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ABSTRACT - The wave structures, eigenfrequencies and damping rates of
toroidicity and ellipticity. induced Alfvén eigenmodes (TAE, EAE) of low
toroidal mode numbers (n) are calculated in various axisymmetric ideal MHD
- equilibria with the global wave finite element code LION. The.importance of
safety factor (q) and density: (p).profiles -on continuum damping rates is
analysed. For realistic profiles several continuum gaps exist in the plasma
discharge. Frequency misalignment of these gaps yields continuum damping

rates Y/o of the order of a few percent. Finite Ppo1 lowers the TAE

o elgenfrequency.«.Eor .B.-values below' the Troyon limit the TAE enters the

continuum and can thus be stabilized. Finite elongation allows the EAE to exist
but triangularity can have a stabilizing effect through coupling to the
continuum. The localization of TAE and EAE eigenfunctions is found to
increase with the shear and with n. Therefore large shear,. through enhanced

Landau and collisional damping, is a stabilizing factor for TAE and EAE modes.
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1. INTRODUCTION

There has been a recent surge in the interest devoted to Alfvén
eigenmodes induced by toroidicity (TAE) [1] and ellipticity (EAE) [2], since it
was shown that these modes can be destabilized by energetic particles such as
fusion alphas [3, 4, 11, 12]. Recent calculations predict TAE growth rates y/®
of the order of 10-2 for planned thermonuclear burning experiments such-as
ITER [3].. Experiments - conducted - on TFTR .[5] and DIII-D [6] tokamaks
confirmed the existence of TAE-modes and ‘their destabilization by super-

- Alfvénic or slightly sub-Alfvénic particles obtained with neutral beam injection.

No EAE mode was clearly ‘identified in DIII-D as yet, in spite of the -high
elongation of this machine. One of the most critical issues to be resolved on
the way to a fusion reactor is to evaluate the threshold for the instability. The
threshold is determined by a balance between the kinetic instability growth
rate due to energetic- particles and the wave damping rate. In this paper we
investigate in particular the possibility that continuum damping may be an

important stabilizing factor for TAE and EAE modes. When continuum

damping is absent direct electron Landau damping is evaluated. We calculate
the strength of these dampings and single out-the dependence on geometrlcal

‘and profile parameters for the stabilization of these modes.

The present work focuses on the study of the spectrum of low n TAE and
EAE modes for a variety of axisymmetric, low B, ideal MHD equilibria. Our
global wave numerical .approach allows us to obtain the complex
eigenfrequency and eigenmode structure without making assumptions on

~smallness in inverse aspect ratio or elongation. Combined effects of toroidicity,

ellipticity and triangularity can therefore be studied. Our method is not
restricted to two-mode or three-mode coupling approximations. It can resolve
the cases where one or more resonance surfaces are present. The calculations
are performed using the finite element code LION ([7]. k
Other works on the subject include an asymptotic theory to determine
the continuum damping of high n TAE modes [8, 9]. Low n, fixed boundary

“TAE modes were already computed numerically in cases where no‘'resonance
.. surface.is present in the plasma [1]..EAE.modes were.studied.in Ref. [2].in.the
infinite aspect ratio limit. Continuum damping.of n = 1 TAE modes was

studied in Ref. [10] in the limit of large: aspect ratio,: with the approximation-of

w#two-modes.and :three-mode- coupling;«for- the: cases awhere:only a single

magnetic surface-is resonant. More recently, fixed boundary TAE modes [27]



- 38 -

and their damping due to resonance absorption [28] were computed for the
case of circular, finite aspect ratio tokamak plasmas.

This paper is structured as follows. A brief review of the spectrum of
Alfvén modes and damping mechanisms is given in Section 2. In Section 3 we
introduce the model and assess its relevance to the present study. The results
are presented in Section 4 for a wide range of geometrical and .profile
parameters. Section 5 contains a discussion of-the main results.

-2. ALFVEN MODES AND THEIR DAMPING : S 3

2.1 Spectrum of Alfvén modes

Briefly, let us review the spectrum of Alfvén modes [15]. In cylindrical
cold plasma theory,. neglecting electron inertia.[13], the spectrum contains
~* Global Alfvén Eigenmodes (GAE) [14] and a continuum of shear Alfvén modes.
 "The GAE wavefields have a global structure, whereas the continuum modes
-have a singularity at the spatial Alfvén resonance ® = wa, defined by wa = vak,
where va is the local Alfvén velocity and k is the component of the wave
number parallel to the equilibrium magnetic field Bg. The GAE
eigenfrequencies lie just below the corresponding continuum frequencies. If
finite Larmor radius effects are taken into account, the continuum is replaced
by a discrete set of damped eigenmodes of the kinetic Alfvén wave (KAW) [16].

The first radial mode is the most weakly damped and subsists in the cold
‘plasma limit. It is' therefore identified as a GAE. The real part of its
eigenfrequency and its spatial structure depend very weakly on temperature.
Unlike in the cold plasma model it has a small but finite imaginary part due to
electron Landau damping and transit-time magnetic pumping. If electron
‘inertia is included in the model, the spectrum contains also eigenmodes of
the surface quasi-electrostatic wave (SQEW) [15]. Depending on the value of
"~ VA/Vte, where vie = (2 kpTe/me)1/2, resonani;e absorption ‘is ‘replaced by mode
conversion to either the KAW (va/vie > 1) or the SQEW (vo/Vie > 1). When the
‘mode converted waves are damped before reaching the-plasma“center or tie
edge, the total absorbed power in the plasma is the-same as the cold plasma
theory predicts.

In toroidal geometry, the finite aspect: ratio ‘couples: poloidal wave
numbers (m) with each other, and mainly m with the toroidal sidebands m +
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1. Thus, the eigenmodes of the system cannot be characterized by a single
poloidal wave number. The effects of finite aspect ratio on the Alfvén wave
spectrum are the following. The spatial Alfvén resonance condition (wa = vak)
is now a differential equation involving the operator Bg . V to be solved on a
magnetic surface (y = const.) [15]. Let us define normalized units by setting
the major radius of the magnetic axis Rg = 1, the Alfvén velocity vap = 1,:the
" equilibrium’ magnetic field Bg = 1 and the mass ‘density pg =1 on magnetic
axis. These units are used throughout the paper. Far from the regions where

“-the different poloidal ‘modes interact, in-the: limit ® << g4, the .resonance

-condition is approximately given by

(oi=§(n+%)2 ” (1)

where n is the toroidal mode number and

1 1Bot | ’ |
a=aw) =95 p _ ) (2)
< -
In Eq. (2) Bot and By are the toroidal and -poloidal components of By,
respectively, and dl is a length"element in the poloidal plane on a Wy = const.
surface.

We note that the toroidal definition of q is used and not its cylindrical
approximation. When the Alfvén frequencies of different m's come close to one
another, Eq. (1) is no longer valid. The degeneracy of the continuum in a
cylinder is removed by toroidal coupling. Gaps appear in the vicinity of the
magnetic surfaces where

(0+2) = (n+ 22 (3)

thus where q(y) = qr, with

Im| +=
m+2

L - (4)
- The frequencies of the centers of ‘the toroidicity induced.gaps -are given
approximately by

1
OT = . (5)
2%‘/? A




To first order in inverse aspect ratio (a/R) the gap size can be shown to
be :

2 2 ‘
o, =05 (12 ?16 + 2A'(r1)) 7 (6)
where rr is the minor radius of the magnetic surface q = qr and A is-the
Shafranov shift of the magnetic surface q = qr.

