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Abstract: Recent results for the MHD stability of internal kink modes in tokamaks are
reviewed. In general, ideal stability is more restrictive than the conventionally cited limit
Bp<0.3 (where Bp is the poloidal beta at the q = 1 surface). This holds, in particular, for
shaped equilibria, where low shear in combination with elliptic shaping can drastically
reduce the pressure limit. Also in resistive MHD, interchange effects are frequently
destabilizing, and resistive stability at Bp 2 0.05 is achieved, for circular cross section, only

with a very restricted class of current profiles, and not at all for JET-shaped cross section.

1. INTRODUCTION

Since their discovery in the ST tokamak by von Goeler, et al [1], the sawtooth
oscillations have been the subject of many experimental and theoretical studies, see, e.g.,
[2 - 15]. Experimental observations in large tokamaks have revealed a large variety of
behaviors, and although theory has made progress, many experimental observations remain
unexplained. Undoubtedly, several of these require more sophisticated theories than

magnetohydrodynamics (MHD) for their explanation. However, it is also clear that a



significant source of the varied behavior, and the theoretical difficulties, lies in the fact that
the triggering instability - the internal kink mode - is weak. It is sensitive to a large number
of effects, some of which are included in the MHD description. The purpose of this talk is
to discuss in some detail the MHD stability of the internal kink. The main conclusion is that
the often quoted stability limit (in terms of poloidal beta at the q = 1 surface); B, cri = 0.3, is
generally overly optimistic and that the internal kink is considerably more unstable than
previously assumed, in particular in tokamaks of elliptic cross section.

The results shown here are drawn mainly from two recent papers [16, 17], where
internal kinks are studied for a variety of profiles and with different plasma cross sections.
The numerical calculations have been made using the cubic element equilibrium code
CHEASE [18] and the toroidal resistive stability code MARS [19]. These two codes allow
more or less routine calculation of resistive instabilities at high Lundquist numbers (at least

those characteristic of JET, S = 10%) and with small growth rates, y/m4 down to 10-5.
2. IDEAL STABILITY FOR CIRCULAR CROSS SECTION

In a pioneering paper, Bussac et al [7] developed a large aspect ratio expansion and
calculated the pressure limit for internal kink stability in circular equilibria. For a parabolic
current profile and a small q = 1 radius, they found that the mode is stable when
Bp < (13/144)12 = 0.3. In carrying out numerical calculations at finite aspect ratio, we
generally found significantly lower pressure limits [17]; examples are given in Figs. 1 and
2. The equilibria have circular boundary with aspect ratio Rg/a = 4, and the current profiles
are specified by giving the flux surface averaged torbidal current density I* as a function of
the normalized poloidal flux ¥ = (y - Wg)/(y, - Wo). (where y is the poloidal flux function
and subscripts '0' and 'a’ denote the magnetic axis and the plasma edge, respectively).
I*('¥) is specified up to a normalization constant, which is adjusted to specify the q = 1
radius. The stability diagrams in Fig. 1 and 2 give Bp as a function of the normalized q = 1
radius p (proportional to the square-root of the enclosed volume) at constant growth rates,
Yo =0,1x103,3x10-3and 5x 10-3, where wy is the toroidal Alfvén frequency.

Two different current profiles have been used in Figs. 1 and 2. That shown in Fig.

1(a) will be referred to as rounded and the one in 2(a) as flattened with low central shear.



According to Figs. 1 and 2, the marginal Bp is typically between 0.1 and 0.2, which is

significantly lower than the 'standard’ value B, = 0.3 [7]. In trying to understand the
g o

reason for the deviation from the traditional result, we found that the important difference

between the numerical computations and the large aspect ratio theory of Bussac et al [7] is

not the finite aspect ratio but rather the boundary conditions.
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Figure 1. Circular equilibrium with a rounded current profile. (a) Surface averaged
toroidal current density I* (b) Bp (poloidal betaat q = 1) vs. Pg=1for
different growth rates of the ideal-MHD internal kink.
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Figure 2. Circular equilibrium with flattened current profile and low central shear.
(a) I*(p) and (b) ﬁp VS. Pg=1for different ideal-MHD growth rates.

Bussac et al computed the critical B, as a function of Tq=1/2, assuming a fixed plasma

boundary. The assumption of a fixed boundary implies that the m = 2 side-band is wall

stabilized whenever g, < 2. For the parabolic current profile studied in [7], qa/qg = 2,

which means that q, < 2 as soon as gg < 1, i.e., in all cases of interest for the internal kink.

Evidently, the fixed boundary results for the parabolic profile refer to the case of very-low-q

operation, g, < 2, with a close-fitting wall. Although tokamaks can be operated this way,



the standard operating regime is q, > 2, and as we will see, this affects the internal kink

stability.
Figure 3 shows the ﬁp-limit obtained from the large aspect ratio theory using (a) a

fixed boundary and (b) boundary conditions appropriate for q, > 2, with the q = 2 surface
inside the conducting plasma. [Thus, if q, <2, we add a region of currentless but perfectly

conducting plasma that extends to the q = 2 surface at 1/a2 = (2/q,)1/2. In this case, "a"
denotes the radius of the current channel, not the plasma radius.] We consider three

different current profiles: two polynomial profiles,
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Figure 3. Marginal ﬁp Jfrom large aspect ratio theory for different current profiles. (a) with
a rigid wall at r = a and (b) with conducting plasma extending to the q = 2 surface.

with [=1, 2 (parabolic and parabolic-squared), for which g, = (£ + 1)qq, and a step

function, or Shafranov profile, with the step in the current density atr = ry = 0.5 a. For the
two smooth profiles (1), the Bp-limit in Fig 3(b) falls monotonically when the q = 1 radius
increases. This is in clear contrast to the fixed boundary result in Fig. 3(a) for the parabolic
profile, where the stabilization by the wall at r = a becomes stronger with increasing q = 1
radius, and the pressure limit even goes to infinity for Tg=1/2 > 0.79. With the modified

treatment of the wall, we find limits typically in the range of 0.1 to 0.2, in good agreement



with the numerical result at aspect ratio 4 in Figs. 1 and 2.

Figure 3(b) shows that the Bp-limit goes to zero for qq below some profile-dependent
threshold, ranging from 0.40 for the parabolic-squared profile to 0.58 for the Shafranov
profile. For qq close to unity, the pressure limit is highly sensitive to the current profile: the

Shafranov profile supports much lower pressures than the rounded-off current profiles (1).

3. IDEAL STABILITY - SHAPING EFFECTS

Previous studies of the internal kink mode in shaped cross sections give rather
contradictory results. In a numerical study, Berger et al [20] found strong destabilization
by ellipticity, whereas Connor and Hastie [21], using a large aspect ratio expansion, found
that elliptic shaping has only a weak effect, in particular at low shear. Our numerical
computations [16, 17] confirm the strong destabilizing effect, and indicate that the
destabilization is connected to interchange instability. This effect was ruled out by the

ordering scheme of the large aspect ratio expansion applied in [21].
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Figure4. ﬁp VS. Py=1 for different ideal-MHD growth rates in JET-shaped equilibria.

The current profiles are: (a) rounded, (b) flattened with low central shear
and (c) flattened with medium central shear.



For our numerical examples, we have chosen JET geometry: aspect ratio Rg/a = 2.7,
elongation K = 1.7 and triangularity 6 = 0.3. We used the same current profiles as for the
circular examples (rounded, and flattened with low central shear), and in addition one
flattened profile with twice the central shear of that in Fig. 2. This profile will be called
flattened with medium central shear. The numerical stability results are shown in Fig. 4.
The Bp-limits are significantly lower than in a circle, and generally lie between 0.02 and 0.1.
The lowest limits occur for the flattened low-shear profile, with the weakest central shear.
For this equilibrium, the onset of ideal instability largely coincides with violation of the
Mercier criterion at q = 1, as marked in Fig. 4(b).

