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Abstract

The design of a diffration grating used as an output coupler for a Fabry-
Pérot resonator is presented. We then consider the problem of determining
the distortion and the cross-polarization of the incident Gaussian beam.
Different types of gratings, plane with straight or curvilinear grooves and
elliptical, have been designed and built. The output pattern from a resona-
tor using such a grating has been measured experimentally. We found that
the elliptical grating generates the least distortion and cross-polarization.
This result is attributed to the geometry of the grooves and is in excellent

agreement with numerical calculations.



L INTRODUCTION

The preferred high power transmission lines designed for electron
cyclotron wave systems in thermonuclear plasma research are HE;; wave-
guides. This mode is selected for its extreme low loss. Moreover the radia-
tion field has a Gaussian pattern and is linearly polarized. The use of a
metallic waveguide provides shielding against leakage of the electromagne-
tic energy and, in a reactor, of neutrons in the event of window failure. In
transferring power from the microwave source to the HE;; waveguide, a
Gaussian beam is required to insure an efficient power coupling which can

reach 98%.1

In a cylindrical resonator gyrotron, the output of the microwave
source can be converted into the desired Gaussian mode by a suitable con-
verter.2 In a quasi-optical gyrotron (Q.0.G.), the usual methods of output
coupling3.4 do not provide a Gaussian beam. In preserit Q.0.G. experiments,
the energy is extracted from the Fabry-Pérot resonator by diffraction
around the mirror edge. It is then either fed into an over-moded
waveguide3 or focused using a Cassegrain telescope mirror configuration.4
Hot and cold tests indicate that the output pattern is far from Gaussian and
thus is thus difficult to propagate the microwave beam without non-

negligible losses.

We have recently5:6 proposed a new output scheme for Q.0.G. where
one of the resonator mirrors is replaced by a grating arranged in the -1
order Littrow mount (Fig. 1). In this arrangement, only two diffracted waves
are generated: the -1 order which provides the feedback power to the reso-
nator and the zeroth order which provides the output. In preliminary

experiments,5.6 the measured Gaussian content of the output beam was



greater than 90%. These experiments also show that the output beam was
not perfectly linearly polarized: about 10% of the total energy is cross-pola-
rized with a non-Gaussian pattern. Both the Gaussian content and the
amount of cross-polarization are important in determining the amount of
useful power which is coupled into the HE;; waveguide. To study the in-
fluence of the grating geometry on these two quantities, we have designed
two types of gratings: the first is a plane grating with straight or curvilinear
grooves and the second has an underlying surface ("the grating support"
shown later on figure 3) which is a portion of an ellipsoid of revolution.

Both gratings have been built and tested at low power.

We consider in this paper the performance of a resonator using such
gratings as output couplers. The main issue to be investigated experimen-
tally and numerically is the determination of the cross-polarization and the
distortion of the output beam. The detailed design of the grating is first
described in Sec. II.A. The grating is defined by the geometry of its support
(e.g. plane or elliptical), the diffraction angle 6, the characteristics of the
Fabry-Pérot resonator in which it will be used and the desired efficiency in
the zeroth order. In the case of the elliptical grating, one must also define
the desired magnification of the resonator beam waist size. Specific design
parameters taking into consideration the constraints of a Q.0.G. will also be

presented.

We then consider the distortion and cross-polarization of a Gaussian
beam incident on the grating. The incident electric E! and magnetic B!
fields are decomposed into TE (E parallel to the grooves) and TM (B
parallel to the grooves) modes. These components are reflected by the grat-
ing with different complex reflection coefficients RTg and Rrpm which

correspond to the respective diffraction efficiencies in the zeroth order.



The electromagnetic field, far from the grating, is then computed using the
vector Green's formalism. The details of the entire calculation is presented

in Sec. I1.B.

The properties of Q.O. resonators using grating couplers were mea-
sured in a low power experiment. We have focused our interest in charac-
terizing the output pattern and dependence of the quality factor on fre-
quency (Sec. III). In the discussion (Sec. IV), we shall compare the experi-
mental results with the numerical predictions deduced from the model
presented in Sec. II.B. A comparison of the different types of gratings will
also be outlined.

II. THEORY

A Design of the grating

Let us first recall some properties of a plane grating of period d and
of infinite extent. A plane wave of wavelength A incident on this grating
with an angle 0 of incidence relative to the normal, is diffracted by the
grating into several directions (or diffraction orders) 6, given by the grating
formula:

nA

sin On = sin 6+ d (1)

In the -1 order Littrow mounting, we have:

2 sin 0 = (2)

Q>



If the condition in Eq. (2) is satisfied, the -1 order diffraction is
exactly in the direction of incidence. From Egs. (1) and (2), one can see
that for A/d < 2/3 only the n=-1 and the n=0 diffracted waves can exist. In a
Fabry-Pérot resonator where such a grating replaces one of the mirrors, the
zeroth order (or specular reflection) provides the output power while the -
1 order provides the feedback in the resonator. Assuming that the spillover
losses around the mirror and the grating are negligible (or equivalently that
the Fresnel number of the resonator is large), the zeroth order efficiency
(in power) defines the quality factor of such a resonator and can be com-
puted using the electromagnetic theory of gratings.? In the high frequency
range used in Q.0.G., the grating mirror can be considered as a perfect
conductor, in which case, the integral formulation? of the problem is the
most adapted. Using this formulation, the diffraction efficiencies for the TM
polarization (i.e. the wave magnetic field is parallel to the grooves) and the
TE polarization (i.e. the wave electric field is parallel to the grooves) can be
calculated for an arbitrary groove profile. For Q.0.G., we shall consider only
sinusoidal grooves whose relatively smooth surface minimizes the risk of RF
breakdown. Under the -1 order Littrow mounting condition, Eq. (2), the
efficiency for the -1 order depends only on the angle of incidence 6 and the
groove depth h normalized to the period d. The efficiency e.; in the -1
order is given in Figs. 2(a) and 2(b) for the TE and TM modes. By energy

conservation the zeroth order efficiency eg is equal to (1 - e.}).