Plasma ellipticity couples m components-to the elliptical sidebands m % 2.
~The effect on the continuum is the creation of gaps in the vicinity of the
magnetic surfaces q(y) = qg, with

Iml +1
Q€ = "1 - (7)

'+ The frequencies of the centers of the ellipticity induced gaps are given
approximately by :

1 .
= . (8)
aeVp ~

It can be seen from Eqgs (4) and (7) that the number of toroidicity and
ellipticity induced gaps occurring simultaneously in the plasma discharge is
proportional to n(qa - qp), where g and qg are the values of q at the plasma
boundary and on: the magnetic axis, respectively. It therefore appears that TAE
and EAE modes owe their existence to the coupling of more than two poloidal
“wave numbers m. The radial positions of the gaps depend on the q profile
while their frequency overlap depends on the profile 1/ q\[;.

Toroidicity and ellipticity have consequences on the spectrum of global
Alfvén eigenmodes (GAE). It.was shown [1] that global Alfvén eigenmodes can
exist in the gaps of the continuum. They have been named toroidicity and
ellipticity induced Alfvén eigenmodes- (TAE and EAE, respectively), or "gap
-modes". Any Alfvén wave whose frequency 'is lower than the diamagnetic drift
frequency of a super Alfvénic species can be driven unstable by resonant
~ particle interactions [3, 4]. In future ignited plasmas’ TAE ‘and EAE modes sy
be the best candidates for fusion alpha particle destabilization because of their
“relatively low frequency, ‘as compared-to*the "cylindrical" GAE modes.



Another effect of toroidicity, combined to finite ®w/wcy, is to allow the
existence of a GAE in a region of the spectrum where none is expected from
- cylindrical .theory. Experiments conducted on the TCA.tokamak, as well as
- theoretical calculations performed with the LION-code, showed the: existence
of a dominantly m = 0 GAE with an eigenfrequency just below the threshold of
the m = O continuum [17]. ‘

2.2 Damping mechanisms

Toroidicity and other geometrical factors such as ellipticity and
triangularity couple GAE, TAE .and EAE modes to continuum modes of
+ «wdifferent poloidal wave numbers. Therefore these modes can have a resonance
~+.surface and -be:continuum damped. It-was shown [18] that aspect ratios
" smaller - than 10 are sufficient to stabilize the GAE modes. Cold plasma theory
for a torus showed, in agreement with. TCA -results.[21], the..continuum
damping rate of GAE modes to be of the order of a few percent of the wave
- frequency. In the case of TAE and EAE modes the presence of a resonance
surface depends on q and p profiles, as suggested by Eqs (5): and (8). Multiple
gap misalignment and geometrical coupling appear, thus, to be the basic
mechanisms leading-to the stabilization of TAE and EAE modes through
- continuum damping. Analytical calculations based on finite inverse aspect ratio
expansion and asymptotic matching through the resonance [8, 9, 10]
predicted continuum damping rates, when present, to be of the order of 10-2
of the mode frequency.

Finite Larmor radius and finite electron mass modifications of the Alfvén
wave spectrum in torus have not been computed as yet. It is expected, by
analogy with the cylindrical case, that the continuous spectrum is replaced by
a discrete set of damped modes' of the KAW and SQEW. The cylindrical results
- suggest that the total power absorbed is the same as given by the .cold .model
‘when exciting a mode in the continuum. Therefore, the damping rates of the
cold plasma global eigenmodes are not modified by kinetic effects in the cases

=+ re~wherevthese.modes:have a resonance- surface. The: only; possible .exceptions
would -be when the mode converted waves reach the plasma center or edge
before being damped so that global modes are set up. By analogy with the



cylindrical case, however, we assume that KAW and SQEW modes are more
strongly damped than GAE, TAE and EAE modes. Therefore they should not
be dangerous for stability.

~When' the cold plasma global modes have:-no:spatial Alfvén resonance
surface their damping rate must be evaluated with kinetic models. One of the
-candidates for damping in the TAE and EAE.frequency range is electron
Landau damping. For Alfvén modes, with ® = vak), the local damping rate is
given by [15]

2

Vv

L3 VA A
=5 (kapp2 3> expl -3 - (9)
Vi

e =

€

Where ka is the projection of the wavevector onto the plane perpendicular to
Bo, Pi is-the ion Larmor radius evaluated with the electron temperature,
vte = V2kpTe/ me. Equation (9) does not take into account trapped particles
effects and thus probably over estimates the damping rate in the collisionless
" limit. However, collisions can-enhance the damping-due to trapped electrons.
“This is given approximately as [26] : (y/®)con. = 0.2 (k,\61)2(ve/(o)1/2. Other
~ damping mechanisms that could prove to be important for TAE and EAE
modes are the following : (1) ion Landau damping, since va/vy is of the order
of 2 to 3 in the center of a Tj = 20keV, ne = 4 x 1020m-3 reactor: (2) collisional
damping and viscosity in the edge regions, especially in H-mode type
~discharges where edge density is relatively large and edge temperature
- relatively small and (3) magnetic curvature drift electron Landau damping,
which is of the order of Beva/vie, where Be is the ratio of electron pressure to
magnetic field prgssure. We emphasize the fact that all these dampings are
proportional to k K Thus large gradients in the eigenfunction is a favourable
condition to stabilize global eigenmodes.



3. PHYSICAL MODEL AND NUMERICAL METHOD
3.1 Equilibrium

All plasmas considered in this'paper are assumed to be in axisymmetric
i_d)eal MHD equilibrium. The equilibrium magnetic field is written as
Bo=T ¢+ Vo x Vy, where ¢ is the toroidal angle, ¥ is the poloidal flux
function, and T = T(y) is the toroidal flux function. The poloidal flux function
is a solution of the Grad-Shafranov equation

1 dP 1 dT2
V(@)= ay 3 ay o

““where P = P(y)- is the plasma pressure. The equilibrium equation ‘is-solved
numerically ‘with the bicubic Hermite finite element code CHEASE [19]. The
* CHEASE code allows the specification of the aspect ratio, the shape of the
:plasma boundary, P(y) and T2(y) profiles to be chosen in a wide variety of
“ways. In what follows, the functions P(y) and T2(y) are expressed as
polynomials. The CHEASE code proves to be highly accurate and has h6
convergence properties, where h is the equilibrium mesh size. A single
magnetic axis is assumed. The equilibrium is mapped onto toroidal
coordinates (s, ¥, ¢). The "radial coordinate", s, is defined as s = \l\v/\vs,
where s is the value of y at the plasma boundary. The "poloidal coordinate”, ¥,
is chosen in such a way that the Jacobian J of the transformation from
cartesian to toroidal coordinates is given by :

J = cly)re | Vy B (11)

‘where c(y) is a normalization factor so-that.y varies from 0 to 2x for each turn
in the poloidal direction. The coefficients. o« and B‘in Eq. (11) can be set«to
a =2, B =0, which generates a .representation .in.which. the. magnetic.,..ﬂe‘ld
lines are straight, or to o =1, p = 1, which makes the poloidal coordinate ¥
proportional to the arc length around the magnetic surface in the poloidal
.direction.