The numerical results give a clearly different picture than the large aspect ratio theory
of [21, 22], which indicated that the destabilization from ellipticity is weak at low shear.
The source of the discrepancy can be seen from the dependence on the shear of various
terms in the potential energy 8W, and to be explicit, we cite some analytic large aspect ratio

results for the Shafranov current profile [22]. In [22], 8W was written as
sw =" R, B2 [ ¢ P Peioge ] )
2 RyBrele T(Bp) * Fellipse ) (2a)

where P is the usual toroidal term evaluated according to Ref. [7]:

Pr(By) =-———— {[2(2B,-log ap) %+ log qg] [g2 + 2(1-qp)]
qQp + 4(1-q0)
(2b)
9 - 2 13 2 2
+ (IZBP- y) ) (l-qo)} = -8 Bp +(1-qp) (4 - 20]3p +16 Bp) + O((l-qo) )

The destabilizing, elliptic shaping term was evaluated using the theory of Edery et al [23] for

zero pressure and infinite aspect ratio:

2 2
_a? 2
2 ! qO) (6-3qp+q?) 144

1+q3" (-a0%6+q0) T

Pellipse =- 144 € (1-q0)% + O((1-q0)3) . (20)
In(2),e=r141/Rgande = (Kq=1 - 1)/2 are the inverse aspect ratio and ellipticity of the q = 1
surface, and q, > 3 has been assumed. Note that the stabilizing term in Py varies as 1-q

and that Pejjipee is proportional to (1-qg)2. Thus, (2) indicates that the effect of ellipticity



vanishes as gy — 1. Howeuver, it is clear that any contribution that does not vanish with
1-qg (even if it is 'small’ in the sense of a large aspect ratio expansion) could become
important at low shear. Such terms do exist at order e4ﬁpe, i.e., they depend on the
interaction of finite aspect ratio, pressure gradients and ellipticity. Because of the heavy
algebra, we have refrained from trying to obtain explicit expressions as (2b,c) for the terms
of this order in 6W. However, the effect can be seen with less effort from a large aspect
ratio expansion of the Mercier criterion [16, 17]. The flux surfaces are assumed to have the

shape

R =Rg- € [r-eE(r)] cos o - e2A(r) + €2 T(r) cos 200 + O(e3Ry),

_ 3)
Z= e[r+ e E@]sin @ + €2 T(r) sin 20 + O(e3Ry),

where E and T are related to the ellipticity and triangularity by E(r) = re and T(r) = r8/4, and
A is the Shafranov shift. We now treat € and ¢ as independent small parameters and expand
the Mercier criterion to second order in € and first order in e, keeping contributions of order

€2e. At this order, the criterion for ideal interchange stability reads:

1 ' 2 E ..
-Di= 7+ -Bﬂz—ﬂ—[l-2+ﬁ-( +E)+3—g—A(;-E)

(4a)

Rgq? A 2ET 6E'T 7ET' 3
r (r2 tT tTr 3

E'T"Y] >0

where prime denotes differentiation with respecttor, A = Ry A'fr = Bp(r) + £(1)/2, and 4(r)
is the internal inductance. An approximation of (4a) that is useful for the internal kink mode
is obtained by considering almost flat current profiles with q' small and e(r) and 8(r)/r and
Bp(r) constant (parabolic pressure profile). Together with q = 1, this gives

682eﬁp 2%

Dj= g (1-2) (4b)

where s = d(logq)/d(logr)lg=;.

Equation (4b) shows that ellipticity destabilizes interchange modes. This



destabilization is pronounced at low shear, and the marginal Bp can take arbitrarily low
values if the shear is reduced on q = 1. [In addition, ellipticity is destabilizing at high shear
independent of pressure, as shown by (2c).] The numerical examples in Fig. 4 indicate that
the low-shear, finite pressure effect is generally the more important effect. Typical values of

Bp,crit are in the range of 0.02 to 0.1 for the JET cross section.
4. RESISTIVE STABILITY

In the limit of infinite aspect ratio, € — 0 (with p = 0 and circular boundary), the ideal
kink is marginally stable and strongly unstable resistively (the resistive kink mode [9]).
Toroidicity is stabilizing, and at finite aspect ratio the resistive kink with A' = o turns into a
tearing mode with A" finite [8] (if By < Bp cri; for the ideal mode). Even the resistive mode
can be stabilized, A' < 0, if the shear is sufficiently small at the q = 1 surface [2, 10].
Examples of this are shown in Fig. 5, for the flattened current profile, zero pressure and
fixed boundary. The filled symbols represent equilibria with low central shear (sq=; = 0.04)
and the open symbols represent moderate central shear (sq=1 = 0.07). The figure shows
that finite aspect ratio and low shear are stabilizing and that complete resistive stability can

be achieved for pressureless equilibria.
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Figure 5. Resistive growth-ratesat § = 1 00 vs. inverse aspect ratio for pressureless equili-
bria with flattened current profiles and low (filled symbols) or medium central shear (open,).
Circles indicate circular, triangles JET-shaped and squares elliptic cross section (k= 1.7).



We find that the resistive mode is generally strongly destabilized by central pressure
gradients. This takes place by two mechanisms: global effects which change A' and local
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Figure 6. Resistive stability results for a circular equilibrium with ﬁp = 0.05, flattened
current profiles and low central shear. (a) Growth rates at S = 107, and (b) resistive
interchange parameter -Dg, and ellipticity of ¢ = 1 surface vs. inverse aspect ratio.

effects which affect the resistive interchange stability at q = 1. Figures 6 - 8 show some
examples where the interchange effect is important. Figure 6(a) shows the growth rate of a
resistive mode for a low-shear equilibrium with circular boundary and [Sp =0.05. The
current profile is identical to the low shear profile in Fig. 5, and the pressure is well below
the ideal threshold. However, unlike the pressureless case, the resistive mode is not
completely stabilized at low aspect ratio. The cause of the instability at low aspect ratio can
be seen in Fig. 6(b); the resistive interchange criterion is violated at q = 1. The main reason
for this is the slight 'natural’ ellipticity of the q = 1 surface (proportional to é2 for a circular
boundary). The importance of the resistive interchange criterion on resistive stability can be
seen from the dispersion relation of Glasser, Greene and Johnson [24] (which we quote

here in its simplified cylindrical form):

A = _21 I‘(3/4) 5/4 (1 ) KDR )

Lr r(1/4) 4Q32 ’ ©®)

where Ly = as™13 is the resistive layer width of the interchange ordering and Q =yt AS”3 is
the normalized growth rate.

According to (5), the stability of resistive modes at high S becomes almost entirely



10

determined by the resistive interchange parameter. If the criterion is violated, - Dg <0,
there is always an unstable mode (for arbitrary A' and S), and for large S its growth rate
scales as S/ 3D§J3 . On the other hand, if resistive interchanges are stable, -Dg > 0, tearing
modes remain stable for A' less than some positive threshold A'.,, which scales as
Sl/3(-DR)5/ 6, we emphasize that, at high S, A'.;j, becomes large, and the stability of
resistive modes is completely dominated by the resistive interchange criterion. For q =1,
and with the same approximations as in (4b), the resistive interchange parameter is given by

2
-DRzzeB Zrp [2sA- 3e(1-—)] . (6)

Another illustration of the important role played by interchange stability is given in
Fig. 7. This equilibrium has the same pressure and I* profiles as that in Fig. 6, but the
plasma boundary is oblate, x = 0.9. The q = 1 surface remains oblate at low aspect ratio
and resistive interchanges are stable at q = 1. As the aspect ratio decreases, the growth rate
first decreases, then becomes complex and finally the mode is completely stabilized, as ’
predicted by the theory of Glasser et al [24]. v
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Figure 8. Stability results for a JET-shaped boundary and the same profiles as in Fig. 6.
(a) Ideal (solid circles) and resistive growth rates at S = 1 o7 (open circles) and
(b) ideal, -Dy, and resistive, -Dp, interchange parameters at the q = 1 surface.

