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Abstract

Kinetic theory is used to develop equations describing dynamics of small-amplitude elec-
tromagnetic perturbations in toroidal axisymmetric plasmas. The closed Vlasov-Maxwell
equations are first solved for a hot stationary plasma using the expansion in the small
parameter €. = p/L, where p is the Larmor radius and L a characteristic length scale
of the stationary state. The ordering and additional assumptions are specified so as to
obtain the well-known Grad-Shafranov equation. The dielectric tensor of such a plasma
is then derived. The Vlasov equation for the perturbed distribution function is solved
by the expansion in the small parameters ¢, and €, = p/A, where X is a characteristic
wavelength of the perturbing electromagnetic field. The solution is obtained up to the
first order in €, and the second order in ¢,. By integrating the resulting distribution
function over velocity space, an explicit expression for the tensor is derived in the form
of a two-dimensional partial differential operator. The operator is shown to possess the

proper symmetry corresponding to the energy conservation law.



I. Introduction

The dielectric tensor operator of hot inhomogeneous plasmas has recently been
derived for slab'~® and cylindrical* geometries. The objective of this paper is to obtain
the corresponding tensor for a toroidal axisymmetric system. Implemented in a numerical
code, it will provide a tool for studying electromagnetic wave propagation and instabilities

in tokamak-like plasmas. The calculation is carried out under the following assumptions :
o The unperturbed system is a stationary toroidal axisymmetric plasma .

o The hot plasma is assumed to be collisionless so that each species is described by

a distribution function obeying the Vlasov equation.

e The two parameters . = p/L and ¢, = p/A, are considered small, where p is the
Larmor radius, L a characteristic length scale of the stationary plasma and A a
characteristic wavelength of the perturbing electromagnetic field perpendicular to
the toroidal direction (that is the field in the poloidal plane). The stationary state
is considered up to the first order in €., the perturbation by the electromagnetic

field is evaluated up to the orders e.c,and €Z.

o To the zeroth order in €, the stationary plasma is in a local equilibrium, the distri-

bution function is therefore local Maxwellian.

As for any linear response calculation, the unperturbed state must first be considered.
This is done in Sec.Il. The solution of the linearized Vlasov equation to the order desired
is then obtained in Sec.III while the derivation of the dielectric tensor itself is presented

in Sec.IV. Finally we draw conclusions in Sec.V.



II. The Stationary State

The distribution function f(z,v,t) of each species of mass m and charge q obeys

the Vlasov equation
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where B and (1_5:, E) are the magnetostatic and electromagnetic fields obeying the Maxwell

equations. The stationary distribution function fo of the unperturbed plasma therefore

satisfles
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where Q = ¢B/m is the cyclotron frequency and (€., ?b,?||) an orthonormal magnetic

coordinate system such that
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and €n X €r=¢€| . (3)

Knowing that for a charged particle in a magnetostatic field its energy is an invariant
and its magnetic moment an adiabatic invariant, it is convenient to adopt the gyrokinetic

. b d
variables (z,¢€, u, @, o) where

v=v,(cosa €, +sina €p) +v) €|, (4)
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Notice that the geometry of the magnetic field is characterized by the coefficients

— — —

T;wa =€, (V 6,,)- €o My v,0 € {naba ”} (8)

These twenty-seven coefficients (Christoffel symbols) can be expressed in terms of the

nine coeflicients
,H;w =zu (VX g,u.) H, v € {n7b) ”}, (9)

using well-known formulae of vector analysis. One obtains the following relations

Tony = Bays Tajjn = Brbs Ty = 2(Bss + By — Brn),
Tons = By, T = 3(Ban + By — Bss)s Ton) = Bon,
Tijpn = 5(Ban + B = By)s Tipgn = Bles Tijel = Bjin»
(10)
Tivo = =Tyou-

We shall solve Eq.(6) using a perturbation method. For this reason we write fo in
a series expansion with respect to the small parameter ¢, = p/L, which compares the

variation of equilibrium quantities with the Larmor radius p = v/Q
fo=F+FO 4+ F® 4 . (11)

