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I. INTRODUCTION

The construction of strongly shaped and elongated tokamaks is to a large extent
motivated by the theoretical prediction that the beta-limit is proportional to the plasma current
[1]. Experimental results confirm the advantageous effects of increased elongation (B = 11%
was reached with an elongation K = 2.34 in DIII-D [2]). The understanding of beta and other
operational limits at very high elongation (x > 2.5) is, however, very limited. Notably, it is not
clear whether the beta limit can be further increased by an increase in k or by other types of
shaping, whether vertical stability limits the achievable elongation and whether control of
current and pressure profiles is necessary.

We report on an ideal MHD stability study in progress with the aim of clarifying the
operational limits imposed by n = 0 (vertical), 1 (kink) and oo (ballooning) stability for
tokamaks with elongation from 2 to 3, in particular, for shapes accessible to the TCV tokamak
in Lausanne. The shape of the plasma-vacuum boundary is prescribed as:

R/a = A + cos(0 + & sin 6 + A sin 26) , Z/a=xsinO .

The parameter A modifies the shape of the tips: A > 0 makes the tips broader. We refer to
configurations with § = 0.5 and A = 0.2 as "TCV dee". For all results presented here, the
aspect ratio is A = 3.7. Generally, the current profiles are prescribed, and unless otherwise
stated, qq is held fixed at 1.05. The pressure profiles are either prescribed or optimized at the
ballooning limit (in the first stability region). Critical betas are then computed forn=0and n =
1 stability with the pressure profile a scaled version of that which gives the ballooning limit.
The n = 0 modes are calculated for a resistive wall with the shape of the TCV vacuum vessel.
We assume that the n = 0 mode can be stabilized by active feedback if the growth time in the
absence of feedback is longer than 0.5 ms. The n = 1 limits do not take into account wall
stabilization. The equilibria, n = 0 and n = 1 modes are computed with the CHEASE [3],
NOVA-W [4] and MARS [5] codes, respectively.

II. CURRENT AND INDUCTANCE LIMITS AT ZERO PRESSURE

It is well known that the circular current limit q,, 2 2 does not apply for sufficiently
noncircular equilibria (including those with X-points). Figure 1 shows the limit in normalized
current Iy = Hgly/aBy, set by n = 1 stability at zero pressure, as a function of g for different
shapes (6 =0.25,0.5and A =0, 0. 25) and elongations K = 2.5 (1a) and x = 3.0 (1b). Here
we use a simple current profile: Rjg is a quadratlc polynomial in poloidal flux y and vanishes
linearly at the plasma edge. At e? ongation 2.5, the current limit corresponds to Qy = 2 for
qp<1l.2and Qy = 3for 1.2 <qg<2. For elongauon 3, the limit is no longer related to integer
gy but is a smooth function of qg. The maximum current increases with 8 and decreases with
A. It is remarkably constant when expressed in terms of qgs, qg5 = 3.3 for qq between 1 and 2
and A = 0. We note that the current limits are similar for elongations 2.5 and 3. In fact, for
qo < 1.2, the limit is even shghtly higher for x = 2.5.

While n =1 stability is favored by high gy, or a large internal inductance, the n = 0
(vertical) stability is favored by a low 1nductance To illustrate this, we show in Fig. 2 the
limits in internal inductance for n = 1 and n = 0 as functions of elongation for a TCV dee and
the same type of current profile as in Fig. 1. While these profiles give a large operating
window where bothn =0 and 1 are stable for k = 2, the window is considerably reduced at



K = 2.5 and nonexistent at x = 3. We find that at zero beta, the n = 0 stability is almost entirely
determined by the internal inductance, while the n = 1 stability is sensitive to the details of the
current profile. We have found advantageous results for a class of current profiles with
"shoulders" in the outer region of the plasma. An example of such a current profile is shown in
Fig. 3a. For qg = 1.05, this profile remains n = 1 stable for 4 as low as 0.43, while the
"standard" profile shown in Fig. 3b gives an §-limit of about 0.54. At x = 3 and zero pressure,
n = 0 stability requires £ < 0.5, which can be satisfied for the profile with shoulders but not by
the standard profile. (Another way to ensure both n =0 and n = 1 stability is to raise gg. This,
however, reduces n = 1 the current limit, which is not the case for the profile in Fig. 3a.)
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FIGURE 1. Current limit for then = 1 external kink and different shapes. Circles - 6 = 0.25,
triangles - 8 = 0.5; open symbols - A = 0, filled symbols - A = 0.25. (a) x=2.5 and (b) x = 3.
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FIGURE 2. Limitin §for n=0and 1.
vs elongation in TCV dee with a simple
current profile and qp = 1.05.

FIGURE 3. (a) Current profile with shoulders and
low inductance limit for n = 1. (b) Simple current
profile used to generate Fig. 2.

III. BETA LIMITS AT HIGH ELONGATION

ITI.1 Kink-ballooning limit

Here we present the beta limits imposed by kink and ballooning modes for different
shapes (k =2, 2.5and 3; 6 = 0.2, 0.5 and 0.8; A = 0, and 0.2). In this study, the surface
averaged toroidal current density I* has been taken as flat in the central region, matched by a
cubic polynomial in W in the outer region with I* = dI*/dy = 0 at the edge and I* and dI*/dy
everywhere continuous. These profiles give rather high internal inductance, which is favorable
for n = 1 stability (but makes the n = 0 unstable at high elongation). The normalized current



was fixed at 2.96 for x = 2.5 and 3, and Iy = 2.22 for x = 2.