When a plane grating is used in a Fabry-Pérot resonator, the grating
conditions of Egs. (1) and (2) can only be satisfied if the beam waist, where
the wavefronts are almost plane, is located on the grating mirror.
Otherwise, the grating is not in a -1 order Littrow mounting: the feedback
into the resonator cannot occur and no resonant mode is excited. As a con-

sequence, in a Q.0.G. the ohmic heat load on the plane grating is too high



because the incident Poynting flux is too large. To avoid this problem, the
grating must be such that it would not perturb the Gaussian TEMgo pattern
of an equivalent resonator formed by two spherical mirrors designed to
accommodate both requirements of an optimum beam waist wg for the
gyrotron interaction and an allowable heat load.8 A method to design the
grating can be devised by considering again the case of the plane wave inci-
dent on a plane grating of infinite extent with straight grooves. In this
situation the Littrow condition is satisfied if the extremities of the grooves
coincide with the intersection of the grating support and the wavefronts
which are separated in phase by n/2. Assuming that the incident wavefronts
can be reconstructed while satisfying the Littrow condition at each point on
the grating, this procedure can then be extended to Gaussian wavefronts.
Knowing the beam waist wg, the wavelength A and the distance D/2
between the grating and the beam waist wg, one can determine the
intersection of the phasefronts and the grating support. A plane grating
constructed using this method will give rise to a diverging beam at the
output. With an elliptical surface, the output beam is focused to a waist size
optimum for the coupling into an HE;; waveguide.

This procedure implies that the groove spacing d is no longer con-

stant over the grating surface, but is defined as

A
2 sinb(x,y,z)

dix,y,2z) = (3)
where 6(x,y,z) is the local angle of incidence equal to the angle between the
normal to the grating surface and the normal to the wavefronts at the point
(x.y.z). To assume constant efficiency, the groove depth h(x,y,z) also has to
be adapted so that the point (8(x,y.z).h(x,y.z)/d(x,y,z)) remains on an iso-
efficiency line of Fig. 2. |



Mathematically, the sinusoidal profile is defined by the following pro-
cedure. The electric field E(x,y,z,t) of a linearly polarized Gaussian beam is
given by:

2 4 y2
E(x,y.z,t) = Eg v:;g) exp{-ipx,y.2)} exp{-x;;—iz%} exp (-iot) (4)

where wg is the resonator beam waist size and w the wave frequency. The
spot size w(z), the radius of curvature of the wavefronts R(z), the Rayleigh

length zgr, and the phase angle ¢(x.,y,z) are defined respectively as :

w(z) = wo (1 +£§-)1/2 (5)
YA
R
2
R(z) = z(l +:—‘§) (6)
w?
ZR=1txo (7)
2.v2
ok.y.z) = kz + k—(zx-ffg—)—) - tan-l(%) (8)

where k is the wavenumer.

In a resonator characterized by the distance D between the mirrors and
the resonator parameter g ( g= 1-(D/R;), where R is the radius of

curvature of the spherical mirrors), wo and zr are given by 9:



e @
w= 2(1g) " (10)

As mentioned before, the positions of the grooves are deduced from
the intersections of the grating support (ellipsoid or plane) and the wave-
fronts (p(x,y,z) = constant). The intersections with the wavefronts ¢(x,y,z) =
nxn (n=1,2,...) arbitrarily define the highest point of each groove. For a given
point A(x,y,z) on the grating support, the vector pix,y.z) from A(x,y.z) to the
corresponding grating profile point G(x,y,z) (see Fig. 3) then varies linearly
with the cosine of the phase ¢(x,y,z) at the point A(x,y,z):

plx.y.2) = ILXZM [cos(20(x.y.2)) - 1] nlx.y,z) (11)

where nx,y,z) is the outward normal to the grating support at the point
Alxy,z).

In summary, the design of the grating coupler for the Q.0.G. can be
performed in three steps:

1) Choose the parameters of the equivalent Fabry-Pérot resonator
which meet the requirements of the Q.0O. gyrotron.8 This determines the
wavefronts (¢(x,y,z) = constant) at the location of the grating.

2) Knowing the desired efficiency in the zeroth order and the
operating mode (TE or TM), determine the angle of incidence 6 and the
groove depth h/d, by using the theory of plane gratings? or Figs. 2(a) and
2(b).



3) Calculate the groove profile using the procedure described above.

