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An energy functional given by W = [ [ [ d&®z[B*/(2p0) + p) /(T — 1)] is
proposed as a variational principle to determine three-dimensional (3D)
magnetohydrodynamic (M H D) equilibria with anisotropic plasma pres-
sure. It is demonstrated that the minimisation of W using an inverse
coordinate spectral method reproduces the force balance relations that
govern the MHD equilibrium properties of 3D plasmas with p; # p,
that have nested magnetic flux surfaces. Numerical procedures already
developed for the scalar pressure model can be easily extended to the
anisotropic pressure model. Specifically, a steepest descent procedure cou-
pled with the application of a preconditioning algorithm to improve the
convergence behaviour has been employed to minimise the energy of the
system. The numerical generation of 3D torsatron equilibria with highly
localised anisotropic pressure distributions attests to the robustness of the
method of solution considered.



1. Introduction

Auxiliary heating schemes required to drive magnetic plasma confine-
ment configurations towards the regime that approaches the conditions
imposed for sustained controlled thermonuclear fusion cause the plasma
pressure to become anisotropic. In the Compact Helical System (CHS),
for example, anisotropy factors (corresponding to the ratio of the pressure
along the magnetic field lines pj to the perpendicular pressure p; ) of the
order of 3 have been measured with tangential neutral beam injection of
1.1 MW and energetic beam particle energy of 40 kev [1]. Furthermore,
bootstrap currents have been measured in the W7AS stellarator [2] and
the ATF torsatron [3]. Full consistency between the bootstrap currents
observed and the description of the MHD equilibrium state can only be
reconciled when p| # p.. Magnetic confinement configurations that rely
on hot electron layers to provide the mechanism to stabilise the plasma
such as the ELMO Snakey Torus [4] can only be described with models in
which the pressure is anisotropic. Thus, there is a motivation to develop
numerical tools such as MHD equilibrium solvers with anisotropic plasma
pressure. Until now, most anisotropic pressure MHD equilibrium solvers
have been limited to axisymmetric [5] or helically symmetric geometry
[6,7]). In stellarator geometry, an expansion approach has been applied to
generate MHD equilibria with p # p1, but it is limited to cases in which
the pressures remain exclusive functions of the radial variable [8].

Scalar pressure 3D MHD equilibrium codes based on finite difference
schemes [9,10] and on spectral energy minimisation methods have been
developed in the past [11-17]. In this article, we extend the formulation
to allow for anisotropic pressure. Specifically, a positive-definite energy
functional is devised whose variation yields the MHD equilibrium equa-
tions that describe 3D magnetic confinement systems with anisotropic
pressure. Using an inverse coordinate spectral approach, the formula-
tion is constrained to have nested magnetic flux surfaces with a single
magnetic axis. Consequently, the determination of equilibria with mag-
netic islands, internal separatrices or X-points is excluded. A different
approach is required to treat problems of this nature in a self-consistent
manner [18-20]. Nevertheless, the constraint of flux surface nestedness
does not appear to constitute a serious impediment for the applicability
of codes such as VM EC [17] to usefully model fully 3D configurations
as has been demonstrated in the CHS compact torsatron [1]. The for-
mulation we have adopted for the anisotropic pressure model permits a
relatively straight forward adaptation of the methods previously developed
to solve the scalar pressure problem. In particular, we have implemented



the anisotropic pressure formulation of the 3D MHD equilibrium prob-
lem in a modified version of the VM EC code [17]. We take advantage of
the existing steepest descent procedure together with the preconditioning
algorithm to improve the convergence properties to minimise the energy
of the system [17]. This anisotropic pressure version of VM EC is then
applied to the ATF torsatron [3]. We numerically generate 3D equilibria
with highly localised anisotropic pressure distributions that could serve to
model an energetic particle layer induced by radio frequency or perpen-
dicular neutral beam injection techniques.