Figure 4 shows the beta limits imposed by kink and ballooning stability as functions of
elongation for different § and A. We see that the effects of 8 and A compensate each other and
the highest beta limits are obtained for highly triangular plasmas, 8 large and A small.
Furthermore, at high triangularity, 8 = 0.5 or 0.8, the limit takes the largest values at elongation
K = 2.5. The best result obtained here is for ¥ = 2.5, 8 = 0.8 and A = 0, where the limit is
8.3%. It may be noted that this shape is close to that of the DIII-D discharge with record 3 of
11 % [2]. With correction for the inverse dependence on aspect ratio, p = 8.3 % at A = 3.7
corresponds to B = 10.4 % at A = 2.96, which is close to the experimental result.
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FIGURE 4. Beta limits for kink and ballooning stability and different plasma shapes. Circles -
6= 0.2, squares - 6= 0.5 and triangles - § = 0.8. Open symbols - A = 0, filled - A = 0.2.

II1.2 Limits imposed by vertical stability

As discussed in Sec. II, an important issue at high elongation is the vertical stability
which requires a low internal inductance. Previous studies indicate that the highest beta limits
both for kink [2] and ballooning [6] occur for high internal inductance. To examine the effect
of the n = 0O stability on the beta limits for TCV, we have considered current profiles with
different internal inductance in a TCV dee with k¥ = 3. Figure 5 shows the beta limits for
ballooning (dotted), n = 1 (solid) and n = 0 (dashed curves) vs. the normalized current for three
different sequences of current profiles. In order of decreasing 4 at fixed I, these are:
1 - standard profile without shoulders and two profiles with 2 - weak and 3 - large shoulders.
Figure 6 shows the internal inductance as a function of Iy at the n = 1 limit for these equilibria.

The n = 0 stability is primarily dependent on the internal inductance. Figure 5 shows
that pressure has a strong stabilizing effect on the n = 0 mode. The limit in internal inductance
increases by about 0.1 when B is increased from 0 to 6 % for these equilibria. (Note that the
n = 0 mode is stable for B > B.i(In). For the sequence (1) of equilibria with the highest
inductance, the n = 0 mode requires B > 10 % for stabilization, which is clearly higher than the
n = 1 limit, so this sequence is always unstable.) The finite 3 stabilization appears to be due to
an outward shift of the maximum in the current density which redistributes the eddy currents in
the wall towards the outboard side. This is strongly stabilizing. Thus, finite pressure widens
the class of current profiles stable to both n = 0 and 1 at high elongation. We find that the
pressure effect on n = 0 stability is similar at x = 2.5.

The n = 1 beta-limit is higher for the cases of higher inductance (curve 1), in agreement
with the results of [2]. The two other cases, medium and low £ (curves 2 and 3) give almost
the same values with a maximum of about 4 %. It is clear from Fig. 5 that the equilibrium
sequence with the lowest inductance is stable over a fairly large range of plasma current, while



the sequence of intermediate inductance gives a smaller operational window and that of high
inductance is always unstable. Figure 5 shows that the ballooning limit is almost independent
of the inductance which is different from results for lower elongation reported in [6]. We
conclude from Fig. 5 that at x = 3, the beta limit is set entirely by the n = 0 and n = 1 modes,
the ballooning limit being always higher.
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FIGURE 5. Beta limits for ballooning (dotted), FIGURE 6. Internal inductance
n =0 (dashed) and n = 1 (solid) vs. normalized vs. normalized plasma current
current for aTCVdee(x=3,A=3.7)andthe Jor the same equilibrium
- equilibrium sequences described in Sec. I11.2. sequences as in Figure 5.

IV. CONCLUSION
In conclusion, the beta limit of highly elongated tokamaks increases with triangularity.
As a function of elongation, the limit shows a maximum for x = 2.5. The n = 1 and ballooning
limits fall weakly at higher elongation. However, vertical stability for high elongation requires
operation at low inductance and this causes a more significant decrease of the n = 1 beta limit.
At high elongation, the beta limit is set entirely by n = 0 and n = 1 stability. Finite pressure is
clearly favorable for vertical stability at high elongation.
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We introduce the energy functional

W[ [ [ el + ) ®

and demonstrate that its minimisation can be used to determine three dimensional
(3D) magnetohydrodynamic (MHD) equilibria with anisotropic pressure. We express
the parallel pressure as

]I‘ 1+P(3 B)l"
(1+p(s,B))

where M(s) is the plasma mass function, ®(s) is the toroidal magnetic flux function,
I’ is the adiabatic index and p(s, B) is the function that controls the anisotropy in the
pressure. We constrain the poloidal magnetic flux function ¥ to be a flux surface quan-
tity, thus the magnetic flux surfaces remain nested. We introduce a coordinate system
(s, u,v) where s labels the magnetic flux surfaces, u is the periodic poloidal angle vari-
able and v is the geometric toroidal angle. We then vary W with respect to an artificial
time parameter ¢ in such a manner that the plasma mass function, the magnetic flux
functions and the coordinates s, u and v remain invariant. The energy functional ac-
quires the form

pi(s, B) = M(s)[2'(s) (2)

= -///dsdudvFR ///dsdudvFZ
-—///dsdudvF)\—— (3)

ORO8Z O8Z OR
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The distance from the major axis is R and the distance from the horizontal midplane
is Z. The function X is a periodic stream function that iteratively renormalises the
poloidal angle to minimise the spectral width that is required to describe the MHD
equilibrium state [1]. The perpendicular pressure is p;. The last term constitutes the
deformation of the plasma-vacuum interface boundary that vanishes by definition for
fixed boundary calculations. The coefficients Fr and Fz correspond to the cylindrical

MHD force components Fp = \/gRVoxVZ.F and Fz = ,/gRVRxVuv.F, respectively,

where



F=-V(p+ -2%2;) +(B - V)(¢B). (4)

These can be written as

3 . 8 .
Frp=3- [0v/GB*(B- VR)| + 5 [cV/§B*(B - VR)|
9. 0Z B? 8 02 B?