5. CURRENT PROFILE EFFECTS

It is generally tﬂought that the tri ggering of sawtooth crashes is more closely
connected to changes in the current profile than to the central pressure. To examine the
influence of the current profile on the resistive internal kink, we have used the same method
as in Secs. 2-3; a profile is specified for the surface averaged toroidal current density I*(¥),
leaving free a'multiplicative factor that is adjusted to specify the q = 1 radius. Results will
be shown here for two profiles, the flattened low-shear profile (see Fig. 2) and one profile
where the I* has shoulders, giving rise to a pronounced, local flattening of the g-profile.
We refer to this profile as the TEXTOR profile [2]. The two g-profiles are shown together
with stability results for circular plasma boundary in Figs. 9 and 10. Here, resistive growth
rates at different S-numbers are plotted vs. the parameter Qp, Which is the g-value at the
point of minimum shéar, p =0.4. A conducting wall is assumed at radius r = 1.2a.

Figure 9 shows that the low shear profile is never completely resistively stable.

Nevertheless, the growth rates can be very small and obey the resistive tearing mode scaling
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when B, is small and g, > 1, i.e., when the q = 1 surface is in the inner region of low
shear. Pressure driven, and at least partly ideal, instabilities become prominent when qp <1
and the q = 1 surface approaches the outer, high shear region. If we assume that weak
resistive instabilities are stabilized during the ramp phase of the sawteeth by kinetic effects
or by nonlinearity, such instabilities, whose main driving energy is pressure, but whose
growth rates are sensitive to small changes in the current profile, give one possible
explanation for how the crashes might be triggered. During the ramp phase, the g-values in
the central region are decreasing with time and the q = 1 surface moves outward (as seen,
e.g., from observations of 'snakes' which follow the q = 1 surface [3]). When the q =1
surface approaches the outer region of higher shear, the internal kink mode eventually

becomes sufficiently unstable to trigger a sawtooth crash.
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Figure 9. Current profile dependence for circular equilibrium with low central shear.
(a) q-profile. (b,c) Resistive growth-rates vs. dp (q at minimum shear, p =04)
for (b) S = 6 x10° and (¢) § = 6 x 105,
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Figure 10. Current profile dependence for circular equilibrium with TEXTOR profile.
(a) q-profile. (b,c) Resistive growth- rates Vs. qp (q at minimum shear, p =0.4)
for (b)S =6 x 108 and (c) § = 6 x 105,

The TEXTOR profile gives qualitatively similar results, see Fig. 10, although
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generally this profile is more stable. For instance, the threshold in B, for ideal instability is
about twice that for the low shear profile. Figure 10 confirms the results of [2] that there is
an interval in g, where the TEXTOR profile is completely stable. However, the stable
window is small; its width in terms of qp is about Aq, = 0.005 at zero pressure, and the
window closes completely at B, = 0.10.

Of course, experimentally, the central region remains macroscopically stable during
the ramp phase of the sawteeth, and by comparison with Figs. 9 and 10, it appears that the
requirement of linear resistive MHD stability is too stringent. It is possible that weakly
unstable resistive MHD modes are stabilized during the ramp phase by kinetic effects and/or
nonlinearity. This view is supported by the even more pessimistic resistive MHD stability

results obtained for JET geometry [16].
6. CONCLUSION

Detailed studies of the internal kink mode have revealed several new effects.
Generally, we find the mode more unstable than previously assumed. Typical ideal stability
limits in poloidal beta at the q = 1 surface are of the order of 0.1 to 0.2 for circular
equilibria. For elliptically shaped equilibria, the limits are si gniﬁbantly lower; typical values
range from 0.02 to 0.1, but arbitrarily low limitskcan' result if the'shear is reduced in the

-q £ 1 region. The destabilization by e111pt1c1ty is partlcularly strong for low central shear
" and can be correlated with mterchange mstabxhty ‘ SRR

Concernmg res1st1ve stabrhty, we ﬁnd that although low shear is stab111zmg at zero
pressure, 1t tends to be destablhzmg even n for very: modest central pressure gradlents because
: of mterchange 1nstab111ty Th1s effect is strong for elhpuc shaplng (including. JET shape)
which makes the averaged curvature on q = 1 unfavorable. For JET shape we have found
no case with Bp 2 0.05 that is resistively stable, and complete resistive stabrhty with free
boundary was found only for current profiles of the TEXTOR type with shoulders.
Stabilization for the TEXTOR profile requires a very careful tuning of parameters, e.g.,
specification of q with a precision of half a percent.

We tentatively conclude that the requirement of resistive MHD stability is overly

pessimistic for the internal kink. It appears likely that the resistive internal mode is
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stabilized during the ramp phase of the sawteeth by kinetic effects such as diamagnetic
rotation or trapped particles, or may be nonlinearly saturated. Work is underway to
incorporate certain kinetic effects in the MARS code.

Acknowledgement: This work was funded in part by the Swiss National Science

Foundation.

REFERENCES

1. 8. von Goeler, W. Stodiek and N. Sauthoff, Phys. Rev. Lett. 33, 1201 (1974).
2. H. Soltwish, W. Stodiek, J. Manickam and J. Schliiter, in Proceedings of the 11th
International Conference, Kyoto (IAEA, Vienna, 1987), Vol. 1, p. 263.

3. A. Weller, et al, Phys. Rev. Lett. §9, 2303 (1987).

4. K. McCormick, A. Eberhagen, H. Murmann and the ASDEX Team, in Proceedin gs of

the 15th European Conference, Dubrovnik, 1988, Vol 12B, Part I, p. 35.

D.J. Campbell, et al, Phys. Rev. Lett. 60, 2148 (1988).

B.B. Kadomtsev, Sov. J. Plasma Phys. 1, 389 (1975) [Fiz. Plasmy 1, 710 (1975)).

M.N. Bussac, R. Pellat, D. Edery and J. Soulé, Phys. Rev. Lett. 35, 1638 (1975).

M.N. Bussac, R. Pellat, D. Edery, and J. Soulé, in Proceedings of the 6th

International Conference, Berchtesgaden (IAEA, Vienna, 1977), Vol. 1, p. 607.

9. B. Coppi, R. Galvao, R. Pellat, M. Rosenbluth and P. Rutherford, Sov. J. Plasma
Phys. 2, 533 (1976).

10. J.A. Holmes, B.A. Carreras, and L.A. Charlton, Phys. Fluids B1, 788 (1989).

11. R.B. White, et al, Phys. Rev. Lett. 60, 2038 (1988); ibid. 62, 539 (1989).

12. G. Vlad and A. Bondeson, Nucl. Fusion 29, 1139 (1989).

13. W. Park and D.A. Monticello, Nucl. Fusion 30, 2413 (1990).

14, J.A. Wesson, Nucl. Fusion 30, 2545 (1990).

15. J.F. Drake and R.G. Kleva, Phys. Rev. Lett. 66, 1458 (1991).

16. A. Bondeson, G. Vlad and H. Liitjens, Phys. Fluids B4, 1889 (1992).

17. H. Liitjens, A. Bondeson and G. Vlad, LRP 446/91, to appear in Nucl. Fusion 1992,

18. H. Liitjens, A. Bondeson and A. Roy, Comput. Phys. Commun. 69, 287 (1992).

19. A.Bondeson, G. Vlad, and H. Liitjens, in Proceedings of the IAEA Technical Com-
mittee Meeting on Advances in Simulation and Modelling of Thermonuclear Plasmas,
Montréal, Canada, 1992.

20. D. Berger, L.C. Bemard, R. Gruber and F. Troyon, in Proceedings of the 6th
International Conference, Berchtesgaden (IAEA, Vienna, 1977), Vol. 2, p. 411.