2. The anisotropic pressure MHD equilibrium description

2.1. The MHD equilibrium relations

The basic relevant equations that describe MHD equilibrium properties
in magnetically confined plasmas with anisotropic pressure are given by
the Maxwell equation

V.B =0, (1)

Ampere’s Law

V x B = o] (2)

and the MHD equilibrium force balance relation

F=-V.P+jxB, (3)

where F constitutes the residual MHD force and P denotes the pressure
tensor that is expressed as [21]

P = p, I+ (py — pL)bb. (4)

The magnetic field and the plasma current density field are B and j, re-
spectively. The permeability of free space is ug, I represents the identity
matrix and b = B/B corresponds to the unit vector along the magnetic

field lines.



2.2. The magnetic field representation

We introduce a coordinate system (s, u, v) where the radial coordinate s
labels the magnetic flux surfaces. Consequently, the condition B - Vs = 0
is imposed. The periodic poloidal and toroidal angle variables are denoted
by u and v, respectively. A magnetic field that satisfies the conditions
V.B = B-Vs =0 can be in general represented by the expression [11]

B = Vo x VU + V& x Vy, (5)

where x is a generalised poloidal angle variable that makes the magnetic
field lines straight. The function y is related to the poloidal angle u
through the expression

X =u+ A(s,u,v) (6)

where ) is a periodic stream function that renormalises the poloidal angle
in an iterative procedure to minimise the spectral width that is required
to describe the MHD equilibrium state [11]. The toroidal magnetic flux
is 2 ®(s) and the poloidal magnetic flux is 2r¥(s). Because & and ¥
are both functions of s, the magnetic flux surfaces are constrained to be
nested with a single magnetic axis. Magnetic island structures are there-
fore excluded from consideration within this formulation of the problem.

The contravariant components of B are

- d'(s) [5))
B*=B-Vu = Vi [L(S)—%}, (7)
v d'(s) oA
B'=B-Vu = \@(1+a), (8)
B°*=B-Vs = 0. (9)

The B-field components within the covariant representation are related to
the contravariant components through the metric elements, namely

B, = g..B* + g, BY, (10)

where ¢ denotes either s, u or v. The Jacobian has the relatively simple
form



OR0Z OROZ
\/§=R(5;5;—§3-%>, (11)

because v corresponds to the geometric toroidal angle [11]. The metric
elements are expressed as

=§£3_R+R2av 3v+3Z3Z (12)
e = B¢ By 3 p | B O’

where the labels ¢ and ¢ serve to identify s, u or v.

2.3. Parallel force balance

The scalar product of the magnetic field B with the force balance rela-
tion given by eq. (3) yields the expression

Fy=~(B-V)p + =B v)B. (13)

The conditions for an MHD equilibrium state are satisfied exactly when
F = 0. Thus requiring F}; = 0 suggests the dependence p; = p(s, B) and
p1 = pi(s, B) [22]. In principle, the pressures may also vary from field line
to field line, but such dependence is ignored in this paper. The parallel
force balance then reduces to [22]

Opy| _ P —Pu
5B|- B

(14)

where the labelling indicates that the derivative of p; with respect to B is
to be evaluated at fixed s.

2.4. The ef fective current density

In the anisotropic pressure MHD equilibrium problem, it is convenient
to define the effective plasma current density [22]

K =V x (6B), (15)

which satisfies the same properties as j in the scalar pressure problem.
In particular, K is divergence-free and at equilibrium K -Vs = 0. The



anisotropy factor ¢ is written as [22]

ool _m-p_ 1 1dp (16)

The poloidal and toroidal contravariant components of the effective cur-
rent density field are, respectively

. 1 d(oB,) 09(¢B,)
K =K-Vu_7—§[ o~ = ], (17)
K=K Vo= — [a(gf“) - a(gfs)]. (18)

V9

2.5. The rotational transform

The effective toroidal plasma current is expressed as

2z 2 s
2rJ(s) = —2% /oT dv/o du/o ds\/gK - Vv = 2n(0B,), (19)

where we define the average as

L g p
(4) = 5o /0 dv /0 du/GA(s, u,v). (20)

Decomposing the poloidal magnetic field component B, in the covariant
representation according to eq. (10), we can obtain an expression for the
rotational transform ¢(s) = d¥/d® profile,

(oo B+ R)) + (B
&2

Thus, in the determination of MHD equilibria we can either prescribe the
rotational transform profile or the effective toroidal plasma current profile.