—5- RE(pJ_ + 270)] + ég[R-a—J(pl + 5;-0-)] (5)
B2 2 v\2
+ 3 [(pr + ) - BB,

0 0
Fz = 5&-[0\@3“(3 VZ)| + 7 lovaB*(B - VZ)]
0 r,.0R B? 0 1,0R B?
+%[R—5S-(PJ.+’2‘£) —E[ %(IJJ_“F%)], (6)

where B* and B" are the poloidal and toroidal components of the magnetic field in the
contravariant representation. The effective plasma current density field is defined as K
= Vx(oB), where ¢ > 0 is the firehose stability parameter that characterises plasmas
with anisotropic pressure [2]. The vanishing of F) corresponds to the condition that
K - Vs = 0, which implies that the effective current density lines lie on flux surfaces.
To diagnose the quality and accuracy of a 3D equilibrium state computed through the
simultaneous minimisations of Fgr, Fz and F), it is useful to evaluate the flux surface
average of the radial MHD force balance relation given by

_9Pl vo 4K xB. (1)
0s |5

The vanishing of this equation constitutes a form of the 3D Grad-Schliiter-Shafranov
equation.

F =

This formulation of the 3D anisotropic pressure MHD equilibrium problem lends it-
self to an easy adaptation of the techniques that resulted in the development of the
preconditioned VMEC code for scalar pressure equilibria [3]. The internal MHD forces
and the preconditioning algorithm that is designed to improve the convergence proper-
ties of the steepest descent energy minimisation method utilised in VMEC have been
appropriately modified to treat the condition p # pi. A more detailed description of
the derivation will appear elsewhere [4].

As an application, we consider a fixed boundary calculation in an ATF torsatron con-
figuration [5]. To model an energetic trapped particle layer induced by radio frequency
heating or neutral beam injection, we choose the factor p(s, B) as

20,5 = (o] Pt ®

with ps(s) = p.s®(1 — s)?. The hot particle pressure thus vanishes both at the origin



and at the edge. The radial variable s is proportional to the volume enclosed. The
plasma mass function required to compute the thermal component is chosen as M(s)
= M(0)(1 - s)? and the effective toroidal plasma current is prescribed to vanish within
each flux surface. We consider two cases in which the peak § value due to the energetic
species remains fixed at 4.83%. The perpendicular (parallel) pressure component con-
tributes 2/3 (1/3) to the 8 values we quote here. Choosing M(0) = 0.4 and p. = 120,
we obtain an equilibrium in which the total 8 = 0.55%, the thermal # = 0.16% and the
perpendicular hot particle 8 = 0.55%. Choosing M(0) = 3.67 and p, = 12, we obtain an
equilibrium in which the total 8 = 1.79%, the thermal § = 1.52% and the perpendicular
hot particle 8 = 0.38%. The rotational transform profiles for these cases are shown in
Fig. 1 and the differential volume dV/d® profiles are shown in Fig. 2. In the low 3 case,
the hot particle pressure induces a weak magnetic well region in the middle third of the
plasma volume. At moderate 3, the thermal pressure gradient digs a magnetic well in
the centre of the plasma.
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Figure 1: The rotational transform profile in an ATF configuration for cases with total 8 = 1.79% and
total § = 0.55% with fixed peak hot 8 = 4.83%.
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Figure 2: The differential volume profile in an ATF configuration for cases with total § = 1.79% and
total 8 = 0.55% with fixed peak hot 3 = 4.83%.
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The equations that govern the global and local magnetohydrodynamic (MHD) stabil-
ity properties of three dimensional (3D) plasma confinement configurations constrained
to have nested magnetic flux surfaces with a noninteracting hot electron species are
presented. In the absence of hot particles, the model reduces to the ideal MHD limit.
Specific applications presented here will concentrate on the 10 field period LHD tor-
satron device and toroidal ripple effects in the JET Tokamak within the ideal MHD
model. Applications to problems in which an energetic species plays an important role
will be deferred to future work.

The energy principle within a plasma with a noninteracting hot electron current layer
can be written as [1,2]

§W, =%///d3x [c* +TpIV - ¢ - DIe - Vsf7] (1)

where the vector C corresponds to a modified perturbed magnetic field, the second term
describes the compressibility of the plasma, D constitutes the MHD instability driving
term, £ is the perturbed displacement vector and s is the radial variable the labels the
magnetic flux surfaces. We introduce a modified Boozer magnetic coordinate system [3]
(s,0,¢) applicable to plasmas with anisotropic pressure and expand the perturbation
as

. B x Vs J(s)
£ =g€’VixVe +1 5 + [¢,(3)0B277 u]B, (2)
where /g is the Jacobian, o is the firehose stability parameter of anisotropic plasmas
[4], ®(s) is the equilibrium toroidal magnetic flux function and J(s) is the effective
toroidal plasma current function determined from K = Vx(¢B). The components of
the perturbation are £* = £ - Vs, n and p. The perturbed magnetic energy contribution
is decomposed as \/gC? = /gC°C, + \/50909 + \/§C¢C¢, where the the components

in the contravariant representation are

VIct = iB.ve = [w'(s)%; + @’(s)%%] , ©

V3C° = 3 o )_3_5_': 1 oB2W"(s) + M + op’(s)¥'(s) (4)
T 36T Vs T om [Vs[? ? '

\/_C¢ _ _@_ _ (Dl(s)_a_e_s_ _ __!'__ |VO,BZQII(3) + M +o.p/(8)(b/(s)jl (5)
9c* = -3 s oB? V]2 '