21. J.W. Connor and R.J. Hastie, Culham report CLM-M-106 (1985).

22. A. Bondeson and M.-N. Bussac, Nucl. Fusion 32, 513 (1992).

23. D. Edery, G. Laval, R. Pellat and J.L. Soulé, Phys. Fluids 19 (1976) 260.

24. A.H. Glasser, J.M. Greene and J.L. Johnson, Phys. Fluids 18, 875 (1975).

© N oW



15

MHD STABILITY IN 3D ANISOTROPIC PRESSURE PLASMAS
W. Anthony Cooper

Centre de Recherches en Physique des Plasmas,
Association Euratom-Confédération Suisse,
Ecole Polytechnique Fédérale de Lausanne,

Lausanne, Switzerland

1. Introduction

!

Auxiliary heating methods such as neutral beam injection and radio frequency
heating that are employed to raise the temperature in magnetically confined plasmas
also induce anisotropy in the plasma pressure. This is particularly evident in the
low density hot ion mode of operation. A detailed experimental study of the impact
of 1 MW of tangential neutral beam injection at an energy of 40 Kev has been re-
ported in the Compact Helical System (CHS) in Nagoya, Japan [1]. This device is a
low aspect ratio (A =~ 5) torsatron that is fully three dimensional (3D) in character.
Pressure anisotropy levels in which py/py =~ 3 have been measured. This motivates
us to formulate the linear magnetohydrodynamic (MHD) stability problem in 3D
plasma confinement configurations in which the parallel pressure p; differs from the
perpendicular pressure p;. The anisotropic pressure 3D MHD equilibrium problem
has already been investigated [2] and a version of the 3D MHD equilibrium code
VMEC [3] has been appropriately modified to account for p; # p..

The MHD stability in anisotropic pressure stellarator devices has been examined
previously by Buckle et al. [4]. They follow an initial value approach based on the
double adiabatic model in an Eulerian grid and adopt a large aspect ratio expansion.
The underlying equilibrium, however, is not fully selfconsistent because p; and p, are
chosen arbitrarily as functions of the radial variable only. Although this violates the
constraint imposed by parallel force balance, their applications to several different
stellarator devices represent a very useful first step in the quantification of the im-
pact of pressure anisotropy on the MHD stability properties in such configurations.
Alternatively, the energetic particle species that drive the pressure anisotropy can be
considered as a rigid noninteracting current layer. The global and local MHD equa-
tions that govern the linear stability properties in such a limit have been described by
Cooper [5]. The corresponding Mercier criterion in a helically symmetric stellarator
with a helical axis and circular cross section has been evaluated by Miller [6]. This
model yields more optimistic stability criteria than the fully fluid model. A model
by Rosenbluth et al. [7] that includes a kinetic response of the fast particles is shown
to yield a more stabilising criterion for localised Mercier modes as long as the drifts
of the energetic particles do not reverse [8]. Therefore, under conditions in which
drift reversal is absent the fully fluid and rigid models invoked for the investigation of
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the MHD stability of plasmas can be considered as two limits that yield conservative
estimates in the determination of operational boundaries of magnetically confined
devices with anisotropic energetic particle layers.

In this paper, we formulate the linear 3D MHD stability problem variationally
for anisotropic pressure plasmas in the fully fluid limit from the Kruskal-Oberman
energy principle [9]. The 3D equilibrium state is constrained to have nested mag-
netic flux surfaces with a single magnetic axis. Magnetic island structures and ques-
tions of the existence of 3D equilibria are excluded from the formulation. We ap-
ply the Boozer magnetic coordinate system (s, 8, ¢) [10], appropriately modified for
anisotropic plasmas [5]. The radial variable s labels the magnetic surfaces, while
0 and ¢ correspond to the periodic poloidal and toroidal angular variables, respec-
tively. In these coordinates, the magnetic field in the contravariant representation is
B = VéxVU+VPx VO, where ¥(s) and ®(s) are the poloidal and toroidal magnetic
flux functions, respectively. In the covariant representation, the magnetic field can be
described as 0B = 0B,Vs + J(s)V0 — I(s)V ¢, where o > 0 is the firehose stability
parameter that characterises anisotropic plasmas, while J(s) and I(s) constitute the
effective toroidal and poloidal current flux functions, respectively, derived from the
relation K = Vx(oB). In order to tackle the global stability problem, we Fourier
decompose the perturbed displacement vector in the periodic angular variables and
apply a finite element discretisation scheme in the radial coordinate to reduce the
problem to a special block pentadiagonal matrix eigenvalue equation. This equation
is amenable to solution with an inverse vector iteration method. The local stability
is investigated through the application of the ballooning representation within the
covering space concept [11], from which we derive the ballooning mode equation. It
is worthy to note that we can express the geodesic magnetic curvature in terms of
the derivative along the magnetic field lines of the effective parallel current density
function K - B/B2. This quantity, in turn, can be very efficiently calculated from
a magnetic differential equation in the Boozer coordinates. With this form for the
geodesic curvature, the asymptotic analysis of the ballooning equation yields a closed
form for the Mercier criterion which is practical and straightforward to evaluate and
agrees with the expression previously derived by Johnson and Hastie in Hamada co-
ordinates [12].

2. Global MHD Stability

Prior to outlining the derivation of the equations that govern the global stability in
3D magnetofluids, we note that the covariant radial magnetic field can be calculated
from the radial force balance relation, namely

(ViB - V)(0Bo) = FoL| + [W(a)(a) - @' (1), )
B
and correspondingly the parallel current density function is

K.B _ [J(s)I'(s) — I(s)J'(s)) 1 8(0B.,) (o Ba)

- - MR V-0 [I(’) s 105 | @
This procedure highlights the singular nature of the parallel current density on ratio-
nal magnetic surfaces in 3D configurations. These singular current sheets constitute
an important source of free energy for instabilities within the MHD model.
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The investigation of the linear MHD stability in a 3D fully interacting fluid can
be formulated variationally from the aplication of the universal term of the Kruskal-
Oberman energy principle in which ti)le positive-definite kinetic energy integral is
ignored [9]. The energy principle can be expressed as [13]

=1 3 2 2 | ExVs) (%] dpul \BI,
5Wu—§///d z{an+TQ"+2Q l:—lv—a—'-i—'i' 9s —3_3— B2 E (3)
B B
(K x Vs).Vx(B x Vs) 1 9py 1(%y| _8ps Vs VB2 |, 2
+[ [Vopt wr e | VY i\m | | ) e | )
B B B

where the perturbed displacement vector is £, £* = £ - Vs, the perturbed magnetic
fieldis Q = Vx(é x B) and 7 = 1+(8p, /0B)/B > 0 is the mirror stability criterion
parameter. We decompose ¢ as

_ o BxVs J(s)
§=VEEVIXVé+ n—pi— + [Q,(a)den—u] B. (4)

It is straightforward to demonstrate that the component y of the perturbation does
nor enter the problem. The last term in the energy principle constitutes the basic
instability driving term and can be expressed as

=9

95 ' " ' " K.-B [J(s)¥"(s) — I(s)®"(s)] 3p"
V@D = —- ok [2'()2"(s) - @'(2)2"(s)] =55~ - /555 Vig, . (5)
g0 gs¢| K-.B B, Op) 3p ap 1 8B?
_(\/_Z;'B-V){ [I(S)W+J(8)‘\7_;j| ——IVsPazB? +§-2--é:- }+ﬁ(—67 B—a—: )m?’
B B

after invoking some useful equilibrium relations that pertain to the Boozer magnetic

coordinates [5]. We expand the perpendicular perturbed magnetic field in the con-
travariant representation to determine Q% and obtain an expression for §W, that is
very similar to that derived for the rigid hot particle model [5].