Let us now discuss in detail the points 1 and 2 of the above pre-
scription. Except for the plane grating with straight grooves described in
Sec. IIIA, the resonator and grating parameters were chosen to fit the
requirements of actual Q.0.G. The two main parameters of the resonator of
a Q.0.G. are the beam waist and the resonator g-factor. The beam waist wg
(Eq. 9) is the characterisic length over which the electron beam of the
Q.0.G. interacts with the electromagnetic fields. The power extraction is
optimal for kwg = 15 to 20.8 The heat load on the mirrors is proportional to
(1+g). The maximum allowable peak heat load for high power gyrotrons is
Pohmmax = 1.5 kW/cm2.10.11 Since the heat load on the grating has not yet
been computed, the resonator parameters are determined so that pohmmax
remains well below this limit, typically pohmmax < 0.5 kW/cm?2 and g is in
the range of -0.5 to -0.8. g and D completely define the resonator and the

wavefronts ¢(x,y,z).

The determination of the angle of incidence and the groove depth
h/d is based on the desired two-way loss T of the resonator (T = 1-10%)
and the expected operating mode of the Q.0.G. First, since the electric field
in a Q.0.G. resonator is quite high, typically 1-10 MV/m, a sinusoidal profile
is selected to maximize the radius of curvature of the groove in order to

reduce the risk of RF breakdown.

To determine the angle of incidence 6, we must consider whether
the Q.0.G. will operate at the first harmonic of the electron cyclotron fre-
quency Q (o = Q) or its second harmonic (® = 2 Q). In the first case, we

want to suppress the parasitic oscillation at the second harmonic.12 In the
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second case, there should not be any resonant mode of the resonator at the

fundamental o = Q.

Under the -1 Littrow mount condition, the grating is automatically
in the -2 Littrow mount for the parasitic oscillation in the second harmonic.
Figures 4(a) and 4(b) represent the -2nd order efficiency for TE and T™M
modes at the second harmonic. They clearly show that one can find para-
meter domains (0 and h/d) which minimize the feedback (i.e. an efficiency
in the -2nd order less than 5%) for the second harmonic ® = 2 Q, for a
given efficiency at the fundamental o = Q. Resonance at ® = 2 Q can thus be

avoided.

On the other hand, for a grating designed to operate in the -1
Littrow mount at o = 2Q, the -1 Littrow oscillation is not satisfied at the
fundamental o = Q: the feedback into the resonator will not be provided for
the fundamental. In such conditions, the resonator exhibits resonances at ®
= 2Q and not at o = Q. For the same reason, it will not resonate at o = 3Q.
Should parasitic oscillations at the fourth harmonic be excited (which is
unlikely for typical gyrotron electron beams), their suppression can be

performed using the method previously described.

The ability to select the resonance at ® = Q or at ® = 2 Q is an advan-
tage of the grating resonator over conventional resonators for which the

quality factor Q is a monotonically increasing function of frequency.

Finally, for practical reasons the TM polarization was preferred for
the tests because the -1 order efficiency is relatively insensitive to the angle
of incidence in the domain of interest (h/d ~0.3, 6=25° to 45°). This is a

simplification for the manufacture of the gratings because the ratio
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h(x,y,z)/d(x,y,z) can be kept constant over the entire surface of the grating
(see Fig. 2(a)).

If the output beam is coupled to an HE;; waveguide, it is necessary
that the field pattern at the input of the guide corresponds to the beam
waist of the Gaussian beam with a waist size w; equal to 0.645 times the
guide radius a.l In the case of a plane grating, matching optics are
necessary since the output beam is diverging. They could be avoided if one
uses an elliptical grating. The parameters of the ellipsoidal support is then
designed to achieve the required magnification wj/wyq.

The results of the application of this method are presented in Fig. 5
for a plane grating and in Fig. 6 for a grating with an elliptical support. It is
important to note that the grooves are much more curved in the first case

than in the second.

B Diffraction of a Gaussian beam by a grating

We now wish to compute the distortion and cross-polarization of the
output beam of the resonator described in Sec. II. A: We assume that the re-
sonator modes are not affected by the grating. It was verified
experimentally that a TEMoo mode is still Gaussian. Therefore, the problem
reduces to the determination of the distortion and cross-polarization of a
Gaussian beam diffracted by the grating. In SI units, the electric and

magnetic fields of the incident wave are respectively E! and Bi:13

Bl = VxA (12)
1 i

El = — —VxBi (13)
Elo ©
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where the potential vector A(x,y.z.t) is:

Alx,y.z,t) = AUxy.z t) ex (14)

Uiy = 5y expl{ ke - tani(3)- 02+ 3 [0 2Riz)| Jeptn
(15)

where ex is the unit vector in the x direction (Fig. 1), Ay an arbitrary
constant.

Since the grooves are not straight (Figs. 5 and 6), at any point on the
grating G(x,y,z) the incident field is neither a TE nor a TM mode. As in
usual waveguide theory, we decompose the incident field into TE and TM
modes. Let us define at each point on the grating a set of orthogonal unit
vectors (ea, ep, &c) (Fig. 7) where ec is perpendicular to the grating and e
and ep are in the plane tangent to the grating support with ey tangent to
the groove. ea, &b and g¢ are, of course, dependent on the position (x,y,z) on
the grating. Furthermore we assume that, locally, the incident wave can be
considered as a linearly polarized plane wave with the incident wavevector

k! normal to the wavefront. Efx,y,z) and Bl(x,y,z) are given by :

El

Eaea + Epep + Ecee (16
Bl = Baga + Bpep + Beee (17)
By definition, E; = Epep and By = O for the TE mode and B! = Bpep and