(21)



3. The energy minimisation method for MHD equilibria

3.1. The energy functional minimisation

We define the total energy of the system as

we ] ] [l ) =

where we express the parallel pressure as
r 1+ p(57 B)
T
(14 p(s, B))

in which M(s) corresponds to the plasma mass function previously in-
troduced in the scalar pressure formulation of this problem [11] and cor-
responds to a flux surface quantity. The anisotropy in the pressure is
modelled through the factor p in the expression for pj because its mag-
nitude can vary along a magnetic field line. The energy functional W is
positive-definite when the adiabatic index I' > 1. This condition guaran-
tees that the minimum energy state corresponds to an MHD equilibrium.
The energy functional W is varied with respect to an artificial time pa-
rameter ¢ such that the magnetic flux functions ® and ¥, the plasma mass
M and the coordinates s, u and v remain invariant [11]. The variation of
the function p is performed through its dependence on B, namely

dp_ op 0B
dt 9B ot

pi(s, B) = M(s)[®'(s)] (23)

(24)
After simple algebraic manipulations of the integrand, we can write

///dsdudv[ ag 3(@3) (pJ_ + 23_;()) %\{E] (25)

Decomposing B = B,B* + B,B", invoking the relations (7-11) and inte-
grating by parts, the variation of the energy can be expressed as

e / / / dsdudvFR / / / dsdudsz
_ / / / dsdudvFA——- (26)

B2 OROZ OZOR
‘//-1 pLt )(auat ?9?_5{)'




The last term constitutes the deformation of the plasma-vacuum interface
boundary. In a free boundary calculation, this surface contribution must
be computed consistently with currents flowing in external coils [23]. In
fixed boundary calculations, it vanishes (because by definition R/t =
0Z/8t = 0 on the boundary). The coefficients of the internal plasma con-
tribution to the variation of the total energy are

Fp = ‘1 [0V/gB*(B- VR)| + (—% [0V/GB*(B - VR)|

Su

15] 07z B? 81,07 B?
L (T %)] + 52 [Ba—(pr + 5‘,;;)] (27)
+-\§ [(ps + —2%2) ~ oR¥B"YY],

Fy = %[a\/ﬁB“(B . VZ)] + é%[a\/gB”(B . v2)|

9 8R, B\, 8[.0R, B
+t5o [R'gs— (PJ. + :2—;5)] - 5;[35; (PL + 57;(;)]’ (28)
and
Py = #(s) [ o-(0B.) — o-(oB.)]. (29)

3.2. The MHD force balance relations

We shall now demonstrate that the coefficients Fr, Fz and F) shown
in egs. (27-29) actually correspond to different components of the MHD
equilibrium force balance relation. For that purpose, it is convenient to
present the alternative form of F,

2

F=-V(p + %) +(B- V)(oB). (30)

Then the cylindrical MHD force component

Fr = +/gRVuXVZ-F (31)

corresponds to the expression given in eq. (27) and the cylindrical MHD
force component



Fz = JGRVRXVv.F (32)

corresponds to the expression given in eq. (28). The perpendicular com-

ponent of the force balance is calculated by taking the scalar product of
F with ,/g(B x Vs)/B? to obtain

FL=—/GK Vs= a(‘;f“) - a(gf”). (33)

Note that the vanishing of F; corresponds to the condition that the ef-
fective plasma current density lines lie on flux surfaces. We also identify
that

Fy = —&'(s)F\L. (34)

An MHD equilibrium state with p # p, is achieved when dW/dt vanishes.
This condition is realized when Fg, Fz and F) vanish simultaneously.

3.3. The method of solution

The formulation of the MHD equilibrium problem presented here lends
itself to a relatively easy adaptation of the techniques developed for the
numerical computation of scalar pressure 3D equilibria as described, for
example, in the VM EC code [16-17]. Specifically, the anisotropy factor
causes the dependence of the preconditioning matrix elements on the total
pressure within VM EC to be replaced with p; + B?*/2p,. The precon-
ditioning algorithm is designed to improve the convergence properties of
the steepest descent energy minimisation procedure invoked in VM EC
to compute 3D equilibria. The internal MHD forces that are required to
calculate the variation of the energy of the system are modified accord-
ing to egs. (26-28). These have been implemented in VM EC in order to
compute anisotropic pressure equilibria. Further details of the numerical
approach can be found in ref. {17].