The poloidal magnetic flux and effective current flux functions are denoted by ¥(s) and
I(s), respectively. The prime denotes a derivative with respect to s. The components of



in LHD are fully internal in nature, vanishing close to the plasma-vacuum interface even
when the conducting wall is placed at a great distance. The Mercier stability indicates a
first unstable domain bounded by 0.5% < 8 < 2.2%. A second Mercier unstable domain
that encompasses the region where the magnetic shear vanishes in this torsatron device
is triggered at B > 3.6%. The stable domain between the two unstable regions is not
actually fully stable. Mercier instability persists but only very locally about resonant
surfaces with rational rotational transform values within one period (¢, = 1/18, 1/17,
1/16, 1/15, etc). It could be argued, however, that local flattening of the pressure pro-
file about these surfaces would render stability without altering significantly the 8 value
that could be achieved. Localised ballooning modes become unstable at 8 = 1.5% and
remain unstable to # > 5% without any indication of second stability. The dominant
ballooning structures are localised about magnetic field lines that cross the outer edge
of the prolate up-down symmetric cross section. The ballooning modes on the more
conventional field lines that cross the outer edge of the oblate up-down symmetric cross
section become unstable when 8 > 3.7% and impose the inner stability boundary at
- B > 4% in Fig. 1. The large variation of ballooning stability from field line to field
line calls into question the applicability of ballooning stability predictions based on the
stellarator expansion method. The poloidal field design in the LHD device permits a
significant enhancement of the magnetic well through an outward shift of the magnetic
axis. The magnetic well can play a big impact in the stabilisation of localised pressure
driven modes to improve the predictions of the 3D ideal MHD model that we present
here. On the other hand, the outward axis shift deteriorates particle confinement and
erodes the quality of the outer magnetic flux surfaces. The flexibility of the LHD de-
vice should allow a quantitative experimental evaluation ot the tradeoff between MHD
stability versus particle confinement and flux surface fragility to determine the optimal
operational conditions in torsatrons.

The effects of toroidal field ripple on ideal MHD ballooning stability in JET are
investigated with a simplified model in which the toroidal coils are infinitely elliptical
[8]. Selfconsistent 3D MHD equilibria are calculated with the VMEC code [9]. The
pressure profile is bell-shaped to model the H-mode and the toroidal current profile is
prescribed as rounded box-like in shape. The magnitude of the ripple depends on the
coil discreteness and on the gap between the coils and the plasma. The critical S value
as a function of the inverse number of coils is shown in Fig. 2 for cases in which the
plasma-coil gap is 20, 30, 40 and 50 cm. With 32 coils, the 8 value is virtually unaltered
when the coil plasma distance exceeds 30 ¢m. With 16 coils, the critical 8 degrades
when the gap is smaller than 40 cm.
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Figure 1: The MHD stability boundaries in the LED torsatron imposed by global lc->;v n modes, Mercier
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Introduction

The problem of wave induced stochasticity in plasmas is being studied extensively because
of its general interest in chaotic dynamics and of its possible direct consequences in space and
laboratory plasmas, such as anomalous transport and non-linear heating and particle
acceleration [1].

Several theoretical investigations have been performed in the recent past, based mainly on
hamiltonian single particle models, which predict the transition to stochasticity in terms of the
wave amplitude and spectrum [2]. The majority of these theories are non self-consistent, that s,
do not take into account possible mutual interactions between wave and particles. Self-
consistency characterizes actual experiments, in which non-linear wave-wave interactions, in
the case of several modes in the plasma, are also naturally present.

It has been shown theoretically and experimentally [3,4], that in a magnetized plasma a
wave propagating at a finite angle with respect to the B-field can generate chaos in particle
orbits and, consequently, fast ion heating.

The case of two (or more) waves propagating at different phase velocities is predicted to be
more efficient for the heating: the threshold amplitude for the occurrence of chaos should be
lower, due to a large number of resonances in phase space.

In our experiment we investigate the interaction between ions and two propagating
electrostatic modes in a Q-machine plasma.

In particular, our aim is to perform and integrate observations of the collective ion response
(wave characteristics), of ion kinetic features (modification of the distribution functions, time
scale for heating) and of single particle orbit modifications (phase space transport).

Experimental set-up and diagnostics apparatus

The experiments are performed on the LMP barium Q-machine [5], a uniformly magnetized
plasma column characterized by ion and electron temperatures of the order of 0.2 eV and
densities in the range of 108-1010 cm-3, The maximum axial B-field is 0.3 T (f¢;=30 kHz).
Sheath acceleration at the hot plate causes a supersonic ion drift vp=~105 cm/s. Low degrees of
spatial and temporal variations and fluctuations can be achieved in current operation (e.g.
on/n<1%).

Electrostatic ion waves (f=f¢i) are launched by a capacitive antenna consisting of 4 rings
placed directly around the plasma column at variable relative distances and phase.

The diagnostic system is based on the technique of Laser Induced Fluorescence (LIF) [6],
which provides a direct measurement of ion distributions with good spatial and temporal
r?solution (the latter allows time resolved measurements of f(v) and synchronous detection for
fiv)).

LIF can be extended to an optical tagging method, based on the spin polarization of ground
state ions [7]: sets of test-ions can thus be created and followed in their evolution in order to
infer the nature of particle orbits. A schematic of the LMP machine, including the electrostatic
?ntenna and the geometry for the LIF laser beam injection and detection systems, is shown in

ig.1.
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Fig.1: LMP experimental arrangement

Results and discussion

The wave spectrum excited by the 4 ring antenna in the plasma at one frequency f
(fci<f<2fci) is composed in the parallel plane by two modes with two different phase velocities,
and in the perpendicular plane by the two branches (forward and backward) of the ESICW
dispersion relation [8]. In fig.2 we see the k)| spectrum at 25 kHz (f=1.1f;), as directly
evinced from the observed form of the first order perturbed distribution function. Two distinct
peaks are clearly visible, corresponding to the two phase velocities vg1, V2. (Ave=5 104
cm/s).

The difference Avy is such that on the parallel ion phase space one can consider, to a first
approximation, only primary resonances and neglect the multiple island structure introduced by
the non zero perpendicular wavenumber (natural cyclotron resonances should appear, spaced
by 2nfci; it is indeed their interaction which generates chaos in the one wave case).