Ep = 0 for the TM mode. By and B (resp. Eq and E¢) are straightforwardly

deduced from Ep (resp. Bp) using the assumption of a plane wave ( i.e. -oEl
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= c2(k x Bi)) in the TE (TM) mode. The incident wave vector k! is perpen-
dicular to the groove direction at all points on the grating (k*ep <5 104
from the numerical calculations performed with typical gratings suitable for
Q.0.G.) and therefore k! is equal to ky €5 + ke €¢ . This last consideration
implies that effects due to the conical diffraction are negligible? and the
simple electromagnetic theory of diffraction is applicable. Let RTg and Rtym
be the complex efficiency coefficients in the zeroth order mode. Though
the angle of incidence 0 only varies by less than 59 over the grating surface,
we have included the corresponding variation of Rrg and Ry with © in the
formalism. For the values of 6 and h/d corresponding to a typical grating
(Table I), RTg and RtMm are quite different and, therefore, the "reflected”
fields will suffer from cross-polarization. The corresponding reflected
reflected electric (magnetic) field for the TE (TM) mode is Rrg Epep
(R TM Bpep). The remaining components of the reflected fields Ed(x,y,z)
and Bd(x,y,z) for both the TE and TM modes are obtained from Maxwell's
equations using kd =k, e5 - ke ec :

Ed -RrM Eaga + RrEEpeb + Rm Ec ec (18)

v
[« N
I

B - RTE Ba €a+ Rt™M Bp &b + RTE E¢ €¢ (19)

The fields Ed and Bd are thus defined at every point on the grating
surface. The diffracted fields E° and B° at a point P away from the grating
are obtained from E4 and B4 using electromagnetic theory of diffraction.14 A
vector formalism is necessary to consider issues concerning cross-polariza-
tion of the fields away from the grating surface. Since we shall be mainly
concerned with the pattern in the zeroth order, it is more convenient to
express E© and B° in the frame (x'.y',2') (Fig. 1). O'z' is the axis of the beam

diffracted in zeroth order. The two frames (x.y,2z) and (x',y'.z") are related by
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a rotation of twice the angle of incidence 6. In the rest of the paper, prime
quantities will refer to the (x'y'.z') frame. From the Stratton and Chu for-
mulae, 14 we obtain the field E° and B? at the point of observation (x'.y',z')

from the field E4 and B4 computed at every point of the grating surface

(X'¢.y'e2'g)-
EO t oyt .) - 1 1 J‘ V\P(Bd.dl)
Ebcyz N " eollo 4Ti® : = =
'41_1: [ [iolnxBal ¥ + [@xE) x¥¥+ (n+E) v¥]as (20)
g
1
Box'y'.z) =

| ve(Edeaq)

4rio

+4ch j [iweouo (axEd ¥ - (@xBI) x¥¥ - (neB9 Z‘I’] ds (21)

I" is the line contour circling the grating edge and Zg the grating surface. ¥

is the three dimensional Green's function:

¥ expl{.ikr} (22)

The distance r is measured from the element (xg, yg, zg) on the grating to
the point of observation P (x', y'.z'). n is the outward normal from the

surface Zg.

Since the incident electric field is mainly linearly polarized along Ox,
the zeroth order diffracted beam also has its electric field along O'x'. We de-
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fine the O'x' direction as the correct polarization direction for the diffrac-
ted beam, the cross-polarization being in the O'y' direction. The Gaussian
content in power, C2, of the diffracted beam and the amount of cross-pola-

rization XP are defined as:

[z, axer Vs, exef 5550

c2 C - (23)
[, axayse] [ ax ay e 2253
J' dxdy’ Sy
0
= (24)
P jro dx'dy’ Sy + jm dx'dy’ Sy 24
Sy and Sy' are
e 25
Sy = 1o (25)
e [z ]
Sy = (26)

Ho

which are the absolute values of the two contributions to the z' component
of the Poynting vector. The surface Zg is the area over which the field
pattern is computed. Zgis chosen to be large enough compared to the
corresponding beam-waist size so that the fields are small at its boundary.
Equation (23) gives a slightly overestimated value since the phase of the
electric field is not taken into account. Nevertheless, when the integration

is made near the focal point, where the phase of a Gaussian beam is con-
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stant in the plane perpendicular to the direction of propagation, and when

the pattern is close to a Gaussian, this estimation is quite good.

In summary by evaluating the "reflected" fields Ed, and Bd, Egs. (18)
and (19), on the grating surface and then the fields E© and B9, Egs. (20) and
(21), at the observation point, one can determine the Gaussian content C2
and the cross-polarization content XP for any grating. The evaluation of Ed
and Bd involves lengthy computations which take into account the exact
geometry of the grooves. They have been performed for the two types of
gratings under investigation: the plane grating and the elliptical grating.
The coefficients C2 and XP have been evaluated at different z' for these two

designs.

The code was bench-marked by replacing the grating with a
perfectly reflecting plane mirror. In the present formalism, this is equi-
valent to using Rte = 1 and Rrv = -1. We have verified numerically that the
reflected beam is Gaussian and fits exactly the pattern deduced from Egs.

(12) to (15). Energy conservation in the reflected beam was also checked .