3.4. Diagnostics

The reduced MHD force balance relation after applying the conditions
of parallel force balance becomes



opy

FZ-aS Vs+ K x B. (35)

B

In order to verify that the minimal energy state computed through the
vanishing of Fg, Fz and F) to within some tolerance actually constitutes
an MHD equilibrium state, it is convenient to calculate the flux surface
average of the radial force balance component

__9p
Fy=- Os

+/9K*B" — \/gK"B* (36)
B
given by

F _ 1 3p|| 8 [oB, (s) 9 [/oB, (37)
o'(s)/ — \®(s) Os |/ 0s\ 7 5 Vil
The near vanishing of this quantity constitutes a very useful indicator of

the validity of a 3D MHD equilibrium that is computed. Furthermore,
the firehose stability criterion [22]

oc>0 (38)

and the mirror stability criterion [22]

T 9B i  BOB

must be satisfied everywhere to obtain numerical convergence.

T >0 (39)

4. Application to ATF

We construct 3D MHD equilibria with anisotropic pressure in a con-
figuration that models the ATF torsatron [3] with a fixed boundary. The
dominant Fourier amplitudes of R and Z that describe the plasma-vacuum
interface are presented in Table 1.

The pressure anisotropy factor p(s, B) that appears in eq. (23) is com-

puted from a Maxwellian distribution function that is skewed in the per-
pendicular velocity direction. This model, invoked previously in helically
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symmetric geometry [7], is represented as,

Bm,-n(s)]s.

(s, B) = pals)[ =222

(40)
This form is particularly appropriate for modelling hot particle layers in-
duced by perpendicular neutral beam injection or radio frequency heating
techniques. The energetic particles concentrate very locally along a mag-
netic field line about its minimum value in this case. A more uniform
distribution along a magnetic field line results when the ratio of B,,;, to
B is raised to a smaller power than the one chosen. Implicit in the vari-
ation of p with respect to ¢ described in eq. (24) is the invariance of the
factor py(s)B5;,(s). In order to radially localise the hot particle contri-
bution that would characterise a layer, we choose the amplitude function

pr(s) as
Pa(s) = pes®(1 — )%, (41)

which has the effect of concentrating the energetic species approximately
halfway between the magnetic axis and the plasma-vacuum interface in
terms of the radial variable s. The hot particle pressure vanishes at the
magnetic axis and at the plasma edge with this functional form chosen for
pr. Note that s is roughly proportional to the volume enclosed because the
toroidal flux function @ is chosen proportional to s. For the mass function,
which describes the thermal plasma, we choose the standard profile

M(s) = M(0)(1 - s)?, (42)

which is peaked at the magnetic axis. The effective toroidal plasma cur-
rent is prescribed as

2nJ(s) =0, (43)

which implies that the rotational transform profile must be evaluated ac-
cording to eq. (21).

The different plasma J values are defined as follows. The total 8 is

5 LI &x(2p +py)/3
J I ] d®xB?[(2p0)
The thermal component of the total 3 is

Il dapa
o0 =TT @B o)’ 4

(44)
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where the thermal pressure py, corresponds to
M(s)[®'(s)|F

o) = MOIFEF
(14 (s, B))

The energetic particle contribution corresponds to the difference between

B and Bi.

(46)