3.2 Wave physics

“We consider plasmas surrounded by a pure vacuum region enclosed by a
perfectly conducting wall. The electromagnetic oscillations are excited by an
-antenna placed in this vacuum region. The antenna is modelled by a thin sheet
on which surface currents ?a are prescribed with a exp(ing-iot). dependence,
where n is an imposed toroidal mode number and ® an imposed frequency.
The poloidal dependence of Ta can be chosen arbitrarily so long as _j')a is kept
divergence-free.

In the vacuum region we neglect the displacement current. In the
frequency range of TAE and EAE modes the vacuum wavelength is much larger
- than the size of the machine. The equations in vacuum are simply

5 _
B =Vd V20 =0. : . (12)

’ -
- Writing Maxwell's equations for the.wave electric field E. in the, plasma
‘we obtain, after linearization, and assuming a ‘exp(in¢-iot) dependence,

- 2 -
VxVxE:EggoE

(13)
where c¢ is the vacuum velocity of light and ? is the dielectric tensor operator.
- The cold, current-carrying plasma. dielectric tensor, neglectlng electron
1nertia, 1s used. In toroidal geometry, defining e\v = Vy/IVyl, e" = Bo/ IBoI

_)
el = e|| X e\,,, we have

3 -
e QE:

Gy By ) (Ey To-B
( ) + & 0130230 (V x E)a (14)
€ly &1 E;

where the subscript A denotes the projection in the- (e\v,e 1) plane, jo is the

equilibrium plasma: current density, and P s e
Eyy =ELL =55 i (15a)
v va2 n 1 - (w/0c)

(15b)

c2 fi @/ ey
ByL=-Ely = Azz

- (/012



In the relations (15), wc is the ion cyclotron frequency and fj is the mass
fraction of the ion species, fj = njm;/ 2 nymy; the summations are on all ions
speciesIn* this paper single‘ion species is considered: We-note that w/w.; does
not play a significant role in the TAE and EAE frequency range. For o << @i
the dielectric tensor (Eq. (14)) is -the same as’'the ideal MHD operator in
which the adiabaticity index, vp, is set to zero. lon acoustic waves cannot-he
described by this model. For low B plasmas considered in this work they have
a' much lower frequency than Alfvén waves: Moreover, they are strongly
damped unless Te >> Ty. They are therefore irrelevant for the present study.

The wave field solution of Eqs (13) (14) (15) exhibits singularities at the
spatial Alfvén resonances on specific magnetic surfaces (y = const). The
procedure to evaluate the corresponding resonance absorption is the

- following. A small imaginary part is added to the dielectric tensor : in Eqs (13)
" (14) (15) o is replaced by -

o(l +1iv), v>0 : (16)

" The limit v —» O yields a finite -absorption. The condition v >-0 is‘imposed

to satisfy the causality principle. One of the most important features of

resonance absorption is that it does not depend on the strength of the actual
damping or detailed dissipation mechanism. The term v in Eq. (16) should not
be mistaken for the continuum damping rate (y/®)cont, which is finite even in
the limit v — 0. The relevance of the cold plasma resonance absorption model
has been assessed by comparing it to the cylindrical hot plasma model that
includes finite Larmor radius (FLR) effects [20] (see also section 2.2). «

The damping rate of GAE modes experimentally observed in the TCA
tokamak [21] is at least one order of magnitude larger than the prediction of
the hot plasma cylindrical theory [22]. On the other hand, the cold plasma
model-in toroidal geometry predicts GAE.damping rates. in. agreement.with

“experiment. Even the toroidicity-induced m-= 0 -GAE~damping rate is correctly

evaluated, at least in order of magnitude [17]. These results suggest that
continuum damping due to toroidal effects, when present;-is much larger than
damping due to kinetic effects if toroidicity is neglected. Moreover, neither
global modes of the KAW nor the SQEW have ever been-observed in the

‘experiment.* This indicates *that"their*damping in toroidalgeometry is much

larger than the hot plasma cylindrical theory predicts. The most effective
damping mechanism for GAE modes appears thus to be toroidal coupling of
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global modes to continuum modes. This mechanism is studied in this paper
for TAE and EAE modes.

~+-“When+an- eigenmode~has+an eigenfrequency- outside..the -continuum
frequency range the cold plasma model is unable-to-predict -its damping rate.
Finite Larmor radius effects, entering mainly  through electron Landau
damping (see Eq. (9)), can be evaluated-in -the-following. way. For the small
damping rates needed for TAE and EAE stabilization (y/® of the order 10-2) we
can assume, in the absence of mode conversion, that kinetic effects will not
drastically modify the cold plasma eigenmod‘e structure. In other words these
effects have little influence on the dispersive properties of the wave, but
mainly affect dissipation. Thus electron Landau absorption can be modelled by
adding to eyy (see Eq. (15a)) the term

eL=iy s ‘j_(kAPi)Z (ﬁ) | (17)

Vie2

~where - the: value..of kj is evaluated- by using the radial component. of.the
eigenmode electric field, Ey, as calculated with the toroidal cold plasma
“'model. The local damping rate is glven by Eq./(9). The global:damping rate can
- be obtained by

N [ pB2 32 exp (- va2/vie2) | VAR ) 2d3

(ml | (18)

5| p1Eyl2d3x

where the integrals are on plasma volume.
3.3 Numerical method

Equations (13) - (16) are written in a weak ‘variational form for a toroidal
magnetic coordinate system (s, X, ¢) (see-Section 3.1). A detailed expression
of the weak form used can be found in Ref. [7]. -

The weak form is discretized using a non conforming linear finite
element scheme [23]. The use of this discretization was mathematically shown
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to avoid spectral pollution [24]. It is of crucial importance when the spectrum
contains a continuous part. If a polluting method were used, spurious modes
would appear in the. discretized spectrum that could be mistaken for global
modes, making the study of GAE, TAE and EAE modes unfeasible.

Since the spatial ‘Alfvén resonances occur-on y = const. surfaces, we -see
the obvious advantage of using a magnetic' coordinate :system. Moreover, .the
finite element scheme allows packing of the mesh around the resonance
surfaces and gap positions where the wavefield is highly localized. : 3

The vacuum equations, including relevant boundary conditions on the
wall, matching conditions at the antenna, and continuity conditions at the
plasma boundary, are solved with a Green's function technique. (More details
can be found in Ref. [7].)

. The wave field solution and the total power absorbed in the plasma, P, is

~ then computed:with the LION code. The numerical convergence properties of

this code have been demonstrated in Ref. [7]. The total power, P,
~convergences at least as fast as h2, where h is the computational mesh size. ..

The theoretical features of resonance absorption are well reproduced
with the LION code. The limit v —» O (see Eq. (16)) is obtained numerically by
studying the convergence properties of P with v. In all cases we find a linear
convergence property. Thus the value of the continuum absorption can be
obtained even in cases of weak continuum damping.

- A global eigenmode is found with the-following method. The antenna
current amplitude is kept constant and its driving frequency o is varied. The
response P(w) is then computed with the LION code. A global mode, when
excited, will show up as a peak. The position of the peak gives the real part of
the eigenfrequency, Rewg. The half width at half maximum (HWHM) of the

'peak gives the imaginary part of the ‘eigenfrequency, Imwg. The damping rate,
Y/ ©, is given by y/o = Imwo/Rewp. Note that in order to.obtain the HWHM
correctly a convergénce study must be made so that the‘limit v — 0 can-be
obtained.