III. COLD TEST RESULTS
A Experimental set-up

The cold test experimental set-up is shown on Fig. 1. The RF source
was a carcinotron (Prg £ 1 W, frRr = 90 to 120 GHz). The resonator was
composed of a spherical metallic mirror and a diffraction grating placed in
Littrow mount. A WR-10 rectangular waveguide was used to couple the RF

power into the cavity. The resonator was excited through a small hole
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(6 = 1.1 mm) drilled in the center of the spherical mirror. The dimensions
of the spherical mirror and the grating correspond to four spot-sizes wp,
the spot-size defined as the distance at which the electric field decreases
by a factor of 1/e, or, equivalently, to a Fresnel number of 2. With this
design, the spillover losses are small (< 0.1%): all energy lost by the resona-
tor is concentrated in the zeroth order of the grating, and the distortion
induced by the finite size of the grating is negligible. An experiment with
different grating sizes (L/wm = 7,6,5,4 where L is the grating size) has con-
firmed the latter assertion. Neglecting the ohmic and spillover losses, the
zeroth order grating efficiency eg is then directly related to the cavity qua-
lity factor Q and the two-way loss T 15 by:
~4rD 4zD S0

QA A o (27)

The full width at half maxium 8w of the resonance curve gives the two way

loss T.

The output pattern of the microwave beam was recorded by a
Schottky diode mounted on an XY table, allowing scans over a 10x10 cm?2
area. Measurements at larger distances were performed by placing the de-
tector on a circular optical rail. The dynamic range of detection was about
30 dB.

The Gaussian content in power, C2, and the cross-polarization con-
tent, XP, of the diffracted beam were computed from formulae (23) and
(24). w' was taken as the theoretical value of the beam waist. No adjustment
was performed to optimize the value of C2. The detector antenna was a
standard WR-10 rectangular horn, sensitive to one electric field

polarization direction (either x' or y') of the electric field only. A rotation of
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90° of the horn was performed to record the cross-polarized signal Sy. The
crosstalk of the system (i.e. the ratio Sy'/Sy' corresponding to the case of an
electric field which is linearly polarized in the x' direction) was measured
using a Gaussian horn as a source of the electromagnetic wave, The
crosstalk was measured to be less than the values measured with the

grating (-20 dB to -13 dB).

The output beam was also coupled into a 2 m HE;; corrugated
waveguide. The guide diameter was 2.5 inches and it was made of copper
with an NiP coating to damp higher order modes. The transmission band-
width of the guide extended from 90 GHz to 190 GHz.

Three sets of experiments were performed, using a plane grating
with periodic straight grooves, a plane grating with curvilinear grooves and
finally an ellipsoidal grating with curvilinear grooves. The parameters of the
different resonators are summarized in Table I. With the exception of the
plane grating with straigth grooves, the resonator and grating parameters

were chosen to meet the requirements of actual Q.0.G.

In the millimeter wavelength range, the machining of the gratings is
difficult. In order to simplify the manufacture, a point source approximation
was performed. In the case of a plane grating, the curvilinear grooves thus
become concentric circles with varying spacing d and depth h. A computer-
controlled lathe was used for the machining. For the ellipsoidal gratings a
lathe or a milling could also be used since, under the point source approxi-
mation, the grooves are circles centered on the main axis of the ellipsoid.
Note that the validity of the point source approximation requires that the
distance D between the grating and the spherical mirror of the resonator is
larger than four times the Rayleigh length zr (Eq. 10).
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B Plane periodic grating with straight grooves

To verify the validity of the electromagnetic theory of gratings in the
case of a finite-extent grating, we considered first the plane periodic
grating as a coupler for a resonator. As mentioned in Sec. II, the resonator
beam waist wq is located on the grating and hence wy, and wg are equal

(first column of Table I).

The squares on Fig. 8 represent the two-way loss T of the TEMgg
modes as a function of frequency. The incidence angle was optimized for
each frequency in order to satisfy the Littrow condition. A good agreement
was found between theory (solid line) and experiment. To study the in-
fluence of the finite size of the incident wave, we have changed the radius
of curvature R. of the spherical mirror and the mirror spacing D to reduce
the spot-size on the grating. The triangles on Fig. 8 then represent the two-
way loss T of the TEMpg modes in the case where kwg is decreased from
35.2 to 18.9 by changing D from 80.5 mm to 180 mm and R; from
1160 mm to 234 mm. In these conditions, the spot-size on the grating is
too small compared to the grating periodicity d and the assumption of
plane waves of infinite extent fails. The zeroth order efficiency differs
slightly from the theoretical prediction. It has been shown by Wirgin and
Deleuill7 that a plane grating can be considered as infinite when the
number of grooves is larger than about 12. In our experiment, if we use
2 wn as the extent .of the wave, the corresponding number of grooves drops
from about 14 to 7, in agreement with the result of Wirgin and Deleuil.16
However, the inaccuracy in the determination of the zeroth order two-way
loss is small even at small values of wn. All of the gratings which have been

tested had kwyy, larger than 30 (Table I).
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An angular scan of the output was made at 120 cm from the grating.
As shown on Fig. 9, only one maximum was detected along the diffraction
angle. No higher diffraction order was observed. The two-dimensional ra-
diation output pattern (Fig. 10) was measured. The experimental curve was
fitted with a Gaussian: the 'Gaussian content C2 is larger than 99%. This
estimate, however, should be considered as an upper limit of C2, since we
were only able to measure the pattern over a dynamic range of 5 dB. This
limitation was due to the large spot size of the diverging beam at the obser-

vation point. The cross-polarization content was negligible.
C Plane grating with curvilinear grooves

Following the principle described in Sec. II, we designed a plane
grating keeping the beam waist at the center of the resonator. The Littrow
condition was satisfied along one line. The geometry of the grating can be
approximated by circular concentric grooves (Figs. 5). The diffracted beam
was divergent and an elliptical mirror was used to focus the beam into an
HE )] waveguide. The parameters of two such resonators are given in

Table 1.

