, in the simulation the mean radius of the tube is held fixed (two
are shown, rp, = 1 mm and 2 mm) whereas in the experiment it varies.
Furthermore, uncertainties in the absolute location of the dielectric tube
will cause variations in the measured transmission coefficient due to the
standing wave nature of the electric field in the cavity.

These discrepancies are eliminated by plotting the two way
transmission coefficient versus displacement of the tube along the axis of
the cavity for a given set of tube parameters. Such plots appear in Fig. 2.
Figure 2(a) shows the case of a 2.18 mm diameter tube, while Fig. 2(b)
shows the case of a 2.80 mm diameter tube. The solid points in Fig. 2(a)
correspond to the measured transmissions and the open points correspond
to the measured values shifted by 0.6 mm so as to match the simulated
values which are given by the solid line. As can be seen the shifted

experimental values and the simulated values agree quite well. The



experimental uncertainty in the absolute location of the tube is 0.5 mm,
which is comparable to the value of the shift required to bring agreement.
The agreement in the case of the 2.8 mm tube is less perfect. Here the
experimentally measured transmission is somewhat less than the simulated
value. This may be due to the experimental difficulty in aligning the larger
tube across the axis of the resonator. Misplacement or tilting of the tube
could yield a supplementary averaging of the strength of the incident
electric field and hence a weaker interaction.

Figure 3 shows the magnitude of the simulated and the measured (and
shifted) frequency shift as a function of the tube displacement for the
2.18 mm tube. The frequency shift is negative as the dielectric tube lowers
the resonant frequency of the cavity. The simulated frequency shift is
somewhat larger than that which is measured. However, the variation in
frequency shift with displacement for the two cases is in good agreement.

Taking the preceding results to be an indication that the code is
accurately simulating the field structure, we will now turn to the simulation

of a resonator driven by an electron beam.

IV. SELF-CONSISTENT FIELD STRUCTURE WITH A GYROTRON BEAM

The second series of calculations we have performed were to
determine the self consistent field structure in the cavity in the presence of
a gyrating electron beam. The motivation for this study was to determine
whether the scattering of radiation by the beam into large angles could
degrade the efficiency with which the energy of the beam is extracted. Our
basic conclusion is that for current and planned experiments the
degradation of the efficiency with which power is collected is not large.

As in the case of a dielectric scattered, we modeled the beam as a

number (typically 60) of current rods. This leads to an expression for the
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current density which is identical to that given by Eq. (38). The individual
rod currents, Ij(z), are then determined by integrating the nonlinear, gyro-
averaged equations of motion for an ensemble of weakly relativistic
electrons in the presence of the calculated electric field. The calculation is
then repeated iteratively until the electric field distribution comes to a
steady equilibrium which is consistent with the calculated current. This
then represents a nonlinear, saturated, single frequency state of the
oscillator.

Figure 4 shows the results of one set of calculations in the form of plots
of perpendicular efficiency versus detuning for a beam of 50 A in the cavity
described Table 1. Here detuning is defined as the difference between the
frequency of oscillation and the relativistic gyro-frequency of the electrons
on injection, normalized to the time of flight through a distance equal to the
nominal spot size.

d = (0 - Q/yoro/vz .

In the above, Q = IgqB/mc| is the nonrelativistic cyclotron frequency with B
the applied magnetic field and q and m are the charge and mass of an
electron respectively, and v, is the axial velocity, which in the weakly
relativistic is assumed to be constant. The ratio o = v, /v, is chosen equal to
0.95.

The perpendicular efficiency is defined with respect to the energy in

transverse motion of the injected electrons.

Vi(Z=-°°) - Vi(z=°°)

ni 2
A4 J_(z=-<><:)
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Two efficiencies are shown in the plot. The larger of the two
corresponds to the efficiency with which energy is extracted from the
beam. The smaller efficiency corresponds to the efficiency with which
power is coupled out of the cavity, through the partially transmitting mirror.
In computing this efficiency, only the power leaving the cavity in azimuthal
symmetric fields is included.