This method of finding the eigenfrequency. and the eigenmode works only

W sieiwif-the-damping is small.»For Yy comparable to o it-is-impossible.to distinguish: a
peak on P(w). However,-for damping rates under consideration here, v/ o of the

order of 10-2 being sufficient to stabilize the alpha particle driven TAE and
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EAE modes, our method is appropriate. The method fails only in cases where
two global eigenmodes with the same toroidal wavenumber n have
eigenfrequencies closer to-one another than their damping rates. This is
because ‘the two peaks associated with each globadl ‘mode merge and their
HWHM cannot be calculated.

- We point out that not just any arbitrary-antenna-current distribution can
‘be used to excite a given global-eigenmode. We have found that a good choice
of antenna currents are those with helical distributions : ]’a ~ exp(ima6 + ing),
where 6 is the poloidal angle. A "rule of thumb" is to-use my =- (n + 1) or
ma =- (n+2) to excite TAE and EAE modes. An important check of the
validity of our method is to compare the eigenfrequencies, eigenmode
structures and damping rates of the same eigenmode found with different
antenna excitations : they are indeed the same.

The LION code can handle up to 50'000 mesh cells on a CRAY-1 type of
‘computer. We find that 5'000 to 10'000 cells is a sufficiently fine mesh.to
evaluate TAE and EAE eigenfrequencies with an accuracy of a few percent, and
their damping rates y/o with an. accuracy -of 10-3, The LION code has been
* highly optimized : a computation with 5'000 mesh cells takes less than 20 s on
a CRAY-2 computer.

The LION code computes the wavefield solution discretized in (s, %)
coordinates. The Fourier decomposition in y is then performed as a diagnostic
of this solution :

- -
E(s, X, ¢, t) = Y Epy(s)elmy +no - o (19)
~ ,

This gives valuable insight into the toroidal, elliptical and triangularity
coupling of different poloidal wavenumbers m. We find that the choice of the
Jacobian-with straight field line representation (o =2, B = 0 in.Eq. (11)) gives
‘a purer poloidal Fourier decomposition :than the-Jacobian with constant. arc

- length (o =1, B =-1 in Eq. (11)). The.straight field:line.Jacobian has ithe

drawback that at high elongations the % = const lines become too distorted. In
such cases the constant arc length Jacobian was found:-to give more accurate
results.



4. RESULTS
- 4.1 Density and safety factor profile effects L ~ =

We first focus on the study of TAE modes in'a B = 0 plasma of aspect ratio
Ro/a = 3.2 having a circular cross-section. We examine the TAE spectrum for
various q and p profiles. The value of q on magnetic axis, qo, is kept constant
with qo = 1.05, and the current density profile is changed in order to vary the
value of q at plasma boundary, q,. All q profiles considered in this paper are
monotonic. The density profiles are specified by : p=1 for 0 <s < 0.5;
for 0.5 < s < 1, p is made a cubic function of s with p(0.5) = 1, dp/ds(0.5) =
*p(1) = 0.04; dp/ds(1) =-a. In varying the edge density gradient «, different P
~profiles are obtained (Fig. 1). ‘

Figure 2 shows the total absorbed. power versus applied frequency, P(w),
for the case n=1, qq = 4.16, o =6. Three TAE modes are excited at
frequencies o =.235, .311, and .391. They are labelled (a), (b) and (c) in Fig. 2.
Their continuum damping rates are y/o = 0.029, 0., and 0.05; respectively. The

- corresponding eigenmode electric field structures are shown in Fig. 3. The
“labels (a), (b) and (c) in Fig. 3 correspond to the same labels as in Fig. 2. The
left part of Fig. 3 displays level line plots of the real part of the radial electric

-~ field component, Re(Ey), in the poloidal plane. The right part of Fig. 3 displays
the real part of the poloidal electric field component, Re(E}). In Fig. 3 the
particular structure of the constant-ReEy and constant-ReE] lines in the
vicinity of the magnetic axis comes from the fact that the electric wavefield
has a Im! = 1 behaviour there. In the plasma of Fig. 3 three n = 1 toroidicity
induced gaps exist simultaneously, for values of q = qr (Eq. (4)) given by

qr = 1.5, 2.5, 3.5. The corresponding. m.values are m = (-1, -2), (-2, -3),
(-3, -4). The radial positions of the q = gt surfaces are s = st = 0.6, 0.87, 0.96,
respectively. Let us first analyze the TAE mode labelled (b). This mode has no
resonance surface and is not continuum damped. Its wavefield structure
extends over the whole plasma cross-section.. We note, however, that the
#einieuelectriesfield ~peaks-around-the magnetic .surfaces:s.=.st where.q = gr. This
localizatlon of the wave field is much more apparent on the radial component

of E Re(Ey), (left side of Fig. 3) than on the poloidal component, Re(E)),
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(right side of Fig. 3). This means that the gradients of the T. lectric field
are dominated by the radial derivative of the radial component, 3s - 10 other
‘words, k A,-the projection of the wave vector of the TAE mode on the plane
-perpendiéilar to -go, is-almost normal - to*the~magnetic surfaces. The
contributions to Landau-damping, Eq. (18),“come essentially from -the*3
regions where the mode is localized, namely-around s = sT = 0.6, .0.87, 0.96,
respectively. If we consider a deuterium ~“plasma’-w1thf“ a-“parabolic:electron
" temperature profile with a central value of 2.5 keV, a central density ne = 3.x
1019m-3, Bg = 1T, Ro'=2.4 m, a = 0.75 m, which are typical parameters of the
- TAE excitation experiments on TFTR [5], we obtain a global electron Landau
damping rate (Eq. (18)) of (y/w)L = 4 x 10-3. Around s = 0.6, 0.87, 0.96, we have
kapy = 0.23, 0.16, 0.15 and va/vte = 0.11, 0.18, 0.58, respectively. We note that
kapi is non negligible for the bulk deuterium ions. In a tokamak reactor kjpq
will certainly be non negligible. This means that FLR and finite drift orbit size
-~ effects- should be taken into account-to investigate the wave-o particles
interaction.