The hamiltonian models predict therefore a transition to a stochastic regime when the wave
amplitude is such that the two resonances start to overlap. A stochasticity parameter can be
introduced: K = 2 (A11/2 + A31/2), where Aij=e¢i/m(Av¢)2 is the amplitude of the mode i
(i=1,2). K=1 is the threshold for the transition, in the frame of the single particle theory; in
macroscopic terms, K>1 should imply a fast ion heating,

In fig.3 we plot the parallel and perpendicular ion temperatures as functions of the
excitation amplitude. We notice that a threshold value exists, above which a si gnificant heating
occurs. A calibration of the wave amplitude through the ion dielectric response [9] allows us to
compare the observed threshold to the theoretical prediction for the experimental wave
parameters. K=1 corresponds to the shaded region on the amplitude axis of the graph. We sece
that, inside the error bar, mainly due to the wave amplitude calibration procedure, experiment
and single particle theory agree.



By pulsing the wave excitation generator, and observing the time resolved ion distribution
from the time t=0 (when the RF is started) onwards, an accurate estimation of the heating time
can be achieved. More specifically, by plotting the increase in the ion temperature (or mean
square ion velocity) vs. the time, if the dependence is linear, a direct estimation of the velocity
space diffusion coefficient can be obtained. This is shown in fig. 4, for the case of 25 kHz and
just above threshold. The resulting v-space diffusion coefficient is more than one order of
magnitude larger than the collisional coefficient.

The mechanism responsible for the heating, therefore, is independent of collisional
processes and can be attributed to a transition to chaos in particle trajectories. An additional
proof of this mechanism comes from the tag measurements, which evidentiate an exponential
separation in time of initially close ion orbits, both in velocity space and in real space.

At frequencies for which only one mode in parallel can be excited in the plasma, no heating
is observed, up to amplitudes where secular perturbations of the antenna and intrinsic non-
linearities (e.g. harmonic generation) become effective. The case of two waves is then
experimentally demonstrated to be more favorable in the achievement of chaos and stochastic
heating.

By further increasing the amplitude of the wave(s) well above threshold, another regime is
observed: heating no longer takes place, and no more than one mode seems to be excited in the
plasma. On the other hand, in the pulsed regime, by following time evolution further on after
the heating is reached, temperature is observed to decrease and eventually to return to its
unperturbed value (or even lower).

The two results can be interpreted as a manifestation of the feed-back action of the particles
on the waves. In fact, the ion orbits undergo a transition in their topology, from regular to
chaotic: the plasma oscillating fields, which are issued from collective motions of the charged
particles and therefore are derived explicitly from integration of the particle trajectories, are
necessarily modified. In particular, experimental observations close to the threshold for the
transition to the chaotic regime seem to indicate that of the two modes only one survives. The
conditions for the occurrence of chaos are then no longer satisfied, and the plasma tends to
relax to its unperturbed equilibrium.

Conclusions

Stochasticity in ion dynamics originated by the interaction between particles and two
electrostatic propagating plasma waves has been observed in a magnetized plasma. Optical
measurements at different scales, from the single particle to the macroscopic, allowed a
determination of the wave features, the kinetic ion response and the plasma heating mechanism.

Chaos appears to be limited by self-consistent effects. More results on these effects, as
well as the modification of ion transport in the presence of the two waves will be discussed at
the presentation.
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Introduction

Non-axisymmetric magnetic field perturbations generated, for example, by errors in the
alignment of the field coils are known to lead to reduced confinement in a tokamak,e.g.[1,2].
By inducing the formation of small, stationary, magnetic islands on all rational surfaces they
can enhance radial transport and under certain circumstances interact with MHD instabilities to
trigger the onset of locked modes[1,2] leading, in some cases, to a disruption of the plasma
discharge.

Given the stationary nature of the error field islands it is natural to consider whether they
can be reduced significantly by the viscous drag of a sheared flow resulting from a bulk rotation
of the plasma. In this paper, we examine this interaction by modelling the nonlinear growth
and saturation of force-reconnected magnetic islands driven by a corrugated boundary in a slab
plasma with an initially uniform flow. A systematic parameter study is made of the time
asymptotic steady state revealing a transition to a "suppressed state” as a function of the flow
velocity, which becomes discontinuous for sufficiently small viscosity. As such, a critical
velocity, Vc, is defined and its dependence on: corrugation amplitude, 8W (which is
proportional to the error field amplitude, 6B), viscosity, v, and resistivity, n = 1/S,( S is the
Lundquist no.), are delineated. Other parameters to be explored include the wall separation,
Xw, and the wavenumber of the perturbation, kp,

This study follows on from a preliminary numerical investigation[3,4] in which the flow
suppression mechanism was first demonstrated. From the nonlinear simulations in the present
study a simple intuitive model of the process based on the induced velocity shear,V' and the
resistive layer width, A, has been developed. This predicts a scaling for the critical velocity as:
V¢ o< 3B S-%5 v-2/3 in good agreement with numerically determined values of V¢ ,although the
scaling with viscosity diverges toward small v. The reasons for this divergence are discussed in
the light of changes occuring in the flow structure in the limits v>>n and v<<n.The scaling
does not appear to be predicted by an alternative, analytical treatment of the phenomenon[5].

Besides the flow suppression mechanism, a variety of fascinating nonlinear phenomena
were observed in different regions of the parameter space such as: flow amplified islands, flow
induced secondary reconnection and hysteresis. These are discussed in the last section.

To investigate the mechanism of mode-locking it is also necessary to include the
interaction of internally as well as externally driven reconnection processes in the presence of
flow. This is the subject of the next stage in this study although preliminary simulations with a
tearing unstable plasma have already demonstrated cases of full and partial mode-locking[4].