Fourier decomposition of the perturbation components in the periodic angular
variables is applied such that

f"(ss 8, ¢)

) s 9¢y(s) sin(meb — ned + A), ®)

4

n(,0,6) = Y ne(s)cos(med — nep+ A), 4
[4

where m, and n; represent the poloidal and toroidal mode numbers, respectively, £

is an index that labels the (m,n) pairs, ¢ is chosen to satisfy regularity conditions
at the magnetic axis and A is a fixed arbitrary phase factor. In Fourier space, the
energy principle reduces to

1 (9) (5
eow=1 [ dsZ<?~€-‘[—(a‘/§B2)Cﬁi’(a)]%w(s)[c‘* ) |exto)
O 4k

(27)2 8s | slaetar) ER s(ge+ar)

+ou { CE(0)=[ma () =mu @' ()]CH) (0)+ [ J(5) 9" (8)~1()8"(s) - L (558D () } €a(e)

alagter)

+&4(s)

s{qe+ap)

{ S (5)=[me¥'(8)=n @' ()| CE ()4 [2(5)0 " (5)=1(8)8"(5)- L (0 /5B7)] [ (5) } ot

+%‘5{M%I%ﬂﬂ0$?<s)}m<s) + m(s){wﬁmdz)(s)}%&
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+£c(3){ o e A {[me¥(s) = ne® ()] O (6) = (0/FBICED (5) - [0'()8" (5) - /()4 (o) O (3)}
+merlm N G () + [I(8)97(s) - 1(s)@"(5) = %(0y/5B?)] O (5) = [me¥' (s) — ne®' ()] O (s) } }m(s>
+m(8){ e SO O { [y W (s) = mu@!(8)] 052 (3) — (0 GBHICED (8) — [#(5)0"(s) — &' (5)"(8)] €2 (5)}

+m 2 N {0 (o) + [J(8) 97 () = 1()07(5) - % (0/5B?)] CSD(8) = [mx W' (8) — n®' ()] C52 (s) } }ek(s)

+1e(s) { [mm’(.-)—mo'(a)][mw'(-)-m.o'(s)]C(}Ez;;Lt()m1(-)—neJ(a)um».I(-)—m. HNCH (o) } m(s)>'

where L, is the number of periods of the instability structure once around the torus.
For most practical applications, L, = 1. The double Fourier flux tube integrals are
typically of the form

. -f{- 2
Cgfe) ()= if:; /o [) dodpA;(s,0,d)te(0, #)tx(6, 6), (9)

where t;, and t; denote the trigonometric functions sine or cosine. The coefi-

cients A;(s,0,¢) are Ag = 7/0, A = TB,, A; = V99p1/0s, Az = 09ss/\/9 —
(1 — 7/0)(0Bs)?/(0/gB?), As = I(s)ogw/\/g + J(5)09:6/+/9, As = K-B/B?,

A = 0%|V3s|? and
2] )

B, [J(s) " (s) — I(s)®"(s) + J'(8)¥'(s) — I'(3)®'(s)]
B—ﬁBz (B-V)5 - o7357) } (10)

oy
s
B

1 8B2 1 Bp)
2B? 3s ocB? 3s

3\/5 (¢Bs)

LN p)
8s \/g-(a\/.aBz)

(@-V)(g -]

_9py

A7(316! ¢) = Js

ds
B

B B B

The product ¢, times ¢; correponds to sine times sine for the coefficients Cl(,?), C},f),
C}g), ,(2) and C’,(Z), and to cosine times cosine for C,(,::’). This set of coefficients is
symmetric to index exchange. The integrand of the coeflicients Ce(;) and C’},‘:) are
described with (8, ¢) = sin(m.8 — ned+ A) and t,(6, ¢) = cos(mif — npd+ A). C

and C}:) are thus nonsymmetric to index exchange. The coefficient C},?) is a linear
combination of all the other coefficients and can be written as

U’ (3) D" - ®'(3) " 2
o6 = [W()8"() - ()9 (0)] o) (o) + LTIV O oo,
J(a)\I'”(.s)—I(a)&"(a)—%‘(o’ﬁB’) J(.)w"(.)_r(.)&"(a)-2,&(.1\/519’)
+ [ (6\]/;7[32) ] Cg:) (3
+{ [J(s)¥ (‘(,s‘)/%g;))(» )] _ (aeten) }Cﬁi)(a) + 00 (s) (11)

+[me¥!(s) = ne® ()] [ma ¥'(s) — na®'(s)] CE(s)

1)) B'(s)E (s J(s)®'( )—I(l)@”(a)—g‘i(a\/'Bz)
..[mk\I,I(s)_nkQI(s)]{[W( YR!(s)—2'(s)¥'I( )] Cg:)(’)"' [ s 9 ]Cgi)(s)

(ev9B9) (o/3B?)

' eVl 2o ! J(s)R" (8)=I(s)2"(s)~2k (0, /5B?)
~ [me¥'(s) = ne®'(s)] { [Faa g ("] o0+ = 7E) . Oﬁ?(s)}.

Considering that radial derivatives act solely upon &(s) in 6W,, it is convenient to
apply for example nonconforming finite hybrid elements for the radial discretisation
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of the stability problem [14]. Invoking a model kinetic energy [5], the linear MHD
stability problem reduces formally to a special block pentadiagonal matrix equation

Ax = ABx (12)

where A is the potential energy matrix, B is the kinetic energy matrix, x is the
eigenfunction, and A = w? is the eigenvalue. This equation can be solved with an
inverse vector iteration method [14].

3. Local MHD Stability

The 3D ballooning mode equation derived from the Kruskal-Oberman energy prin-
ciple is [15]

opi
s

2% >(h “R)x =0, (13)
B B

where £ = (b - V)b is the magnetic field line curvature, b is the unit vector along
the field lines, x is the eigenfunction, X is the eigenvalue, h = B x VS/B? and h*
= h-Vs. Because the field lines in the Boozer magnetic coordinates are straight,
we have VS = V¢ — ¢(s)VO — ¢'(s)(0 — 0x)Vs, where ¢(s) = d®/dV¥ is the inverse
rotational transform. Furthermore, the simplified form of the magnetic field in the
covariant representation in the magnetic coordinates allows us to demonstrate from
the effective charge conservation relation V- K = 0, after applying MHD force bal-

ance, that
K.-B ap a[r a [J
oo (52) - (2 o Mol alm)) w
B B
This expression is proportional to the geodesic magnetic curvature contribution to
the ballooning mode driving term. The ballooning mode equation becomes

(B-V)[er?(B-Vx)] +(1- A)h'( +

o9y
r Os

9

%{ [c,, +Ca(8 — Ok) + Col6 - o,,)z] %’g} Y [d,, +da(6 - ok)] x =0, (15)

where C, = [09.s/,/9 — (0B,)?/(04/gB?)], C, = 2¢'(s)¥'(s)Au(s,6,4)/(0/gB?),
Cy = [¢(s)V(s)]*0?|Vs[*/(a,/gB?), ¥'(s)d, = —¢'(s)(/gB - V)(K - B/B?) and the

nonsecular component of the driving term after invoking radial force balance is

N [J(s)®"(s) — I(s)®"(s)] _ /9 +y3B.V (.g%)] . (186)

o 8p,y
T Os

oB? s

V3 9pL
TB? 9s
B

do = 1 T m
PTG o+ \ Bs
B B

The asymptotic analysis of the ballooning mode equation yields the Mercier criterion.
Because the geodesic maﬁnetic curvature can be expressed in terms of the derivative
along the field lines of the effective parallel current density function, a very useful

closed form can be derived for the Mercier criterion in the Boozer coordinates which
is not evident in other coordinate systems [15], namely

1
<hq><dp>—<hq><dq>+<hqdq>+<hq><hqal?,>-<hqdq>25Z, (17)

for stability, where d; = —¢'(s)(K-B/B?) and hy, = 1/C, and < f > is the flux
surface average of f. This criterion agrees with a form derived in Hamada coordinates
[12].
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4. Summary