The poloidal Fourier decomposition, Eq. (19), of the TAE electric .field
shows a remarkable feature- (Fig. 4b). Around s = st = 0.6, the .Fourier
components m = -1 and m = -2 dominate. But st = 0.6 is the radial position of
the gap q = qr = 1.5 created by the toroidal coupling of m = -1 and m = -2. The
q = qr = 2.5 surface is at s = st = 0.87, around which the toroidal coupling.of

'm = -2 and m = -3 create a gap. This is also where the m = -2 and m = ;3
components dominate the TAE structure. The q = gr = 3.5 surface is at
-8 =81 =0.96, around which the m = -3, -4 gap is located and where the
m = -3, -4 components dominate the TAE structure. The TAE mode structure
is thus a mixture of all poloidal wavenumbers m that have a gap in the plasma.
This indicates that two-mode or three-mode approximations may not be
accurate enough to determine the TAE spectrum, although locally around each
gap position the corresponding two poloidal mode numbers m dominate. The

- particular TAE wave structures in the vicinity.of.q.=.qr surfaces.found with .the

LION code agree with simple analytical.theories in large :aspect ratio, circular
- tokamaks. It can be shown analytically that.the TAE Fourier components are
approximately given by

Am + Om (s - s7) °
o By (8) ee—— “vEmi(8s) ec v | EmylS) e s, o (20)
v (s - sD2 + A s1j~ v
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where st is the location of the q = qr surface, am = 0(1), and A = s%/mSR (S
is the shear). Then KAEy < 1/Am = mSR/s% which is proportional to n and the
'shears~The-gap positions.s/= st appear to be-sufficiently: accurately given by
q = qr in Eq. (4), provided the toroidal definition of q is used (Eq. (2)) and not
- its cylindrical approximate. In the plasma of Fig. 3 the use of the qcyl instead
-of q would have lead to a.totally wrong conclusion for.the.gap structure. This
suggests that the large aspect ratio limit is of restricted interest for the study
of TAE modes in existing and future tokamak experiments.

In a torus, as was discussed in Section 2.1, the parallel wavenumber, ky, is
a differential operator. Given the wavefield solution we can evaluate k for the
TAE mode. Because of the particular poloidal structure described above, we
find that k is everywhere almost equal to @w/va, where va is the local Alfvén
velocity. Therefore w/k|vie = va/vie, and this justifies the use of Egs (9) (17)
* (18) for the evaluation of Landau damping.

~ We should mention that the TAE modes shown in Fig. 3 have the property
that the amplitude of Ey is-a factor 3 to 10 larger than the amplitude of E;.
This corresponds to a plasma displacement 2 mainly in the poloidal direction.
Therefore TAE modes are almost (but not totally) incompressible, hence the
name "shear" or "torsional" Alfvén wave sometimes given to these modes.

Let us now examine the TAE mode labelled (a) in Figs 3 and -4.-Its
eigenfrequency, Rewg =0.235, is below the lower m = -1, -2 gap edge,
~ therefore it"has two spatial Alfvén resonance surfaces at s = 0.5 and s = 0.65
with*a mixture of m =-1, -2 poloidal behaviour there. We note a m = -2, -3
dominance around q=qr=2.5 and a m =-3, -4 dominance around
q =qr = 3.5, as was discussed for the TAE mode labelled (b). The continuum
damping rate of this mode is (y/®)cont = 0.029. We remark that Ey (Fig. 3a left)
~is much more strongly peaked around the resonance surfaces than E; (Fig.-3a
right). As a matter of fact, it can be shown that Ey-has.a:1/1s - sregl: singularity
and E; has a Inls - sres! singularity, in the limit v.—:0. This.is reflected in the
wavefield solution calculated with the LION code.

The TAE mode labelled (c) in Fig. 3 has its eigenfrequency, Rewg = 0.391,
‘above the upper m = -2, -3 gap edge. Therefore it has two resonance.surfaces
at s =.84'and s'=.89 with a dominant’'m ='-2, -3 behaviour there: The same m
dominances around qr = 1.5 and qr = 3.5 are observed as for the TAE mode
labelled (b). This mode has a continuum damping rate (y/®cont = 0.1.



The three TAE modes shown in Figs 3 and 4 are typical examples of all
TAE modes found in this study although it may sometimes happen that the

- TAE-mode has only one resonance surface close to the plasma. boundary...,. .x ...

Let us now consider a sequence of ideal MHD equilibria keeping the same
parameter as in Figs 2 - 4 except for q,, the edge value of q. We use the same
density profile characterized by an edge density gradient o = 6. The
- eigenfrequencies and continuum damping rates of TAE modes versus g are

shown in Fig. 5. It can be seen ‘that the number of TAE modes for a given
equilibrium depends on qa. For g3 < 3.75 only one TAE mode persists. The
others are either non-existent or very strongly damped (y comparable to ).
The continuum damping rate of each TAE mode depends on the q profile. For
example, between qa = 3.5 and qa = 3.75 the TAE mode is damped with a
-continuum damping rate of a few percent. This is due to the presence of the
“‘m'= -3, -4 gap near the edge of the plasma. The density and q profiles are such
that this gap is misaligned with the others and therefore the TAE mode has.a
resonance surface near the edge. It appears difficult to give an empirically
simple rule for the dependence of damping rates of TAE modes on q profile.
In all cases, however, this damping is due to a misalignment of the gaps.

The real part of the eigenfrequency of each TAE mode depends weakly on
da (Fig. 5). But the eigenfrequency of the most weakly damped TAE mode does
depend on qa. For 2.89 < g, < 3.98 the most weakly damped TAE is the mode
labelled (c), with Rewo = 0.4, whereas for q; > 4 the mode labelled (b) is the
most weakly damped, with Rewg = 0.3. Thus the frequency of the most weakly
damped TAE decreases with increasing q,.

We have conducted another study of the TAE spectrum versus g, for the
same sequence of equilibria as in Fig. 5, but with a different density profile
- characterized by an edge density gradient a = 4. The same general conclusions
hold but only details differ. The.continuum. damping rate of each:TAE ‘mode
depends on qa. The real part.of. the eigenfrequency of the most weakly
damped mode is Rewp = 0.44 for 2.89 < q, < 3.8, and Rewg = 0.32 for qa > 3:8.
For 3.3 < qa < 3.8 the continuum damping rate is of the order of a few percent.
This is due to the misalignment of the m = -3, -4 gap.

~“~ “'When "still “another *density “profile is used,"characterized .by an edge
density gradient a = 0, we find that all TAE modes are strongly damped,
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(y/ ®)cont > 0.1, for all values of q; considered. This is due to an even worse gap
alignment.

v Nowrlet-us study-n.=2-and n = 3 TAE modes.-In Fig. 6 we.show the n = 2
- TAE spectrum versus q, for the density profiles characterized by .= 4 ‘and
a = 6. In almost all cases there is a finite continuum damping, y/0 2 0.01. We
‘see-that the continuum damping.rate depends.on-q:and p profiles in a non-
obvious way. In Fig. 7 we show the continuum damping rates of the most
weakly damped n = 2 and n= 3 TAE modes for a given q profile with g, = 2.89
and different density profiles characterized by 0 < a < 8. In both cases there is
an optimum value of o for which the continuum damping rate is minimal.
These results can be interpreted as follows : the number of gaps in the plasma
is proportional to n. As n increases it becomes more and more difficult to align

all the gaps.