Numerical Model

The basic numerical model adopted is that of a 2-D, plane-slab plasma sandwiched
between two, perfectly-conducting walls (at x = +Xy) with periodic boundary conditions in the
y-direction (of periodicity length Lp). An approximately sinusoidal perturbation of the walls is
introduced along the y-direction to provide a selfconsistant source of field error. Details of this
can be found in ref.[3]. The initial equilibrium is B = Bo tanh(x), It has a line of field reversal
at x=0 along which reconnection can occur and is maintained by a y-directed electric field and a
non-uniform resistivity profile. To produce the plasma flow an initially uniform ExB drift is
driven in the y-direction by maintaining a potential diffence between the walls.

To follow the evolution of the plasma in response to the error field, the visco-resistive
MHD equations are integrated in time using a semi-implicit, spectral (in y)/ finite diffence (in
x)scheme. Since, for the moment, we are only interested in externally driven reconnection the
tearing instability is stabilized by reducing the wall separation to Xy=1, with Kp=0.35.



Flow Suppression Mechanism

In the absense of flow, the error field induces reconnection of the field lines to form the
usual magnetic island structure which generally extends well beyond the reconnection layer.
With flow, however, the strong ideal coupling of the field outside the reconnection layer
constrains the magnetic field lines to keep the same topology as the fluid flow and so tends to
obstruct the further development of the island. A narrow filamentary island is therfore formed
within the reconnection layer and dragged partially out of phase with the boundary corrugation
by the flow. Since further reconnection is blocked the driving energy of the error field is
diverted into shifting the flow out of the magnetic island. Once the flow is removed, however,
the island is nolonger topologically constrained and so recontinues its growth, pushing the flow
aside as it does. See fig.2(d). Viscous drag causes a finite velocity shear to build up to a
maximum around the separatrix of the island. Measurements of the maximum velocity shear,
V', over a ran%e of parameters show a clear scaling with viscosity and perturbation amplitude
as V'e< 3BV If we assume, for simplicity, that the flow is only removed from the region
of the suppressed island and that its width is equal to the reconnection layer width, Ay, then it
is clear that the lowest the flow velocny can fall is AV= 122AqV'. If the initial flow veloclty, V,
is greater than AV then the island is theoretically unable to proceed and so must remain
suppressed. Taking into account conservation of momentum, the critical initial velocity for
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transition to the unsuppressed state should therefore
be V¢ = 1/2A-,1V’(1 -1/2A4/Xv,) where the second term-

should be negligibly small at small re51st1v1ty From
linear theory we know that Ay o< $-2/5 so taking this
as well as the dependence found for the velocity shear
into account we arrive at the scaling: V¢ «< 8B v—2/3
S-2/5 where the correction due to momentum
conservation has been neglected.

Although the model is an over-simplification of
what actually happens it appears to capture the
essential features of the mechanism and consequently
predicts a scaling for V¢ in surprisingly good
agreement with the computed dependence on S and
OB and to a lesser extent on V. See figs. l(a) and (b).
Runs made with S=104, v=10-4, Xy=1., K»=0.35
and dW=0.04, 0.02, 0.01, 0. 005 and O. 002§ for a
range of flow Velocities showed V¢ o< 8W to a high
precision. Since V' is also e« 8W it thus confirms
that V. is affected by the size of the error field directly
through the modification of the induced velocity
shear.

The intuitive model is too simplistic to correctly
predict more than just the general trend in the
dependence on viscosity and this is evidenced by the
changes in flow cross section observed in the limits
of small and large viscosity.

When v~n, that is, when the viscous layer
width, Ay~V/V', is roughly equal to the reconnection
layer w1dth Ay, the situation is close to that of the
intuitive modcl Sce fig.2(b). However when Ay>Ap
the trough in the flow flairs out beyond the rcconncct—
ion layer, although with the maximum velocity shear
still occuring at the edge of the layer as in fig.2(a).

At the other extreme with Ay<Aq, the
suppression of the flow is concentrated around the
edges of the reconnection layer where the conflict
with the flow, due to ideal coupling, is strongest.

Thus, instead of one trough, two narrower troughs .

are formed as shown in fig.2(c). In the centre of the
layer, where the resisitivity completely decouples the
field from the fluid, the flow is left to pass through
the island almost unretarded. The two narrow troughs
cannot penetrate as low as a single broader trough
with the same velocity shear so a smaller than
expected flow velocity is needed to allow the island to
become unsuppressed. This change in the flow
structure when v<<n, therefore appears to be why V¢
is smaller than that predicted by the scaling of the
intuitive-model towards small v.
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Time Asymptotic Behaviour
Several interesting features of the saturated behaviour can be seen in fig.3 which shows
the transition between the suppressed and unsuppressed states as a function of flow velocity for
several different values of the viscosity, and S= 103. The first thing to note is that for
sufficiently large viscosity the transition ceases to be discontinuous. This also occurs for large
resistivity. To understand this we note that with finite resistivity some relative motion of the



field to the fluid is allowed outside the reconnection layer. The flow therefore does not have to
entirely vanish in the island for it to become unsuppressed, It is however only significant for
relatively large resistivity. If the viscosity is also large the consequent flair-out of the trough
beyond the reconnection layer can allow the island to expand some distance beyond the layer
before the flow is made low enough to completely unsuppress the island. The higher the
viscosity the more the flow is reduced outside the reconnection layer and so the larger the
suppressed island can reach while still in a suppressed state. Eventually for sufficiently large
viscosity the flow can be reduced to where the island can reach its unsuppressed size without
passing through a discontinuity, as shown in fig.3.