Let us consider first the performance of resonator #1 (second
column of Table I). Figure 11(a) shows the pattern of a TEMgo mode mea-
sured at the input of an HE;; waveguide. The separation between the con-
tours of equal intensity is 3 dB. A comparison to the ideal Gaussian beam at
- this point (Fig. 11(b)) shows that the agreement is very good, and the
coupling factor C2 is higher than 98%. Figure 12 is a contour plot of the
cross-polarized signal. About 10% to 15% of the power was measured to be
cross-polarized. Taking into account the depolarization losses, the coupling
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factor C2, and the coupling factor! of the ideal Gaussian beam to the HE;;
mode, the overall efficiency was estimated to be 83%.

Figures 13(a) and 13(b) represent the contour plots of the field
radiated by the corrugated waveguide after 2 m of propagation, and of the
ideal radiated Gaussian beam. The measurement was taken 1 m from the
waveguide aperture. Here again the agreement between theory and experi-
ment is very good and the Gaussian content C2 in the original polarization is
99%.

Resonator #2 (third column of Table I) was designed to fit into" the
cold cross-bore of a compact Q.0.G.:17 the angle of incidence was chosen to
avoid the excitation region of the second harmonic and the resonator para- .
meters were selected so that the whole system including the matching
optics (an elliptic mirror) could be inserted into the superconducting
magnet. The measured Gaussian content C2 and the cross-polarization XP
are 90% and 7% respectively: the computed coupling efficiency to an HE1;
waveguide is therefore about 82% = .90 x .93. We have also verified
experimentally that there was no resonance at the second harmonic (
Frequency around 180 GHz). Great care was exercized to insure that this
observation did not result from a poor coupling from the source to the

resonator at 180 GHz.
D. Ellipsoidal grating

Using the design principles outlined in Sec. II, we have found that if
the grating support is ellipsoidal, the grooves are only slightly curved com-
pared to those of the plane gratings (Figs. 5 and 6), and thus depolarization
associated with the TE-TM incidence should be reduced (cf. Sec. IV).
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Moreover, the need for matching optics can be avoided. To simplify the
machining of the grating, the Littrow condition is only met on one line per-

pendicular to the grooves.

The parameters of the ellipsoid were chosen such that the
diffracted beam has the optimal beam waist for coupling into the HE;
corrugated waveguide: the magnification w;/wg, was 2.19 (Table I). The
distances R; and Rz from the focal points of the ellipsoid to the point of
incidence correspond respectively to the radii of curvature of the resonator
mode and of the diffracted beam at the point of incidence on the grating in

order to minimize the coma aberration.18

Figure 14(a) shows the output pattern of the grating resonator for a
TEMgo mode at 92.4 GHz, measured at the focal point. The lines of equal
intensity are separated by 2 dB. The Gaussian content C2 is 98.6%. The
-8.68 dB line correponds to a waist kw;=39.67, which is very close to the
ideal value kw) = 39.48. The cross-polarized pattern is shown in Fig. 15(a),
where the lines are separated by 1 dB. The amount of cross-polarized signal
XP is 2.9%. Taking into account the coupling factor to the HE;; mode of a
corrugated waveguide,l the global coupling factor from the output into an

HE 11 waveguide is estimated to be 94%.

In the framework of Q.0. gyrotron development an important issue
is the mode competition. Figure 16 represents the two-way loss T of the
TEMgoo modes as a function of the frequency for two fixed angles of inci-
dence 6, 8 = 28° and 27.5° respectively. For a given angle of incidence 6,
only a few modes have the designed two-way loss T. For the other adjacent
modes, the Littrow condition is not as well satisfied as for the central one

and, even though they were still resonant modes, the resonator behaved as



if it were misaligned. A slight tilt of the grating had the effect of tuning the
frequency of the mode which had the highest quality factor Q. The mini-
mum two-way loss for the curves of Fig. 16 are shown to be unequal, in
agreement with theory (Fig. 2(a)). This is an important difference between
this type of resonator and conventional resonators for which the quality fac-
tor of the longitudinal modes are almost constant within the instability
bandwidth (about 3%) of the gyrotron instability. It can be expected that
the mode competition in a Q.0.G. would be strongly affected by the
frequency dependence of the resonator two-way loss T (or equivalently the

quality factor Q) of the longitudinal modes.

Transverse modes could also be excited in the resonator. They did
not possess a cylindrical symmetry but rather a rectangular one due to the
grating shape and the groove distribution on the grating. The observed
pattern was similar to the one of the TEMps mode. The two-way loss T of
these high order transverse modes were larger than that of the TEMgg
mode. The increase of T is due to the increase in the diffractive loss of
higher order modes for a given Fresnel number. The diffractive properties
of the grating do not depend on the incident TEMpn mode, since the ex-
pression for the radius of curvature R of the wavefront is the same for all

modes.

IV. DISCUSSION

A comparison of the plane with curvilinear grooves and the elliptical
grating shows that the latter exhibits the best performance: the Gaussian
content C2 is greater and the amount of cross-polarization XP is smaller.