For the detuning which optimizes efficiency about 46% of the available
beam energy is converted to radiation, while about 40% of the beam energy
is coupled through the mirror in azimuthally symmetric fields. According to
Eq. (5) one would expect the difference between these two efficiencies to
be about 3%. However, upon closer examination of the simulation results,
the difference between these two efficiencies is not due primarily to
scattered radiation which does not intersect the mirrors. Rather, it is due
to the excitation of low order non symmetric modes in the cavity. This is
illustrated in Fig. 5 where the magnitude of the field on the surface of the
right mirror for the forward propagating wave is plotted. As can be seen,
there is a large component of field with an azimuthal mode number, [ = 6.

The cause of the excitation of these non symmetric modes can be
traced to two effects. First, the mirror sizes are large compared with the
nominal spot size. Thus, low order non symmetric modes have essentially
the same quality factor as the desired symmetric mode. Losses are
determined primarily by the partially transmitting mirror for these modes.
Second, the resonator parameters that have been chosen lead to a near
degeneracy in the resonant frequencies of the lowest order symmetric and
certain non symmetric modes. This is seen by considering the formula for

the resonant frequency of various modes in an ideal resonator,

_ K¢ l+m+1
Opim = d( +

arccos g}



where p, I, and m are the axial, azimuthal, and radial mode numbers and
g =1 - Rc/d. For the chosen parameters, the value of g is -0.71 and
consequently arccos g/x = 0.751. Thus, a lowest order symmetric mode with
indices (p = po, =0, m =0) has nearly the same resonant frequency as a
mode with (p = po - 6, I =6, m = 2). Other combinations are possible as well.
The problem is that the factor arccos g/n is too close to the rational
number, 3/4.

To illustrate how the excitation of these unwanted modes can be
avoided we simulated a resonator with a separation d = 24.236 cm and a
radius of curvature R; = 17.78 cm. This leads to a value of the factor
arccos g/nx = 0.618 which is the reciprocal of the golden mean (1+V5)/2.
The resulting field pattern, displayed in Fig. 6, shows markedly less
excitation of non symmetric modes, and virtually all the power extracted
from the beam is coupled out of the cavity in symmetric fields. In this case
it seems that Eq. (5) overestimates the scattered radiation. The probable
cause of the overestimation is the fact that the beam in the simulation is
annular, with a size on the order of a wavelength, as opposed to being a
pencil beam which is assumed in arriving at the back of the envelope

calculation (5).

CONCLUSIONS

A numerical code has been developed to calculate the self consistent
field structure in the open resonator of a quasi optical gyrotron. The results
of the code compare favorably with experimental measurement of the
quality factor and frequency of a resonator in which a dielectric tube is
inserted. When the code is used to simulate the nonlinear state of a gyrotron
oscillator it is found that the radiation from the electron beam can be well

matched to the lowest order gaussian mode of the resonator provided
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parameters are chosen with some care. In particular, it is advisable to avoid
combinations of mirror spacing and radius of curvature for which there is a
degeneracy between various low order transverse modes of an ideal cavity.
This is particularly important if the resonator mirrors are large and power
is coupled out of the cavity through a partially transmitting mirror. Finally, it
is not likely that the observed, poorer than expected efficiency, in present

experiments is due to excitation of nonsymmetric fields.
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FIGURE CAPTIONS

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

FIG. 6.

Effective transmission coefficient versus scattering strength for
two dielectric tubes of radius 1 mm and 2 mm. Also shown are

experimentally determined values for several dielectric tubes.

Effective transmission coefficient versus displacement of the
dielectric tube along the axis of the cavity for two tubes of diameter
a) 2.18 mm and b) 2.80 mm.

Magnitude of the frequency shift as a function of tube displacement

for a tube of diameter 2.18 mm.

Simulated efficiency versus detuning for an 50 A, 70 kV electron
beam with beam velocity pitch ratio v} /v, = 0.95 and a 3 mm radius

in the resonator whose parameters are listed in Table 1.

Field magnitude on the output mirror in arbitrary units for the
simulation of Fig. 4 with 8 = 3.0. The corresponding incident
power density is about 1 MW/cm2.

Field magnitude on the output mirror in arbitrary units for the
same conditions as Fig. 5 except the radius of curvature and mirror
separation have been modified. The corresponding incident power

density is about 2 MW/cm?2.



TABLE 1
Resonator Parameters :
Mirror Separation = 40.0 cm
Mirror Radii of Curvature = 23.5 cm
Mirror Radii = 5.0 cm
Right Mirror Transmission = 0.1

Nominal Spot Size = 0.93 cm
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