It should not be forgotten that these results have been obtained for a
“certain’ class of profiles. It is always -possible, for.a given q profile, to find-a
density profile for which the gaps are well‘:al‘igned, even for n = 3. Let us noew
‘use a density profile p(s) = (1 - .99s52)0.7 and consider the same.q profile as.in
‘Fig. 7, with qa = 2.89. The q = qr (Eq. (4)) values for n = 3 are qr = 1.167, 1.5,
1.833, 2.167, 2.5, 2.83. The corresponding radial gap positions s = st are
st = .42, .71, .84, .91, .96, .99, respectively. The frequencies of the centers of
the gaps o = or (Eq. (5)) are or = .458, .424, .412, .422, .470, .64 respectively.
Three n = 3 TAE modes were found, with Rewg = .430, .451, .506 and
+ corresponding continuum-damping rates of y/® = 0.03, 0.03, 0.004. The two
- first modes have several resonance surfaces with a mixture of m = -5, -6, -7, -
8, -9 behaviour. The third one has its frequency near the edge of the m = -8, -
9 continuum gap and thus has only weak continuum damping. Its electric
wavefield structure is shown in Fig. 8. As for the n =1 TAE modes, the
wavefield extends over the whole plasma cross section and contains all
-poloidal modenumbers m that have a gap in the plasma. Around each gap
‘position two. poloidal mode numbers, m -dominate .the Fourier decomposition.
The radial component of the wave electric field, Ey, is much more localized
than the poloidal component, E;. It has a larger amplitude
max |Eyl/max|E; | = 3. We note also that the wavefield radial localization is
~ larger and:larger as we go from the magnetic axis to the plasma boundary : the
perpendicular wavenumber, k,; increases with:increasing shear; since the gap
positions st are closer to each other as the shear increases.



In comparing the n = 1 and n = 3 cases (see Figs 3 and 8), we can see that
kA increases with n. The poloidal mode numbers m that enter into the
" ‘composition-of modes-are-proportional to n, as Eq.«(4)-suggests. Our results

‘also-indicate that the radial gradients of TAE modes increase-with n.
~ Therefore Landau damping increases with the shear and with n. For n =.3,
qa = 2.89 and a parabolic electron.temperature. profile . with.Teq.= 2.5keV, we
-estimate (y/o)L = 1.35 x 10-2, We found that FLR effects become more and
more important as the shear and n increase. For circular plasmas of aspect
ratio 3.2 and parabolic Te profiles we found the electron Landau damping. to
follow approximately the semi-empirical scaling law

(ﬁ ~ 2.06 x 10-3 n2(qa - qo)2 R T2 Byl net/2 A1/2 (21)

‘where n is the'toroidal mode number, qg and q, are the values of q on axis and
~on boundary, respectively, Rp is expressed in meters, Teo in keV, Bg in Teslas,
" ‘Neo is the central electron density in units of 1019m-3, and A is the ion mass in
*atomic units. Figure 9 shows (y/)L-as calculated ‘with the-LION code -versus
' (y/ o) as evaluated with Eq. (21) for a wide variety of TAE modes. Agreement
~ within 30% is obtained over two orders of magnitude. On the other hand, the
" “driving term [3, 4] increases linearly with n,-through the linear dependence of
the drift frequency of fast particles, ws;, with m. Therefore there is an
intermediate range of values of n that have the largest growth rate. Thus
electron Landau damping is a possible mechanism that gives an upper limit on
~ the toroidal wavenumbers n that may go unstable.

Electron Landau damping is most efficient where va is comparable to vie
and where the electron temperature is not too small. For typical existing or
planned fusion tokamak experiments this occurs near the plasma boundary.
Our results (Fig. 8) show that kj.is large in.these regions and therefore

««-electron Landau damping may effectively . contribute.to.the.global stabilizatign

of TAE modes. Collisional damping also could be important in the edge regions
of the plasma, where k, is very large and the temperature is small.



4.2 Shafranov shift

Let us now examine the effect of Shafranov shift of magnetic surfaces gn
TAE modes. We use a sequence of -equilibria of increasing Ppo1, keeping
qo = 1.05, qa = 2.89, a =4, and the same geometrical parameters as in Figs
‘2 - 4. Figure 10 shows the n = 1 TAE frequency versus Bpol (thick line) and the
‘lower edge of the m = -2, -3 continuum gap (thin line). The effect of Shafranov
shift is to increase the gap size (see Eq. (6)). and to decrease the TAE
frequency. The TAE frequency can be approximated by a linear function of

Bpol :
Rewp = 0.44 (1 - 0.5 BpoD (22)

'+ “For Bpe1=.85'the n=1 TAE enters the m = -2, -3 continuum and is
-+ subject to: continuum -damping for. Bpo) > .85. For Bpol = .87 we have B = 1.5%.
" This corresponds to 84% -of the Troyon B ‘limit [25]. The TAE continuum
damping rate is y/® = 0.027. Thus the n = 1. TAE can be stabilized for B values
below the ideal MHD stability limit.

4.3 Aspect ratio, elongation and frlangularlty effects

Let us consider a plasma of inverse aspect ratio a/R =.3125, qo = 1.05,
da = 2.89, Bpol = 0, a = 4, and study the spectrum of Alfvén eigenmodes as the
ellipticity e is varied from 1 to 2. For all elongations the n = 1 TAE mode
subsists and is not continuum damped. Its eigenfrequency decreases slightly

--with elongation and is approximately given by.

L2

RewsE= 0.44 (1 - 0.117(¢ - 1)2) | | 23)

For e 2 1.5 a new mode appears in the spectrum in the gap created by the
coupling of m =-1 with m =-3 near q =qg =2 (Eq. (7). It is an ellipticity
“*induced Alfvén-Eigenmode-(EAE). Its continuum-.damping rate -decreases
rapidly with ‘e. For ‘e = 1.5, (y/®)cont ='0.086. For e'=2*(y/w)csnit = 0.002. The
real part of its eigenfrequency is SRecooEAE = 1.24. The EAE wavefield is localized
near s = .9 where q = gg = 2 (Eq. (7)) with a dominant m = -3 behaviour. It has
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a dominant m = O resonance surface at s =.7. Coupling fromm=-83tom =0 is
weak and therefore the continuum damping is small. This is no longer the
case if the plasma has some triangularity.

" “To analyze the effects ‘of shaping we examine two sequences of equilibria
“~of elongation 2 and varying aspect ratio. In the-first'sequence the triangularity,
3,18 6 =0 and in the second & = 0.3. For .all'equilibria we keep qg = 1.05,
Qa = 2.89, Bpo1 =0, a =4. For a/R = 0.25, e='2,:8 = 0, ‘we show, in Fig. 11, the
n =1 continuum frequencies versus the radial coordinate s. The two
toroidicity induced gaps around s =.78 (q=qr=1.5, m=-1, -2) and s =.975
(@ =qr =2.5, m=-2, -3) are rather well aligned. The TAE has an
eigenfrequency Reow, TAE = 0.386 and no continuum damping. The ellipticity
induced gap near s =.92 (qQ = qg = 2, m = -1, -3) is misaligned with the m = 0,
-2 gap (q = qg = 1) near s = 0. The EAE has an eigenfrequency EﬁecogAE = 1.228
such that it has a dominantly m = O resonance surface at s = .72. However,

+.toroidal -coupling is..small and triangularity coupling negligible, and the

+continuum damping rate is small : (y/®)cont = 0.005. The EAE has a dominant
= -3 and m = -1 behaviour near the ellipticity induced gap at s = .92. It.is
more localized in the edge region than the TAE.