Table II gives a summary of the results for the two types of gratings which
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have comparable kwgo and g-parameters (third and fourth columns of
Table I). Preference was therefore given to the elliptical grating for the hot

test which is under preparation.

For both types of gratings designed relevant to the Q.0.G., the power
in the cross-polarization cannot be neglected; XP was about 6% to 12% for
the plane grating with curvilinear grooves and 3% for the ellipsoidal grat-
ing. In the latter case, both the distortion and cross-polarization generated
by a smooth ellipsoidal support have been estimated and are negligible.
Their magnitudes can be estimated at first order in (wp,/f)2 where wp, is
the spot size on the grating support and f is the focal length of the ellip-

soid:18
Distortion loss = (1- C2) = %(Eﬁ}_n_)z tan2Zq (28)
Cross-polarization loss = XP = (W—;n) 2 tan20 (29)

where a is the angle of incidence on the ellipsoid. In our case a is equal to

8. The focal length f of the ellipsoid is defined as:
T (30)
where R; and Rg are the distances from the foci to the point of incidence.
In the present case, wn/f is 0.130 and the losses due to distortion

and cross-polarization are respectively 0.12% and 0.06%. They are negli-
gible compared to the measured values of (1 - C2) = 2% and XP = 6%.
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The observed cross-polarization is due to the non-pure TE and TM
incidence as well as to the variation A8 of the angle of incidence on the
grating was 3° (1°) for the plane ellipsoidal one grating. To verify these
assumptions, we computed the cross-polarization and distortion of a
Gaussian beam incident on a grating using the theory outlined in Sec. IIB.
The comparison was performed for the two gratings of the third and fourth

columns of Table I.

The computed correct polarization power contour plots are given for
the elliptical and plane gratings in Figs. 14(b) and 17(b). For the elliptical
grating the distance z' = 230 mm corresponds to the minimum waist for
the zeroth order diffracted beam. In the case of the plane grating, the
patterns were computed at the same location (z' = 110 mm) where the
measurements were performed. The lines are equi-power lines separated
by -2 dB. The incident Gaussian beam is only weakly distorted in the case of
an elliptical grating: the Gaussian content C2 at the beam waist is as high as
98%. Note that C2 is computed using a value of w equal to the theoretically
predicted value and we did not optimize C2 by varying w. On the contrary,
the plane grating introduces much larger distortion on the zeroth order
diffracted beam (C2 ~90%). Similarly, the computed cross-polarization
content XP (Figs. 15(b) and 18(b)) is larger in the case of a plane grating
than in the case of the elliptical grating. It is interesting to point out that
the cross-polarization contour corresponds to a TEMgp; mode (azimuthally
asymmetric mode). For the experimentally-measured case of the plane
grating (Fig. 18(a), the diffracted beam is divergent and the amount of
power was insufficent to perform a precise measurement of the cross
polarization content XP. To get an estimate of XP, we added an elliptical
mirror to focus the beam into a HE;; waveguide, thus increasing the power

level. The distortion of the pattern in Fig. 17 is due to the very strong
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curvature of the grooves on the corresponding side of the plane grating. In
Table II, we reported the measured and computed values of C2 and XP. An

excellent agreement was found between theory and experiment.

An elliptical grating yields both less distortion and less cross-polari-
zation for the zeroth order diffraction of a Gaussian beam because of the
geometry of the groove. The grooves of the elliptical grating are much more
"straight" than the ones of the plane grating. Thus the incident wave polari-
zation remains mainly a TM mode over the entire surface of the grating and
the diffracted beam suffers much less distortion and cross-polarization due
to the generation of the TE mode. The same argument can be used to ex-
plain the difference in cross-polarization between the two plane gratings #1
and #2. As indictated in Table I, the difference between Rrg and Rpy is
much less in the case of grating #2 than in grating #1. The two polarizations
are therefore reflected with about the same reflection coefficient, and less

cross-polarization is generated.

It is important to point out that both numerically and experimentally
we consider only the quantities of C2 and XP, which do not include the
phase distribution of the diffracted wave. A good beam quality at a given
location does not require that this property to be conserved along its pro-
pagation path and the pattern can be deformed by astigmatism. In prin-
ciple, the spatial phase distribution should also be plotted. However, from
an experimental point of view, such a measurement, while in principle fea-
sible, is a complex one. Instead, we have followed the beam pattern along
the axis z' both in the numerical calculations and in the experiment. The
numerical results are presented on Fig. 19 for an elliptical grating. We note

that the beam quality does not vary as it propagates. The Gaussian content



27

C2 remains constant, showing that the astigmatism of the diffracted beam is
negligible. A similar observation was found during the cold test.