Auxiliary heating methods and nonuniform losses of energetic particles can cause
significant pressure anisotropies in magnetic confinement systems. We have formu-
lated the global and local 3D linear MHD stability variationally in the limit of a
fully interacting anisotropic pressure fluid from the universal term of the Kruskal-
Oberman energy principle. We have adopted for this purpose the Boozer magnetic
coordinate system, appropriately modified for anisotropic plasmas. The 3D MHD
equilibrium state is constrained to have nested magnetic flux surfaces. The effective
parallel current density is identified as an important source of free energy for MHD
instabilities due to its singular nature on rational magnetic surfaces in 3D systems.
The energy principle is Fourier decomposed in the periodic angular variables and
finite elements are applied for the radial discretisation to reduce the global MHD
stability problem to a special block pentadiagonal matrix eigenvalue equation that
can be solved with an inverse vector iteration method. The local MHD stability is
investigated through the formulation of the 3D ballooning equation in Boozer coor-
dinates. In these coordinates, the geodesic magnetic curvature is demonstrated to be
related to the effective parallel current density. This allows the asymptotic analysis
of the ballooning equation to yield a closed form for the Mercier criterion.
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1. INTRODUCTION

It is well known that small field perturbations can induce or interact
with magnetic islands in a tokamak to degrade confinement, in some cases
to the point of disrupting the discharge e.g.[1-4]. The perturbations may
arise intentionally through the application of helical current coils around
the plasma or more seriously as a result of small errors in the position of
field coils. Even though field errors are nearly always present there effect
inside the plasma is often screened out by the intrinsic or induced rotation
of the plasma. As a consequence magnetic islands are sometimes observed
to be suppressed, or to rotate at small amplitude while at other times to
slow down and lock at a particular toroidal angle leading to an increase in
island width that can result in a disruption.

In an endeavour to understand the basic mechanisms behind these
interactions a simple 2D slab model of reconnection on a current channel
with an ExB drift to drive a flow and a corrugated conducting wall to
generate a field perturbation was developed. The numerical model was
first applied to the tearing stable case to investigate the flow suppression of
error field induced magnetic islands[5,6].

In the present report the study is extended into the tearing unstable
regime to explore the interaction of internally as well as externally driven
reconnection processes in the presense of flow. Unlike the error field
islands, the tearing mode islands are free to drift along with the plasma so
that the flow suppression is to some degree replaced by a mechanism of
mode-locking. As will become apparent from the simulations the
interaction can be quite complex.
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2. MODEL

The basic numerical model adopted is that of a 2-D, plane-slab
plasma sandwiched between two perfectly conducting walls (at x = + Xy)
with periodic boundary conditions in the y-direction (of periodicity length
Lp). An approximately sinusoidal perturbation of the walls of amplitude
OW (o< 6B) is introduced along the y-direction to provide a selfconsistant
source of field error. Details of this can be found in ref.[5]. The initial
equilibrium is B = B, tanh(x), It has a line of field reversal at x=0 along
which reconnection can occur and is maintained by a y-directed electric
field and a non-uniform resistivity profile. To produce the plasma flow an
initially uniform ExB drift is driven in the y-direction by maintaining a
potential difference between the walls.

To follow the evolution of the tearing mode in response to the error
field, the visco-resistive MHD equations are integrated in time using a
semi-implicit, spectral (in y)/ finite difference (in x) scheme. The stability of
the tearing mode is controlled by adjusting the wall separation, X.

8. TEARING STABLE CASE

Before considering the effect of the tearing mode a simpler study[6]
was first made of the effect of flow on magnetic islands induced by a
stationary error field alone. The main result of this is that the error field
magnetic islands can be suppressed by flow above a critical velocity: V.
The island is initially able to grow to the width of the reconnection layer
unobstructed since the field in this region is decoupled from the flow due to
finite resistivity. However because of the flux freezing constraint the flow
must be removed from the island before it can extend into the ideal region
beyond the reconnection layer. Under the influence of the error field the
flow is driven out of the island but if the limit on the maximum velocity
shear does not allow it to vanish the island will remain suppressed. This
predicts Vo< 8B S-2/6 v—2/3 [6] in good agreement with numerical results.

4. MARGINALLY UNSTABLE CASE
In general, instability to the tearing mode allows a rotating island to
grow beyond the reconnection layer so that the suppression mechanism
mentioned above nolonger occurs. The effect of the error field is then
predominantly to stop the island rotating. However fig.1(b) shows that close
to marginal stability the tearing mode can be made weak enough to still
allow full suppression of the locked mode over a small range of velocities,
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V. <V < VL, just below that for which it becomes unlocked. The transition
to the suppressed state is discontinuous as a function of flow velocity and
occurs at the same value V. as for the marginally stable case of fig.1(a).
However instead of becoming more and more suppressed as the flow is
increased the island develops a steady state oscilation in position and
amplitude. Just below Vi, the island rocks back and forth between 50 and
160 degrees out of phase with the error field while the amplitude oscilates
within the shaded region shown on the plot. In effect the tearing mode
induces the island to grow but as it is dragged out of phase by the flow it is
increasingly suppressed by the error field. The island then reduces in size
until the magnetic torque of the error field causes it to flip back or reform
closer in phase. Just above Vi, the flow velocity is sufficiently high to drag
the O-point of the island past the maxima in the error field so that the
island begins to rotate.
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Fig.1 Steady state reconnected flux versus flow velocity for the
(a) marginally stable Xw=1.5) and (b) marginally unstable
(Xw=1.6) cases, with S=103, v=10-3, Kp=0.35, and 6W=0.02.
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The island still oscilates in amplitude as it moves in and out of phase with
the error field. It also moves more slowly as the O-point approaches the
maxima of the error field. This is where it is being suppressed so the net
effect is to keep the amplitude small. As the flow is increased the island
has less time to respond to the error field so that the amplitude of the
oscilation decreases and the mean width of the island approaches the size
it would have in the absense of the error field.

Well above marginal stability the full suppression of the locked mode
nolonger occurs except when the amplitude of the error field is made very
large as in fig.2 for the case with 6W = 0.08. In this case the fully
suppressed locked mode does not transform smoothly into the rotating
mode as the velocity is increased. The rotating mode is also much larger
and is actually stable for the same range of flow velocities.
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Fig.2 Steady state reconnected flux versus flow velocity for W = 0.01,
0.02, 0.04, and 0.08 with S=103, v=10-3, X,,=2., K,=0.35, W=0.02

5. MODE LOCKING

Except when close to marginal stability, the tearing mode dominates
the initial growth phase of the island so that inspite of the error field the
island almost immediately starts to rotate.

The magnetic coupling to the error field, although weak to begin
with, increases in strength as the island grows larger. If the island
exceeds a critical width: W, the magnetic coupling dominates over the
inertial and viscous forces to completely stop the rotation of the island.
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Since the inertial and viscous torques increase with the flow locking occurs
below a limiting velocity Vi. For V << Vi, the drag of the rotating plasma is
so weak that the island does not need to grow very large to produce the
magnetic coupling needed to lock the mode. In this case the island locks at
a very early stage in the evolution. The closer V is to V, the larger the
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Fig.3 Steady state reconnected flux vs. flow velocity for (a) S=103,
(b) S=104, and (c) S=10° with v=10-3, X;;=2.0, K»=0.35, 6W=0.02
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island grows before locking. For V > VI, the island saturates at an
amplitude too small for the magnetic coupling to overcome the drag of the
surrounding plasma and so the island continues to rotate.

Raising the amplitude of the error field also strengthens the
coupling between island and error field so that the same size tearing mode
island can be induced to lock in a faster flowing plasma. In fact from fig.2
it can be seen that Vp, o« §B. An alternative way of viewing this is to say
that locking occurs above a critical error field amplitude: 8By, and that this
limit is proportionately higher in a faster rotating plasma. Fig.4 shows
that reducing the drag on the island by decreasing the viscosity allows it to
lock at a higher flow velocity

6. MODE UNLOCKING

By restarting simulations with an already locked island state,
computed from earlier runs with lower S,v or V, the locked mode can be
shown to unlock at a velocity Vi in general greater than the velocity Vy, for
which the rotating mode locks. That is, hysteresis occurs in the interval,
VL < V < Vy, within which the two attractors are locally stable.

To understand this we first note that the locked tearing mode is
generally larger than the rotating mode due to the additional reconnection
induced by the error field. It is consequently more strongly coupled to the
error field so that either the error field amplitude must be reduced to
decrease the magnetic coupling or the flow velocity raised to increase the
drag on the island in order to unlock it.