The n =1 TAE and EAE frequencies versus a/R are shown in Fig, 12 for
the two cases 8 = O (continuous line) and 8 = 0.3 (dotted line). The frequencies
of TAE and EAE modes increase slightly with a/R and §. For all equilibria
considered here the TAE mode is not continuum damped. The continuum
damping rate of the EAE mode (see Fig. 13) shows a remarkable dependence
on aspect ratio and triangularity. For § = 0 the damping increases quadratically
with a/R, owing to the increase in the toroidal coupling of the dominantly
m = -3 near q = qg = 2 to the m = O resonant surface. For a given aspect ratio
the EAE damping rate increases with triangularity. This can be understood by
the fact that triangularity couples poloidal mode numbers m to m * 3. Thus it
couples the dominantly m =-3 EAE wavefield near q = qg =2 to the
dominantly m =0 resonance surface. For -§ = 0.3 the EAE damping rate
decreases with a/R. This result can be interpreted as follows. Increasing a/R
changes the EAE frequency and the ‘continuum ‘in ‘such a way that -the
distance between the q = qg = 2. surface and the.m =0 resonance surface
increases. This effect appears to be larger than the expected increase of
toroidal coupling with a/R. 1 :
emseWerconclude that: triangularity is-a-stabilizing factorsfor the n = 1 EAE, but
not for the n = 1 TAE.
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Finite Bpo1 decreases the TAE and EAE frequencies. It can be expected
that, for intermediate values of Bpol, the EAE frequency lies between the m =0
and m = - 2 continua in the alignment of the gaps. Let us consider a plasma
with"a/R =.357, e =2, 8=0.4, qo = 1.05, qa = 4.21,;7a = 4, Bpol = 0.5.-In .this
case we find both an n =1 TAE ‘and ‘an-n'="1"EAE that have no resonanee
surface and thus no continuum damping. The n = 1 TAE has E)te(ogAE = 0.380,
and the n = 1 EAE Reog = = 1.002. | .

The same equilibrium-was used to study the n = 2 case. The n = 2 Alfvén
spectrum contains a TAE mode with %emgAE =0.330 and a EAE mode-with

%ecoo = 0.973, both of which are not continuum damped because their
frequency lies in the gaps overlap. The n = 2 TAE electric field is shown in Fig.
14. The wavefield, particularly the radial component Ey, peaks around the
q = qr surfaces, which are qr = 1.25, 1.75, 2.25, 2.75, 3.25, 3.75. As in the
circular case, the gradients of the eigenmode electric field are dominated by

~ the'radial gradients.of.Ey. The eigenmode structure appears to be asymmetric

“rbetween-the high-field side- (HFS)-and the low field. side (LFS). o s e

“ - Figure 15 shows the n = 2 EAE electric field. It is even more asymmetric
than the TAE. The wavefield amplitude is very small on.the LFS of the plasma

» and-very large on the HFS. In such an elongated and triangular cross-section
the poloidal Fourier decomposition of the mode shows a mixture of many
different poloidal mode numbers m.

Both TAE and EAE wavefields extend over the whole plasma cross-
section. They have strong gradients in regions of high shear. Therefore we can
expect TAE and ‘EAE modes to be efficiently damped by electron Landau

damping, since-for typical reactor tokamak plasmas va is comparable to vie
near the edge where kj and the mode amplitude are large. However, we could
not find an-expression similar to Eq. (21) for the damping rate. The reason-is
that TAE and EAE modes are particularly peaked near the boundary where
VA = Vte -and thus the damping rate strongly depends on details of Te profile
there.

The main difference between TAE ‘and EAE modes, besides ‘the higher
EAE frequency, is that EAE continuum-damping is more-sensitive to- the shape

- of plasma cross-section than the TAE.-We conclude-that it may be possible.to
stabilize EAE modes more easily by controlling the shape. The TAE mode thus
appears to be the more dangerous mode in terms of stability. =

For parameters of ITER we can assume that the density will be almost
constant over the plasma cross-section except a small region near the edge.
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Therefore we choose qo = 1.05, qa = 4.2 and a constant density over the whole
plasma cross-section. For this profile the toroidal gaps and the elliptical gaps
are misaligned and both TAE and EAE modes are continuum damped. We
"show"in Fig.*16 the n =2 ‘EAE wavefield. It has Alfvén*resonance surfaces-in
“the vicinity of the q = 3.5'and q =-4:0"surfaces withhigh‘poloidal wavenumbess.
The continuum damping rate of this mode is (Y®)cont = 5 X 10-2. As a matter of
- fact the continuum damping rates'of ‘all n'="1 and n'= 2'TAE and EAE modes
for this "ITER" case are larger than or equal to 5 x 10-2, g

5. DISCUSSION

We have studied n =1, 2, 3 TAE and n =1, 2 EAE modes in more than
150 different axisymmetric plasma equilibria differing in safety factor and
-density profiles, poloidal B, aspect ratio, elongation and triangularity, in a
" parameter range relevant for present day and. future -tokamak experiments.

~ “Although this is' not enough -to provide definitive answers concerning. these

modes, in particular their possible -stabilization through profile and shape
control, we have found some important effects. The main results are
- summarized and discussed below. |
- The existence of TAE and EAE modes in the presence of multiple gaps is
confirmed. All poloidal mode numbers m that have a corresponding-gap
are present in the wavefield structure. The TAE and EAE wavefields
- extend over the whole plasma cross-section and their amplitude peaks on
“all gap- positions..See Figs 3, 8,:14, 15 and 16.
- We have evidenced the multiplicity of TAE modes (see Figs 2 - 5). The
eigenmode frequency split-appears to be non negligible and seems to be-a
regular feature of TAE spectra. Other examples of this split can be found
in Ref. [28].
- Continuum damping is -an important stabilizing- mechanism. When present
-1t is roughly a few percent-of the modefrequency. See-Figs ‘5, 6; 7-and-18.
- The continuum damping rate is ‘controlled by multiple gaps
misalignment, which depends on:q:and p profiles. For example,, for:a
given q profile, hollow p profiles-with steep’ edge - gradients (o = 8) or
peaked p profiles with flat- edge gradients:(a ='0).yield continuum
=wdamping rates of 'several percent - (Fig. 7). - = xmbmmmeammn -
We could not find any clear dependence of the continuum damping rate
on n. High n cases cannot be studied with the LION code : for realistic q
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profiles the number of gaps becomes too large to be resolved numerically.
Therefore a comparison with the results of Refs [8, 9], where a decrease
of the continuum damping rate with n was found, cannot be made. For the
“‘low n'cases studied here, the sensitivity of the continuum damping rate
- ~on-minor changes of q'and p profiles (see Figs. 5 - 7) makes-a study of:the
n dependence irrelevant at low n. \ '
“Finite Bpo1 can stabilize the n =1 TAE-for:$ values:below-the-Troyon -limit
(Fig. 10).
The real part of eigenfrequencies of TAE and EAE modes do not depend
much on g or n (Fig. 5). For TFTR parameters [4] TAE frequencies are-in
the range of 60 to 100 kHz, which agrees well with experiment.
The amplitude of the radial electric field, Ey, for both TAE and EAE
modes is much larger than the amplitude of poloidal electric field, E;.
The radial gradients of TAE and EAE wavefield component E,, are much
- larger than radial- gradients of E;. In other words, the perpendicular
wavenumber, ka, of TAE and EAE modes is mainly due to the large
dEy/0s.
Increasing shear increases kj. Thus, in the absence of continuum
- damping, large- shear is a stabilizing .factor for both TAE and EAE modes
through enhanced kinetic damping.
Landau damping of TAE and EAE modes increases quadratically with n
through increased eigenmode gradients (see Eq. (21) and Fig. 9).-Since
the fast particle instability growth rate increases linearly with n, this
implies that-low or intermediate toroidal mode numbers are the -most

* v easily destabilized. This agrees well with experiments on DIII-D and

TFTR.