Noticing that the operator £(1) is of order one in €., Eq.(6) written in zeroth order shows
that F is independent of o
F # F(a). (12)

The fact that fo is periodic in « imposes a further constraint on F. This can be obtained
by the annihilation method, which consists in writing Eq.(6) to first order in €. and

averaging it with respect to a over the interval [0,27]. It yields
1 2
— / daLVF =< LW > F =0, (13)
2w Jo

which implies

V¥ =0, (14)



where relations (10) and the incompressibility of the magnetic field were used (we adopt
the notation V, =¢, V).

Solving Eq.(6) to first order in e, gives
FO = ( / ; L’,(l)da) F +GW, (15)

G®) being a function independent of a, which is yet to be determined. We shall obtain
G by applying the annihilation method to Eq.(6) written to second order. So as to
render this procedure feasible, the distribution function at zero order must be specified.
We assume that the plasma is close to a local equilibrium; F is therefore essentially
Maxwellian. To create a necessary internal current a slight anisotropy must however
subsist in the velocity distribution. As F is independent of ¢, the anisotropy is expressed
by its dependence on &, which allows for a current along the magnetic field, the so-called

force-free current. We therefore set

F = Fu(l+6W), (16)

Fy = exp(—2-), 60 = 60(Z 1, e, 4, 0),
Vih

CAL
Fr being the Maxwellian distribution with the local density N = N(Z ) and the thermal
speed squared v;(T )2 = 2T/m, 60 characterizing the anisotropy. We assume that the
anisotropy is small and thus consider §(!) as a term of order one in ¢.. The first order

contribution to the distribution function can then be written as

— —

FO) f_l_g_f_ll Yy + GO, (17)
Applying the annihilation method thus yields,
< LOFO) 5=, (18)

which implies

1

1 o -
y VG = o [(vﬁ +501)(VInB) - (€ xV) = 4V - (B xV)| Fu, (19)



where relations (10), Ampere’s law and the fact that the current density is at least of
order one in ¢, were used.

We now restrict ourselves to an axisymmetric system. In cylindrical coordinates
(r,,2) all physical quantities are thus independent of the toroidal angle (. Let us consider
the magnetic flux through a surface enclosed by a toroidal line, given to a factor 27 by

the function
1 -
P(r,z) = -2?}5(”) B-do =rA,, (20)
where A, is the toroidal component of the vector-potential (E: V x Z) The magnetic

field can then be written as follows
B= V¥ x Ve +rB,Ve. (21)

Since B -V = 0, ¢ =const is a magnetic surface. We can now definitely orient the local

magnetic coordinate system by setting

€= T (22)

and adopt the space variables (v, x, ¢), which suit the axial symmetry of the magnetic

vy
b

surfaces. The variable y is defined so that the local coordinate system

Vx

—_ e .th —+=
(eny€py€y) Wi €p —|VX|

(23)
is orthonormal. The transformation to the local magnetic coordinate system is given by
€=by, €, +b, €, where b2+02=1. (24)

Using Ampere’s law and realizing that the current density up to first order in e, has no

component along €, shows that rB, is a surface quantity, that is
rB, = (rBy,)(¥). (25)
Constraint (14) and the axial symmetry imply that F is also a surface quantity

F =F(¢,¢,u,0). (26)
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By further using the axial symmetry and the above-mentioned properties of the current

density, Eq.(19) yields
rB¢v|| aFM
QO oy

The stationary distribution function can finally be written in terms of the magnetic

field

GM = — (27)

OF
9

The magnetic field however is partially created by the plasma itself. This self-consistency

fo=Fu(1+6W) 4+ 6(%3 v By) 7~ + O(ep)- (28)

is expressed by Ampere’s law
Vx B=pojo where jo(3)=q [T folF,V)d%. (29)

To enable the calculation of the current density, the anisotropy 6!} must be specified.
The charged particles follow the magnetic field lines, which twist round the magnetic
surfaces. Because the kinetic energy and the magnetic moment are conserved quantities,
some of the particles are trapped and oscillate on a portion of the magnetic field line.
In a stationary state these particles cannot contribute to the current. The free particles
however always follow the magnetic field line in the same direction and can thus generate
a current. If By,(v) is the maximum magnetic field amplitude on the surface 1 =const,

then a particle is

trapped . € < By (¢)p
untrapped if € > Bn(¢)p. (30)

Consequently, we choose the following continuous definition for §(!)