This is partially compensated for by the fact that the locked mode
becomes increasingly suppressed or attenuated as the flow is increased
towards V.. Figs.3(a) to (¢) show that the onset velocity Vg for suppression
of the locked mode decreases steadily with resistivity and is probably why
Vy also decreases with resistivity.

In the case of fig.3(a) the locked mode attractor close to Vy is stable
for an island width smaller than that of the rotating mode attractor at the
same velocity. The critical island width for unlocking therefore cannot be
the same as for locking otherwise it would have unlocked.

7. ISLAND SUPPRESSION (and Enhancement)
Towards zero flow the amplitude of the locked mode, in terms of the
reconnected flux, is simply the sum of the contributions due to the tearing
mode and the error field. As the flow is increased around the locked island
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the consequent increase in drag causes the island to be attenuated or
partially suppressed above a velocity Vig < VL.

This is with the exception of the weak viscosity case shown in fig.4 in
which the island is actually enhanced by the flow before locking. This
enhancement effect was also found for the error field induced island of the
tearing stable case[6] when v<<n and V> 0.1V (VA = Alfven velocity).

Toward large flow the amplitude of the rotating mode is just that due
to the tearing mode alone as the effect of the error field is screened out by
the flow. As the flow is reduced to where the rotating mode can start to
respond to the error field it is increasingly suppressed via the mechanism
described in section 4. The flow velocity VRs below which this occurs
appears to be almost independent of S, while the locking velocity Vi,
decreases with S so that for the S=105 case of fig. 3(c) the rotating island can
be highly suppressed. At such small amplitudes the rotating island is
found to transform into a rotating double island.

1.5 S
X O visc=10-4 (R)
o O visc=10*-4 (L)
g O vise=10%-3 (R
O visc=10%-3(L)
S 05f SN | 0w
0.0 RPN s
1072 10°" 10°
Vy

Fig.4 Steady state reconnected flux vs flow velocity for different
viscosities: v=10-3 and 104 with S=103, X,,=2., K;=0.35, dW=0.02

'8, SUMMARY AND DISCUSSION

In summary the locked mode attractor is observed to show mode
suppression roughly above some velocity Vi,s and go unstable (unlock)
above a the velocity Vi while the rotating mode attractor shows mode
suppression roughly below the velocity Vg and goes unstable (locks) below
the velocity Vr..

The time evolution shows that rotating tearing mode magnetic
islands lock in phase with an error field when the island width exceeds a
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threshold width corresponding to when the magnetic coupling to the error
field just dominates over the inertial and viscous forces.

Over the range of parameters tested so far: all four critical velocities
increase roughly in proportion to dB; Vs, VL and Vy decrease with
increasing S while VRg is almost independent of S. This dependence on S
leads to situations as in fig.3(c) where a highly suppressed rotating mode
is simultaneously stable with a fully reconnected locked mode over a range
of velocities. Such conditions would perhaps explain why, for example, the
application of helical current coils around a tokamak can on some
occasions suppress MHD activity while on others lead to disruption.

Reducing the viscosity can lead to enhancement instead of
suppression of the locked mode as the flow is increased.

For the tearing stable case, islands induced by error fields can be
highly suppressed above a critical velocity V. e« 8B S—2/5 v—2/3 [6]. This
scaling is not predicted by a previous analytical treatment[7] due to the use
of approximations not valid when the island is on the scale of the resistive
layer width.

The simulations show that even for the tearing unstable case the
islands and in particular the rotating mode (see fig.3(c)) can become highly
suppressed. Since this brings the island close to the scale of the resistive
layer it is also not clear that the the analytic treatment will be able to
correctly predict the onsets for locking and unlocking.

Perhaps a manifestation of this problem is the fact that the analytic
treatment predicts a limiting phase shift for the locked modes of =/2
whereas the simulations show that the o-point of a suppressed locked mode
can be as much as x out of phase with the error field.
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ABSTRACT - The damping of toroidicity and ellipticity induced Alfvén
eigenmodes (TAE, EAE) in tokamak plasmas is studied for a wide
variety of cases with the global wave finite element code LION.

1. Introduction

Any break of circular cylindrical symmetry removes the
degeneracies of the cold plasma or ideal MHD continuous spectrum and
creates gaps. In addition, a new class of Alfvén eigenmodes exists in
these gaps. They have been named after the geometrical effect they
stem from: Toroidicity induced (TAE) [1], Ellipticity induced (EAE) [2],
etc., under the generic name of gap modes. The toroidicity induced
gaps are created around q =qr =qr = (m| + 1/2)/In|, ® = o = 1/2q\/;,
where m and n are the poloidal and toroidal wavenumbers, respectively,
q is the safety factor and p is the mass density. The ellipticity induced
gaps are created around q = qg = (mJ|+1)/n|, ® = 0 = l/q\/p. The
number of gaps in the plasma is thus |n|(qa-qo) where qo and qa are the
values of q on axis and on boundary, respectively. Non-uniform profiles
of 1 /q\[;-)— imply that the gaps do not overlap and gap modes are con-
tinuum damped. Detailed studies of this effect can be found in Ref. [3]. A
few examples will be shown in Section 4.

Besides continuum damping we examine other mechanisms that
contribute to the stabilization of gap modes, in particular electron
Landau damping. We also briefly mention how finite Larmor radius and



finite drift orbit size affects the a particle driven instability of gap
modes. We are thus able to give a reasonable physical explanation of
important aspects of the experimental results obtained so far in TFTR
and DIII-D [4,5] and to expose important parameters that influence the
stabilization of gap modes.

2. Continuum Damping and Kinetic Damping

We consider a plasma in axisymmetric ideal MHD equilibrium.
The equilibrium is obtained from the Hermite bicubic finite element
code CHEASE [6]. The plasma is surrounded by a pure vacuum region
enclosed by a conducting wall. An antenna on which currents are pre-
scribed with given toroidal wave number n and frequency o is placed in
the vacuum region. In the plasma we have

2
VxVx_E? = %?03

(1)
where ? is the dielectric tensor operator. Detailed expressions of
Eq. (1) in toroidal geometry can be found in Ref. [7]. We consider first
the cold, current carrying, plasma model with zero electron inertia.
[For /m¢; << 1 it is identical to ideal MHD with Yp = 0.] Equation [1] is
singular at the spatial Alfvén resonances occurring on magnetic surfaces
(y = const.) satisfying (gyy - K)Ey = O, where K is a differential operator
involving Bev [8]. The singularities are resolved in a similar way to the
Landau damping problem. An imaginary part is added to eyy: ® is re-
placed by o(1+iv), with v > O to ensure causality. The operator (1) is now
regularized. Its eigenfunctions and eigenfrequencies are complex.
Equation 1 is discretized using a non-conforming, non-polluting finite
element scheme implemented in the LION code [7]. The limit v - O is
obtained numerically. It yields finite damping, therefore v should not be
mistaken for the damping rate. The total absorbed power vs applied
frequency, P(w), is calculated. When a global mode is excited it shows as
a peak on P(w). The position of the peak gives the real part of the
eigenfrequency, Re(w,), and the half width at half maximum (HWHM)
gives the damping y = Im(w,). Note that the solution for v — 0 differs
from the solution for v = 0: the non-analytical behaviour of the
eigenfunction around the resonances prevents from making an
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expansion in v. With finite v there is formally speaking no more
continuum but a discrete set of damped complex eigenmodes. We shall
nevertheless use the terminology "continuum damping" for the cases
where Re(w,) lies within the continuum frequencies formally defined
for v = 0, although the proper term is "resonance absorption damping".