Perhaps the most surprising observation is the flow induced amplification of the
unsupressed island well above its zero flow width. This can occur if it is still stable above about
10% of the Alfvén velocity with v<<n. In fig.3, where S=103. the marginal case occurs for
v=10-4 although this varies depending on the other parameters. As the viscosity is made
smaller the amplification begins at a smaller velocity but quickly approaches a limiting case
below v=10-5, This confirms that the amplification only occurs when the flow is a significant
fraction of the Alfvén velocity.

Fig. 3
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Fig.3 Reconnected flux at saturation vs. flow vel. showing transition between

suppressed and unsuppressed islands for different viscosities and S=103.

Another feature of these flow enhanced states is a form of hysteresis. By restarting a
simulation from a solution with V<V, and slowly increasing the flow at the boundary it is
possible to obtain a stable unsuppressed state for V>V. In effect, there is a finite basin of
attraction for the unsuppressed state distinct from that of the the suppressed state. V¢ therefore
only represents the flow velocity below which the suppressed attractor becomes unstable. A
different critical velocity can be defined above which the unsuppressed state becomes unstable.

Changes in the long time behaviour of the suppressed states were also observed. At large
S (82103) and small v (v<10-5) the supressed island is very narrow and during its evolution it
can undergo a spontaneous transition during which secondary islands are formed at the x-
points. The increase in the number of islands produces a large rise in reconnected flux without
greatly increasing the island width. It tends not to occur, however, in cases where the island
eventually becomes unsuppressed.

Acknowledgement: This work was partly supported by the Swiss National Science
Foundation.

References
[1] P.R. Thomas et. al., Plasma Phys.& Controlled Fusion,JAEA,Vienna,Vol.1,353,(1985).
[2] J.T. Scoville et. al., Nucl. Fusion, 31, 875, (1991)
[3] R.D. Parker, R.L. Dewar, Comput. Phys. Com., 59, 1, (1990).
[4] R.D. Parker, PhD Thesis, ANU, Canberra, (1987).
[5] R. Fitzpatrick, T.C. Hender, Phys.Fluids B, 3, 644, (1991).



Stabilization of Axisymmetric Modes and the Effects of Plasma
Deformability in Elongated Tokamak Plasmas Using Active
Feedback Coils Inside and Outside the Vacuum Vessel

D. J. Ward, F. Hofmann Centre de Recherches en Physique des Plasmas,
Association Euratom-Confédération Suisse, EPFL, Lausanne

In this paper we study the feedback stabilization of the vertical instability in a
highly elongated (k¥ = 3) TCV plasma using a combination of active coils inside and
outside the vacuum vessel. The TCV is a tokamak under construction at the CRPP
in Lausanne. It is designed to create plasmas with a variety of cross-sectional shapes
with elongations up to k = 3. We calculate axisymmetric stability using the NOVA-W
code.

In previous studies using NOVA-W [1], it has been shown that the eigenfunction
of the axisymmetric mode will be modified under the influence of active feedback in
such a way that the effectiveness of the system that detects the vertical displacement
by means of magnetic flux measurements is greatly reduced, and thereby the active
feedback system becomes less effective or ineffective. In this study we find that fast
internal coils very close to the plasma surface can induce an enhanced deformation of
the eigenfunction. We shall also demonstrate in this study that a feedback system using
a combination of many flux loops and poloidal B-field pickup coils is susceptible to
these same problems, and that a large number of distributed flux and B, measurements
used to determine vertical position does not always improve matters.

Figure 1 shows a cross-section of the TCV vacuum vessel, active feedback coils,
flux-loops and B, coils, and the TCV equilibrium used in this study. Also shown are
the contours of perturbed plasma flux for the case without active feedback. We are
using an equilibrium with a growth rate (v & 6000s~!) which is several times faster
than the expected operational limit of the growth rate imposed by the power supplies
(v = 2000s~1). We choose this more unstable equilibrium because we cannot model
all the destabilizing aspects of a real feedback system such as finite bandwidth and
voltage limits of power supplies, and because this equilibrium, being very unstable,
exhibits very interesting behavior.

There are two active feedback coils inside the vacuum vessel in the corners on the
outboard side. There are also 8 active feedback coils outside the vacuum vessel on
the outboard side, as well as 8 external coils on the inboard side. The magnetics
measurements are composed of a combination of poloidal flux measurements from 38
flux loops just outside the resistive wall (shown in Fig. 1 by an ‘X’) and poloidal field
measurements from 38 B,-coils just inside the vacuum vessel wall (each is noted by ‘c’).
These measurements can be used in any combination as a way to determine the vertical
position of the plasma as input for the feedback system. In this study we number the
flux-loop, B,-coil pairs (which are up-down symmetric about the midplane) from #1
at the inboard midplane to #20 at the outboard midplane. The numbering is shown
in Fig. 1. We use a two time-scale feedback system [2] using both the internal and
external active coils. The voltage applied to the internal coils is equal to some gain
(proportional plus derivative) multiplied by a measure of the vertical displacement
which is composed of a combination of perturbed flux and B, measurements. The
voltage applied to the external coils is proportional to the current in the internal
coils. In the case we consider first, the voltages applied to all external coils are of the
same magnitude. The internal coils provide the fast response necessary to stabilize
these highly elongated plasmas, but they have power limitations, so this two stage
system allows the current in the fast internal coils to return to zero by replacing their
stabilizing force by that of the more powerful, but slower, external coils.



Figure 2 shows the plot of perturbed flux for the TCV plasma under active feedback
using all feedback coils (internal and external). When the complete set of flux loops
are used (but no B, measurements) the plasma cannot be made stable with this coil
configuration. This is due to the fact that the sum of the flux-loop signals goes to
zero as the feedback gain is increased to large values. In Ref. [1] it was shown that the
deformation of the eigenfunction under active feedback can cause the measured signal
at a pair of flux loops to go to zero, rendering the feedback system ineffective. We
see here that using a combination of a large number of flux-loop measurements does
not necessarily improve matters. The contour of zero-flux is shown as a dotted line in
Fig. 2. The flux loops inside this contour measure positive flux, while those outside
measure negative flux. It is not necessary that the flux be zero at each of the detector
pairs for the feedback system to be made ineffective, but only that the measured fluxes
add positive and negative values to give an overall sum that decreases at the same rate
that the gain increases. In this configuration, a relatively small modification of the
eigenfunction is sufficient to make the sum of the flux measurements go to zero as the
gain is increased to large values.