IV. CONCLUSIONS

We have presented measurements and an analysis of the distortion
and cross-polarization of a Gaussian beam which is diffracted in zeroth
order by a grating mounted in a -1 Littrow arrangement. The grating geo-
metry is designed for output coupling from (or input coupling to) a Fabry-
Pérot resonator. It was found experimentally that an elliptical grating pro-
vides the best results, in agreement with numerical simulations.
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Parameters Plane Plane Plane ElL
grating grating grating grating
with with with with
straight curvilinear | curvilinear | curvilinear
grooves grooves grooves grooves

#1 #2

Angle of incidence 0 36.87° 45° 28° 28°

Groove depth h/d 0.30 0.36 0.38 0.38

Mirror separation D 80.5 mm 338 mm 216 mm 400 mm

Diameter of spherical 140 mm 84 mm 70 mm 100 mm

mirror

Curvature radius of 1160 mm 200 mm 140 mm 235 mm

spherical mirror Re

Beam waist kwg 35.2 19.3 15 18

Spot-size on the 35.2 47.9 31.6 35.6

grating kwpn,

Polarization ™™ ™ ™™ ™™

Zeroth order efficiency 10% 2% 10% 10%

RtMm

Zeroth order efficiency 7% 80% 27% 27%

RTE

Fresnel number N 20.3 2. 1.75 1.92

Resonator parameter g 0.93 -7 -.55 -7

Focal length f of the - - - 186 mm

grating

Wm/f - - - 0.130

Design frequency 100 GHz 120 GHz 92.4GHz 92.4 GHz

Output beam waist kw; 42.72 51.27 39.48 39.48

Table 1: Parameters of the different resonators
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Plane grating #2 Elliptical grating

Theory Exp. Theory Exp.
Gaussian content C2 90% 90% 98% 99%
Cross-Polarisation content XP | 6% (6.9%) |0.6% 3%

TABLE II - Comparison between the computed properties of the grating

and the measured ones. The cross-polarization content in the case of the

plane grating was measured in a set-up which uses an additional focusing

elliptical mirror. The parameters of the grating are given in the third and
fourth column of Table I
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FIGURE CAPTIONS

FIG. 1. Geometry of the grating, resonator and the electromagnetic beam.
The experimental set-up and the differenrt coordinate systems are also

shown.

FIG2  Contours of efficiency for the -1 order at the fundamental versus
the angle of incidence 6 and the normalized groove depth h/d, for a
sinusoidal grating in a Littrow mount: case (a) TE and case (b) TM.
Theta is the angle of incidence 6, h and d are the groove depth and the
grating period respectively.

FIG. 3. Geometry of grating. The lines ¢ = constant are the phase fronts of

the incident wave.

Fig. 4  Contours of efficiency for the -2 order at the second harmonic ver-
sus the angle of incidence 8 and the normalized groove depth h/d, for
a sinusoidal grating in a Littrow mount: case (a) TE, case (b) TM.

FIG5. A plane grating with curved grooves. The lines on Fig. 5(a)
represent the highest point of the grooves. The grating is viewed from
above. A picture of an actual grating is shown in Fig. 5(b). The groove
shape is sinusoidal.

FIG.6. An elliptical grating. The lines on Fig. 6(a) represent the highest
point of the grooves. The grating is viewed from above. A picture of an
actual grating is shown in Fig. 6(b). The groove shape is sinusoidal.



FIG. 7. Local coordinate system on the grating. The incident E! and Bf

fields are neither pure TE nor TM modes.

FIG.8 Two-way loss T as a function of frequency for a plane grating with

straight grooves. Squares: kwn, = 35.6, Triangles: kwp, = 18.9.

FIG.9 Angular pattern of the output from a resonator with a plane

FIG.

FIG.

FIG.

FIG.

grating. The angle value of O corresponds to the zeroth order

diffraction angle.

10 RF power contour plot of a Gaussian beam diffracted by a plane
grating with straight grooves. The cross gives the location of the maxi-

mum and the contour lines are separated by 1 dB.

11 Pattern of a TEMgp mode measured at the entrance of the corru-
gated waveguide. The polarization is the correct one. The grating is
plane with curvilinear grooves. Contours are separated by 3 dB. (a)

Power contour plot (b) Theoretical contour plot of the optimal

Gaussian beam.

12 Power contour plot of the cross-polarized signal of Fig. 11(a). The

grating is plane with curvilinear grooves. The lines are separated by
1dB.

13 Power contour plot after 2 m of propagation in an HEj waveguide.
The detector is placed at 1 m from the aperture. The lines are sepa-

rated by 2 dB. (a) measured contours, (b) theoretical contours.



FIG.

FIG.

FIG.

FIG.

FIG.

FIG.

14 Correct polarization power contour plot of a TEMpo mode mea-
sured at the focal point. The grating is elliptical. The lines of equal
intensity are separated by 2 dB. (a) and (b) correspond to the measured

and calculated pattern respectively.

15 Cross-polarization power contour plot of a TEMgo mode measured
at the focal point. The grating is elliptical. (a) and (b) correspond to
the measured and calculated pattern respectively. The lines of equal

intensity are separated by 1 dB.

16 Two-way loss T of the TEMgp modes as a function of frequency for
the ellipsoidal grating. Angle of incidence: circles: 6 = 28°, triangles:
0 =27°.

17 Correct polarization power contour plot of the RF diffracted from
a plane grating. The lines of equal intensity are separated by 2 dB. (a)
and (b) correspond to the measured and calculated pattern respecti-

vely.

18 Cross-polarization power contour plot from a plane grating. The
lines of equal intensity are separated by 1 dB. (a) and (b) correspond to
the measured and calculated pattern respectively. The measured signal
is too weak to allow a precise determination of the content in the

cross-polarization XP.

19 Calculated variation of the spot size w' and the gaussian content
along the path of the output beam. The solid line corresponds to the

variation of the spot size w' and the dashed line to the gaussian content
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C2. The calculated spot size corresponds exactly to the one predicted
by Eq. (5).
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