The inclusion of kinetic effects (FLR) and finite me modify the
spectrum. The continuum is replaced by a discrete set of damped
eigenmodes of the kinetic Alfvén wave (KAW) and surface quasi-electro-
static wave (SQEW). Resonance absorption is replaced by mode conver-
sion to either a KAW (if vie > va) or a SQEW (if vie < va). The total power
absorption is the same as the cold plasma theory prediction, unless the
KAW or SQEW is undamped before reaching the plasma centre or edge:
resonance absorption does not depend on the detailed dissipation
mechanism. If the global mode has no resonance surface and if the

amping rate is small, kinetic effects can be treated perurbatively. Let
g (k) be the dissipative part of the hot plasma dielectric tensor operator
and let us apply it to the cold plasma eigenfunction E. For example, the
global collisionless electron Landau damping of Alfvén modes can be
written as [3,8]

(Y) %Ef p BT (va/Vie) exp(-vA/vi) |VAE‘|’|2 av (2)
y ) 2
L

@ %J’p IE]2 dv

where p;is the ion Larmor radius with electron temperature, the inte-
grals are on the plasma volume, and the subscript A denotes projection
onto the plane 1 go. Note that in a torus kj is a differential operator. For
TAE and EAE modes we find that k|Ey - (0/va)Ey. Treating kinetic
effects perturbatively implies that we assume they introduce dissipation
but do not affect the dispersive properties of the wave, which is clearly
not true near the spatial Alfvén resonances.

Other damping mechanisms that may be important include the
following. (1) Ion Landau damping is an order of magnitude smaller than
electron Landau damping for TFTR and DIII-D experiments [4,5], but in
a reactor one could have va/vy as small as 2. (2) Curvature drift colli-
sionless electron Landau damping is (y/0) =~ q2Beva/vie. (3) Collisionality
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of trapped electrons can give a substantial contribution to the damping.
It was shown in Ref. [9] that it is proportional to

I R e R i )

where ¢ = 4nne €4 4nA/m2 v3.

We point out that all these kinetic dampings, except (2) above
which is one order of magnitude smaller than the others, increase qua-
dratically with the toroidal mode number n. On the other hand, the
growth rate of o particle driven instability was calculated in Ref. [9] with
FLR and orbit size effects to increase linearly with the mode number up
to a maximum when k; po =1 and to decrease asymptotically as 1/k,pq
for k) pg >>1. [Note that k, is proportional to m which is proportional to
n.] Balance of these competing effects imply that intermediate n gap
modes are the most unstable, which is in good agreement with experi-
mental results so far [4,5].

3. A Semi-Empirical Formula for Electron Landau Damping

An example of TAE mode is shown in Fig. 1. The parameters are:
R/a =3.2, p(s) = (1-0.99 s2)0.7, n = 3, qo = 1.05, q; = 2.89, B = 0. The
wavefield extends over the whole plasma cross section and peaks
around all gap positions where q = (jm| + 1/2)/|n|. The radial wavenum-
ber is much larger than the poloidal wavenumber and is proportional to
the local shear. This suggested us to propose a semi-empirical formula
for the collisionless electron Landau damping. In circular plasmas with
R/a = 3.2, parabolic Te profiles and monotonic, quasi-parabolic q pro-
files, we found that (y/w);, follows approximately:

&}‘m 2.0 x 104 n2(qa - qo)2 a2 T2 B! n'l/2 Al/2 (4)
where a[m], Bol[T], neo[1019m-3], TeolkeV], and A is the ion mass in units
of proton mass. Figure 2 shows (y/0);, as calculated with the LION code
vs (y/o)L riT for a wide range of parameters: n = 1-4, g, = 2.5-5.0,



a=0.18-3m, Teo = 1-40 keV, nep = 3-20 x 1019m-3, B, = 1-5T, A = 1-3.
Good agreement is obtained over two orders of magnitude.

Electron Landau Damping
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FIG. 1: Contour plot of a n = 3 TAE FIG. 2: Collisionless electron

electric field component Re(Ey). Landau damping rate of TAE

R/a=3.2, p = (1-0.99s2)0.7, modes vs semi-empirical formula,

qo = 1.05, qq = 2.89, B =0. Eq. (4), in circular plasmas with
R/a = 3.2 and parabolic Te
profiles.

The numerical coefficient in Eq. (4) depends on aspect ratio,
elongation and triangularity through the dependence of the eigenmode
structure on these parameters. Unfortunately, in elongated and
triangular plasmas, TAE and EAE modes are particularly peaked near
the edge [3] where va ~ vie and thus (y/o)L strongly depends on details
of the Te profile and mode structure there. There is no simple scaling
law with elongation or triangularity. Near the edge other physical
mechanisms should be considered, in particular collisonal damping,
especially if density is not too small and temperature is low.
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4. Continuum Damping: Geometrical and Profile Effects

Figure 3 shows the continuum damping rate of the most weakly
damped n =2 and n =3 TAE modes for various density profiles. The
other parameters are: R/a = 3.2, circular, qo = 1.05, q3 =2.89, B = 0.
Peaked p profiles with flat edge gradients (o = 0) or slightly hollow p
profiles with steep edge gradients (o = 8) are such that 1 /q\/—; is non
uniform. Therefore, the gaps do not overlap and we have (y/®)cont of the
order of several percent. Note that for all cases considered here
(y/®)cont > 10-2. As a matter of fact, the gaps never overlap exactly and
all gap modes found here have resonance surfaces.

0.16
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0.14" '.. i N=

]

FIG. 3: Continuum damping rate of the most weakly damped n = 2 and
n =3 TAE modes (right) for various density profiles (left). R/a = 3.2,
o = 1.05, qa = 2.89.

We have also shown [3] that finite Bpo) decreases frequencies of
the gap modes. Even when the gaps overlap, the gap modes reach the
lower gap edge and are continuum damped for B values below Troyon's
limit. For example, for R/a = 3.2, qo = 1.05, q; = 2.89, we found the
n = 1 TAE frequency to be

Re((!)o) -~ 0.44 (1'0.5 Bpo]) (5)
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The effects of elongation (k) and triangularity (3), combined with finite
aspect ratio, were studied in several sequences of equilibria. The most
interesting result is shown in Fig. 4. It shows (Y/®)cont Of the n = 1 EAE
mode vs a/R for § = 0 and § = 0.3, in a plasma of elongation 2. For § = 0,
(y/ ®)cont is roughly proportional to (a/R)2 owing to the toroidal coupling
of the dominantly m = -3 wavefield near the elliptical gap qg =2 to a
m = 0 resonance surface. For a given a/R, (y/®)cont increases with §, con-
sistently with the triangularity coupling of m and m + 3. For § = 0.3,
(v/ ®)cont decreases with a/R owing to the increase in the distance bet-
ween the qg = 2 elliptical gap and the m = O resonance surface. On the
other hand, the TAE mode has (y/®)cont = O for all cases considered
here. We conclude that triangularity can stabilize the EAE but not the
TAE. This might be the reason why no EAE were observed in DIII-D [5].

The stabilization of TAE modes by continuum damping thus can-
not be achieved by shaping the plasma cross section, but rather by 1/ q\[g
profile effects. For ITER-like parameters (R/a=2.8, k=2, § = 0.4),
assuming a flat p profile, go = 1.05 and q = 4.2, we have found that
(y/®)cont > 5 x 102 for alln = 1 and n = 2 TAE and EAE modes.
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FIG. 4: Continuum damping rates of n = 1 EAE modes vs inverse aspect
ratio in plasmas with elongation x = 2, triangularity § = 0 (continuous |
line) and 6 = 0.3 (dotted line).



5. onclusions

(1) TAE/EAE modes can be excited by an antenna placed in the
vacuum region surrounding the plasma. (2) Electron Landau damping is
proportional to n2 and, therefore, may be the mechanism setting an
upper limit on the n's that can go unstable. Other important kinetic
damping mechanisms, such as collisionality of trapped electrons, also
increase quadratically with n. (3) Gap modes can be continuum stabili-
zed by finite pressure. (4) Triangularity can stabilize EAE modes. (5)
Gap modes are continuum stabilized by non-uniform profiles of 1/ q\/;.
For ITER parameters, assuming flat p profiles, the continuum damping
rate of all low n TAE and EAE modes is larger than 5 x 10-2.
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