The parallel wavenumber, ky, of TAE and EAE modes is accurately given
by o/va. It simplifies the expressions for wave-particle interaction such as
Landau damping which therefore depends only on the profiles of va/vie,
Te and eigenmode gradients (dEy/ds). : i
The radial positions of the gaps:.are well predicted by the simple
expressions q = qr (Eq. (4)) and q =qg (Eq. (7)) when the exact toroidal
definition of q is used (Eq. (2))..These are‘the positions where. the
eigenmode peaks, especially the radial electric field component Ey. This
- -+ emphasizes  the importance of studying TAE and EAE modes in exact
“~==toroidal ideal MHD equilibria. -+ e R
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-  The large kp values for TAE and EAE modes imply that FLR and finite
drift orbit width effects should be taken into account to study wave-fast
particles interactions.

- -+ Triangularity and“small aspect ratio can be-stabilizing factors for EAE

««--modes-in elongated plasmas.(see Fig.--13).-On the-other-hand, TAE.modes
are more robust and are therefore more dangerous for stability than EAE

““7“rmodes. This seems to contradict :theconclusions - of Ref::[2].-The
contradiction is, however, only apparent. Our conclusion results from the
combined effects  of triangularity and finite aspect ratio (both of which
were neglected in Ref. [2]) with ellipticity. Our results for large aspect
ratio and zero triangularity (Fig. 13) confirm the conclusions of Ref. [2] :
continuum damping of EAE is very small.

- The TAE frequency decreases with Bpo1 (see Fig. 10 and Eq. (22)) and
with elongation (see Eq. (23)). This could explain the lower frequencies

* 7 observed in DIII-D- [6], although some other effects, such as toroidal
“rotation, seemed to play a role in these-experiments but were not studied
here.

- ‘Although no optimization-of antenna-design was made in the present

~'work, we have shown that TAE and EAE modes can be excited with an.
antenna placed in the vacuum region. This might be an experimentally
feasible and interesting way to study the global damping rate of these
modes.

- H-mode like profiles in plasmas with a separatrix (q — «) cannot ‘be
studied with the present version of the LION code. However, if the

<+ density profile is_flat, a non-uniform -1 /q\/ p profile is generated and
therefore leads to toroidicity and ellipticity gap misalignments. For ITER

~ - parameters we found continuum damping rates of all n = 1.and n = 2 TAE
and EAE modes larger than or equal to 5 x 10-2,

6..CONCLUSION

Our study has shown howcontinuum-damping is-a“critical ‘stabilizing
factor for TAE and EAE modes. We have. exposed .important parameters. such
as q and p profiles, aspect ratio, elongation and triangularity which influence
it. For reasonable profiles, low n TAE and - EAE modes -are effectively

meeens.continuume-damped «in» ITER-like «plasmas.-The- authors.-of .Refs [8,.-9] have
pointed out that continuum damping is less efficient at high n. However,
provided the n2 dependence of electron Landau damping that we propose in
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this paper still holds, high n modes might be effectively damped by this
mechanism. Therefore intermediate n modes should be the most dangerous
for stability, in good agreement with experimental results so far [4, 5].

" More work-is -necessary to make. a reliable prediction of TAE. and EAE
stability in“future reactor devices. In particular FLR:and finite drift orbit size
effects should be considered for -a better estimate of wave-o particle
interactions. The radially- fineeigenmode~structure-in-the regions-of-high
shear near the plasma edge suggests-that interaction with turbulence might
also play an important-role.-Continuum-damping-and- electron.Landau damping
usually ‘act in the outer regions of the plasma more effectively than in .the
center. It can therefore be expected that in a reactor TAE or EAE modes
would be locally unstable in the vicinity of the magnetic axis but locally stable
in the outer regions. Even when globally stable, TAE or EAE modes might
carry a non negligible energy flux from the center to the outer regions.
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FIGURE CAPTIONS

1. Density profiles parametrized with*the value of the edge gradient c.
2. - Power vs frequency for n = 1, in a circular tokamak of aspect ratio

- +3.2, g0 =.1.05, qa = 4.16, o = 6, B = 0. Three, gap modes, labelled (a),
“(b) ‘and (c), are found. Their éigenmode structures are shown in Figs
3-4.

3. Level line plots of n = 1 TAE electric fields. The labels a (top), b

(middle) and c (bottom) correspond to those in Fig. 2. The constant
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Re(Ey) (left side) and constant Re(E)) (right side) lines are colour-
codec‘i’ with blue for low values to red for high values.

Poloidal Fourier decomposition of the TAE modes shown in Fig. 3.
The labels a, b and ¢ correspond to those in Figs 2 and 3.

Frequencies and damping rates of n = 1 TAE modes versus qa. The
other parameters are R/a = 3.2, qo = 1.05, « = 6, B = 0, circular
cross-section.

. ' Frequencies and damping rates of the most weakly damped n = 2

TAE modes versus (a, for.density -profiles characterized by o .= 4

- (continuous-line) and o' = 6. (dotted lines). The other parameters-are

R/a = 3.2, qo = 1.05, a = 6, B = 0, circular cross-section. ,
Damping rates of the most weakly .damped n = 2 .and . n =.3 TAE
modes for different density profiles. The other parameters are R/a =
3.2, qo = 1.05, B = O, circular cross-section.

Level line plots of n = 3 TAE electric field in a circular tokamak with
qo = 1.05, qa = 2.89, p(s) = (1 - .99s2)0.7, B = 0. The colour coding is
the same as in Fig. 3.

Global electron Landau damping rate of TAE modes as calculated with
the LION code versus the semi-empirical formula, Eq. (21), for

‘circular plasmas of aspect ratio 3.2 and parabolic electron

temperature profiles.

Frequency of the n = 1 TAE mode (thick:line) versus Bpol..in a
circular tokamak with R/a = 3.2, qo = 1.05, qq = 2.89, a = 4. The thin
line shows the lower edge of the continuum gap. :
Continuum frequencies versus radial position s in a plasma of aspect

ratio -4, elongation 2, triangularity 0, qo = 1.05, q3 = 2.89,-0 = 4,

B = 0. The numbers on the curves correspond to the dominant
poloidal mode numbers m.

Frequencies of n = 1 TAE and EAE modes versus inverse aspect ratio
in plasmas of elongation 2, triangularity O (continuous lines) and
triangularity 0.3 (dotted lines). The other parameters are qg = 1.05,
da=2.89, a=4,p=0.

Damping rates of n = 1 EAE modes versus inverse aspect ratio in

+ plasmas of elongation 2, triangularity O (continuous line) and

14.

15.
16.

triangularity 0.3 - (dotted line). The other parameters are qg = 1.05,
da=2.89, aa=4,8=0.

Level line plot of the n = 2 TAE electric field in a plasma of inverse
aspect ratio 2.8, elongation 2, triangularity 0.4, qo = 1.05, q, = 4.21,
Bpol = 0.50, o = 4. The colour coding is the same as in Fig. 3.

Level line plot of the n = 2 EAE electric field. Same parameters as in
Fig. 14.

Level line plot of the n = 2 EAE electric field. Same parameters-as in
Fig. 14 except the density profile which is uniform here. .
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