It is apparent from the fact that the zero-flux contour in Fig. 2 lies so close to most
of the flux loops that most pairs of flux loops if used by themselves would be ineffective.
However, a single pair of well placed flux loops can be better than the complete set
that surrounds the plasma. An example of an effective single pair of flux loops is pair
#17. Comparing Fig. 1 and Fig. 2 we see that the influence of the internal coils induces
a deformation in the eigenfunction that produces a bulge in the perturbed flux to the
outboard side. This in turn increases the detected flux signal at these flux loops. In
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this case one can take advantage of the deformation in the eigenfunction due to the
influence of the internal coils to use flux loops that would be quite ineffective without
this deformation. The flux-loop pairs that are effective when used by themselves are
at positions #10, #11, #17, #18, and #19.

When the complete set of B,-coils are added to the set of flux loop measurements
in a weighted sum [3], the plasma can be stabilized with the active feedback system
described above. The deformation of the eigenfunction under the influence of the
feedback system is unable to make the sum of the magnetic measurements go to zero.
In fact, if the measurement from the corresponding pair of B,-coils is added to the
measurement from a single pair of the flux loops, the combination is effective for
most of the pairs. However this is not true in all cases, and one must still be careful
in choosing the location of the flux-loop, B,-coil pairs. In some cases the sum of a
negative flux measurement plus a positive é,, measurement yields a null signal. The
ineffective locations for the single flux-loop, B,-coil pairs are at positions #7, #8, #9,
#12, #13, #14, and #15.

We find that the deformation of the eigenfunction due to active feedback is virtually
the same when flux-loop pair #17 is alone used as when the complete set of flux-loop
and B,-coil measurements is used for this case. This is quite different from previous
results for the PBX-M configuration [1]. This appears to be due to the fact that the
active feedback system using internal coils and many nearby external coils on both
the inboard and outboard sides imposes a particular deformation of the eigenfunction
that is not significantly affected by this change in the detection system. This is not
necessarily the case if the distribution of the coil currents in the active coils were
changed.

The effectiveness of a particular feedback system is very sensitive to the distribution
of currents in the active coils. Changing the relative weights of the feedback gains on the
various coils changes the eigenfunction, and it changes the way that the eigenfunction
can be deformed in order to defeat the detection system. In the feedback system used
in Fig. 2 there is a voltage of equal magnitude applied to all external coils. Now we
consider calculations where the voltages on the external coils are weighted such that the
voltage applied to the coils farther away from the midplane is proportionately higher
than the voltage applied to those close to the midplane, and the voltage applied to the
inboard coils is smaller than that applied at the outboard coils. With this weighting of
the voltages the resulting currents in the external coils provide a more uniform radial
field inside the vacuum vessel.

This completely changes the deformation of the eigenfunction under active feed-
back, and it is such that the detection system using the full configuration of flux-loops
and B,-coils is no longer effective. Figure 3 shows the ways that the eigenfunction
changes under the effect of the different coil current distributions. In Fig. 3 we show
the ratios of the m** poloidal harmonic of the radial component of the eigenfunction
to the first harmonic, ym/€y1, at the plasma edge for m = 2,3, 4. These are displayed
versus the corresponding growth rate, v, for that case. The feedback gain is increasing
as the growth rate decreases, i.e., it is increasing as one moves to the left along the
curves. The ratios ym/€y1 are shown for three cases. The first case (case A) uses the
combination of internal and external coils with equal voltage applied to the external
coils as in the case shown in Fig. 2. The second case (case B) has only the external coils
activated (with equal weighting) and the internal coils remain passive, and the third
case (case C) uses a combination of internal and external coils with the voltages on the
external coils weighted in order to give a more uniform radial field as discussed above.
All three cases use a detection system using the full combination of all flux-loops and
B, coils shown in Fig. 2. In each case the ratios for yo/€y1 are shown by squares,



the ratios for £y3/&y1 are shown by circles, and the ratios for £,4/€,1 are shown by

triangles (case A by small open symbols, case B by solid symbols, and case C by large
open symbols). ‘

The difference in the deformation of the eigenfunction is quite clear between these
three cases. For example, the values for €2/, for case A evolve with increasing gain
(decreasing growth rate) in the opposite direction to the other two cases. Likewise,
the values for £y3/&y, for case B evolve in the opposite direction from the other cases.
For case B and case C the deformation is such that the plasma cannot be made stable.
The total magnetic measurement of the vertical displacement goes to zero at the same
rate that the gain is increased. Increasing the gain only serves to further modify the
eigenfunction. The plasma in case A can be made stable (points to the left of the
vertical line in Fig. 3), but the eigenfunction changes to a large extent after the plasma
becomes stable, and the magnitude of the stable eigenvalue seems to be limited.

CONCLUSION

We see that the deformation of the eigenfunction plays a crucial role in the ability of
the feedback system to successfully stabilize the plasma. It is important to understand
the deformation of the eigenfunction resulting from a particular choice of active coils
in order to choose an appropriate set of magnetic measurements to determine the
vertical displacement. The use of internal and external active coils imposes a particular
deformation that allows one to choose a small number of well placed measurements.
A large number of magnetic measurements distributed around the plasma does not
necessarily improve matters, and in fact can be much less effective than a small number
of well placed measurements. The deformation of the eigenfunction is also strongly
affected by the distribution of currents in the external coils.
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