60 = &2 (e — Bp) - H(e — Bnp), (31)
th

where ¢g(¥) < 1 and H is the Heaviside function. For large values of ¢ this definition
leads to negative values of the distribution function. The error however is negligible due
to the fact that Fjs is small in that region. The current density to first order in €. relative
to Eq.(28) can now be evaluated. One obtains,

—

Lng Uik B _ %(NT) 2, +0(E). (32)




The first contribution is the force-free current along the magnetic field generated by the
term Fys6()). One can easily show that the continuity equation V - ;0 = 0 is satisfied.
Inserting Eqs.(21) and (32) in Eq.(29) and projecting this equation along €, and ¢,

leads to the following equations

. 20 14, , d
—A¢=—(A—;37)‘/’—§%I + por @-P, -
4y #og gNvy,
dy~ 2/7 Bn '’

where I = rB, and p=NT is the scalar pressure. The first equation in Eqgs.(33) is the

well-known Grad-Shafranov equation of MHD theory.

ITI. Solution of the Linearized Vlasov Equation

By establishing a relation between the induced current and the electric field, the dielectric
tensor describes the linear response of a system to a small electromagnetic perturbation.
One must therefore solve the Vlasov equation linearized with respect to the perturbing
quantities. Let ; and (E‘, E’) be the fluctuating parts of the distribution function and

electromagnetic fields respectively. The linearized Vlasov equation then reads

0 0 - =y 0

— 7 pa - : a
(E-l— v -—a—_g—i-ﬂ(v X e|) ) f=—"(E+ v x B)'ﬁfo (34)

g
m
fo being given by Eq.(28). The initial system being stationary and homogeneous in the
toroidal direction, it is convenient to perform a Fourier transformation with respect to

time and a Fourier series decomposition with respect to the variable ¢. Let us choose

the following definitions for these two transformations

9(t) = o= [ () expl(—iwt)des, (35)
9e)= 3 snexpling). (36)

In what follows we will omit the index n, and define the toroidal wave number

k, = % (37)



After these transformations and adopting again the gyrokinetic variables, Eq.(34) can be

written
{——iw + vV, + (’U”bp + vbb¢)V,, + i(v||b¢ — vbbp)k¢ B [v“ v V 6“) v +4 v - VB)] 8/1
+ l: (V eb) 6 + it (V 6“) (UJ_ X _g”) —-Q] EZ} f= (38)

__;7_?‘_ l:(vE)b—e_*_ v, - (E+v XB)BB,J, E((Z”X 'v_l_)-(E"I"U XB)%] f07

where the electromagnetic fields obey Faraday’s law

-»

- 0 B
V x E= _W (39)

To respect causality, w is assumed to have a small, positive, imaginary part.
Let us realize that it is not necessary to know the entire distribution function to
evaluate the current density. To see this we decompose f in a Fourier series with respect

to o :

N~ 40 n
f= E f1 exp(ile). (40)

l=—00

The current density can then be written

F=af @ [2Ga + TG mGa-Fo g B, @)

where we use the following notation

/d% =27 /0+oovJ_dv_|_ /_zodv“. (42)

We thus solve Eq.(38) in such a way as to provide the three Fourier coefficients fy, f_;
and f,.
Eq.(38) is solved up to the orders €2 and ¢.¢,, where ¢, evaluates the variation of the

electric field in the poloidal plane with respect to the Larmor radius p

V.E
% =P5 , v € {n,p}. (43)