An example of an ATF case in which the thermal pressure component
is nearly vanishing but the hot particle pressure component is finite is
realized for M(0) = 0.4 and p. = 120. This corresponds to a case where
the total 8 = 0.55%, B, = 0.16%, B (0) = 0.48% (the value of B at the
magnetic axis), the peak value of 8 due to the energetic species is 4.85%
and the minimum value of 7 is 0.724. The inner third of the plasma vol-
ume displays a weak magnetic hill, the middle third of the plasma volume
has a weak magnetic well driven by the energetic particle pressure and the
outer third of the volume displays a typically large magnetic hill that is
characteristic of torsatron devices. The total pressure distribution, given
by (2p. + pj|)/3, on 4 toroidal planes that span half of one field period of
the device is shown in fig. 1. Partially concealed by the plane v = 0 are
the planes v = 7/36, v = 7/18 and v = 7/12, in that order. The maxi-
mum pressure illustrated in the colour red occurs on the plane v = 7/36
and is localised about the surface corresponding to s = 0.42. The peri-
odic repetition of equilibrium structures according to the number of field
periods of the device is manifest in fig. 2. The hot particle pressure layers
on the magnetic flux surface with s = 0.4375 consists of strips of finite
poloidal and toroidal extent that are localised around the minimum value
of B on this surface. This spatial localisation becomes more evident by
comparing the pressure distribution with the corresponding mod-B dis-
tribution on this surface which we present in fig. 3. In fig. 3, the maxima
in the magnitude of B are depicted in red and the minima in dark blue.
The hot particle pressure strips are aligned with the mod-B minima, but
are narrower consistent with the functional dependence chosen for p on
B as expressed in eq. (40). To plot the mod-B distribution is instructive
because it plays an important role in plasma transport processes and has
implications for the radio frequency heating problem. For completeness,
we present a case in which both the thermal and energetic particle con-
tributions to the pressure are finite in fig. 4. For that purpose, we have
chosen M(0) = 3.67 and p. = 12 which results in a peak hot particle 8
almost the same as in the previous example at 4.83%, a total A = 1.79%,
B = 1.52%, Pir(0) = 4.80% and a minimum value of 7 of 0.725. The
pressure distribution is shown on the same toroidal planes as in fig. 1,
namely v = 0, v = /36, v = /18 and v = 7/12. The thermal pres-
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sure is strongly peaked on axis. The energetic particle contribution to the
pressure remains concentrated about the surface with s = 0.42 and the
toroidal plane v = 7 /36.

5. Summary and conclusions

We have devised the energy functional W = [ [ [ d®z[B?/(2p0)+py/(T—
1)] as a positive-definite variational principle (for I' > 1) that can be used
to obtain 3D MHD equilibria with anisotropic plasma pressure. The min-
imisation of W using an inverse coordinate method reproduces the hor-
izontal (Fg), the vertical (Fz) and the perpendicular (F) components
of the MHD equilibrium force balance relations that govern plasmas with
anisotropic pressure, p; # py. The formulation is limited to plasma con-
finement configurations with nested magnetic flux surfaces and a single
magnetic axis. In addition, the pressures are assumed to depend only
on two variables, the radial coordinate s and B. The parallel pressure is
prescribed and the perpendicular pressure is determined consistent with
conditions of parallel force balance. The vanishing of the flux surface av-
erage of the radial force balance relation constitutes a useful measure for
the accuracy of the equilibrium state that is computed. The anisotropic
pressure formulation for the 3D MHD equilibrium problem has been imple-
mented in the preconditioned version of the scalar pressure VM EC code
[17]. This takes advantage of the existing preconditioning algorithm that
is designed to improve the convergence properties of the steepest descent

energy minimisation procedure that is utilised in this code to generate 3D
MHD equilibria with pj # p.

This modification of the VM EC code has been applied to an ATF tor-
satron configuration. We have computed 3D MHD equilibria with highly
localised anisotropic pressure distributions that could model an energetic
particle layer induced by auxiliary heating techniques such as electron
cyclotron resonance heating, ion cyclotron resonance heating or perpen-
dicular neutral beam injection. The high degree of localisation of the
anisotropic pressure distribution that has been achieved attests to the ro-

bustness of the method of solution that has been applied to numerically
determine 3D MHD equilibria.
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m|n/L| Run | Zmn

0} =2 0.0001 | —0.0002
0} -1 | —0.0008 | 0.0055
0 0 2.0655 0.0000
1 -2 0.0002 0.0002
1 -1 0.0069 0.0069
1 0 0.2638 0.3316
1 1 —0.0724 | 0.0862
1 2 —0.0013 | 0.0017
2 0 0.0044 | —0.0075
2 1 —0.0129 | 0.0104
2 2 0.0021 | —0.0012
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Table 1: Fourier decomposition of the boundary of an ATF configuration.