The terms of order €2 are neglected so as to stay consistent with the unperturbed state

derived only up to first order in ¢.. The wave number k, is of order ¢,
ko = O(e,). (44)
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The poloidal component of the magnetostatic field is assumed to be small, therefore we

set
by, = Oe.). (45)

As with the stationary state, we expand f in a series with respect to € (e, or ¢,)

~ ~0) (1)

=F 4T .. (46)
To be able to write Eq.(38) to a certain order in ¢ we must evaluate the leading orders

of the geometric coefficients 8,,. This is done in the appendix. We obtain the following

relations :
Brn = 0, ,Bn||7/8||n,ﬁ||b = O(Ce) /Bb|| = 0(6;,,), (47)
Brbs Bons Bos = O(€2), By = Oecey).
For similar reasons we must consider the following derivatives of the coefficients
VBin = BBy = Olecern), ViuBis = —BinBsy = Ofecep), (18)
VB> VB = O(ecep)-
Subsequently we also use the relations
Valnk, =V,InQ = B, Volnk, =V, InQ = —fy,, (49)

which are valid to the order we consider, obtained using Eq.(A.1) and the fact that to
order zero in €, the magnetostatic field decreases like 1/r.

Let us write ;fm) as the contribution of order m in € to the harmonic ! of the Fourier
series. To solve Eq.(38), we first write this equation to the different orders in e. We then
transform the resulting equations using the Fourier series decomposition with respect to
a, which enables us to express the contributions ?fm) in terms of the contributions of

lower order with respect to e.

To zeroth order in € Eq.(38) reduces to

%7 =45 BoF, (50)
where
~(0) ) 0
L = —t(w—kyvy — zQ—a—&—). (51)
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In Eq.(51) k, is of order zero, despite the ordering (44), as k,v)| can be of the same order

as w. After applying the Fourier series transformation, Eq.(50) yields

~(0) q oF

Joo = G "e B

~(0) q Vi OF .

fl = imQ_l 7¥(En - zEb)) (52)

where we have used the definition
U =w— kv —I9. (53)

In Eqgs.(52) F is given by Eqs.(16) and (31); the contributions ;(0) thus already contain
terms of first order. This is done for practical reasons so that we do not have to decompose
F in terms of various orders. The same is done with the coefficients 8,,, which are
classified to their leading orders. Also, we do not write the expressions for ;ET) because
they can be obtained from the reality condition

~(m) ~(m)*

fi (wk,) = fo (—w,—k,) ) weR. (54)

Now to first order in € Eq.(38) reads

~(0)M(1) A (1)~0)
L f +£ f =

4 O p g (P T Byl O 1)
L5 By F W+ 50 -(B+75 x B 55+ FY) (55)
+L(E' X 1) (E+7 x 1:'3'“’))iF(1>]

v? H Oa ’

with

~(1) 1, - 0
L = {vnvn + vV, — B [’u"(vnﬂ”b —vpBn) + 1 v -(VB)] a5 (56)
The components of the magnetic field to zeroth order in e expressed in terms of the

electric field using Eq.(39) are given by

~0)  k,

~0) k ~ (0)
B, =—-—"E, B, =-2
W

w
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where as in Eq.(51) k, is of order zero. Solving Eq.(55) using the zero order contributions
and Eq.(28) yields

o = 4,,39 {vl (QF (VaEn + VpEs) +iQ7 (Vs — Vo En)]

+ (V1B — 20iB1p)(QF En + 1Q7 Ey)
+ (V1B — 20iB1n)(iQ1 B — QF Es) (38)

+ vl (2kovyBys + iQ8)n)(QF En + Q7 Ey)

. oF
-+ vi(2k v“ﬂ”n—lﬂﬂ“b)(Q; Q+Eb)} e
. gEy, [vi_ OF gk oF
mQQo[ Vnge t o V| Himang |1V 5e TV
~(1) _ quLY)| k¢v||+w + oF
oo = omaean T F HET Birge
1quy 1Q0F 1k, OF s
T oma, [ Bwop Twap, T Q Voge )| (Bn— 15
quLy| QE
T 2mOQ_ 1E IV de’ (59)
~(1) _ qvi . qu,v" -0 + _ . oF
fa = T IO [—(zﬂn||+ﬂb||)+ —a., & + L7 (Ba — i)~
qui : oF
~Imans, B IV (60)

where we have used the notations

1 1 1 1
i - —— ettt
1'<Qliﬂ-) Q""(W*ﬂ-ﬁ)’ (61)
= B £ iBjjn, LE=V,£iV,.

~(1) ~(1)
Although the coefficients f_, and f, are not needed for calculating the current density

they must be established for evaluating the contributions of second order in .
Finally to second order in € Eq.(38) can be written

~(O)~(2) A1) ~(1) ~(2)~(0)
f +c'f +¢ f =

1
m

vy (Y x Bl 1)) (F+F(1)) + 1@ x 7))@ x B0 20| (6
v} Oa
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where

~(2) )
L =5V, - ﬂ““a_a)’ (63)

and

~1) 1 ~(1) 1 ~(1) 1
B, = _-'VPE") B, = _':_'VN-E“’ B” = -_(VnEb - VpEn + ,Bb“Eb) (64)
w w w

Solving Eq.(62) using the lower order contributions and Eq.(28)leads to

_’;lfff) - {fﬂ‘;“ {0 (VaV0 4+ V,9,) - Q7 (V¥ = V,7.0] 2L
+221 2 gt - g0+ + 2l ¥ [igr0- — grot]
+ 8 (60T V ~ Qr V) G +ilkyoy + ) Bl T Q1 O
+(20{ B — v Bny) 41;'212 aF(ZQ+V + Q7 Va) (65)

2
va”

0
—4990 (V —F) (@F Y, +1Q1 (Va + By))

aF v
292ﬂllb_(ZQ+V - Q1Vy) - ( pﬂlé Je Ql}lo (Va F)) Vp} By

P | OF\ Qo OF Kk, ot
a0, (Qb (Vn de )]  wBop * wb, (VaF) | x QT T — QU TYT),

Z? ;iz) - {[892)6_2 { [£+ + 210?;'—03_ + 2(By) — Zﬂn“)] (L~ = By)

. 7i?£(3ﬂ££+mM+R(£ _mm)—mwuﬁ+2m0}
2

+2(;:t;g_2 R~ (L~ - ﬂb”)} X (En —iEy)

3

Vi —(OFY LTt +:0-£-T-
e {—@Lo T +iQr LTy

Q"””R+(Q+T+ +iQTTY) + Bu)(QF £ By —iQT L™ En) (66)
+ 2k Q7 + QQ7)(Byal™ By — Bl En — RYTY — iy Ty)
_imkwmQ;-FQQ;meL-E;4-mw£-Eb+1#dy-_iﬁwfy)}
oL}

e 9 (T ) vigr (CTE e )] b
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v oF : wyvy OF .
_SQQ_J;Q_z ( ) (£+ + 2’Bb||)( —iB) + 252 I _(Zﬂllll — 5,V )(
. 1 oF vi_ OF
il 29909 N [Eub (”MV Be +VnF) E, ( 5 Vago t—V F)l
. vr [(VRF), v OF\ ._
+22wﬂ_1 [ 0 Tl - (Qb (V F)+ B a L E” s

with the notations
T = (Vo + B En + VoBy), Tr = ((Vn + Bu) Es — VoEn),
T = BynEn + BB, Ty = BpEn — BynEs, (67)
Ot = BnVn + BpVp, O~ = BpVn — BuV

IV. Dielectric Tensor Operator

To obtain the dielectic tensor operator we still have to integrate f over velocity space to

evaluate the induced current density (41). Then, using the definition of the conductivity

tensor &
j =UE, (68)
we finally get the dielectric tensor
A d 1 —
€=1 _— 0, (69)
tWweg

where 1 is the unit tensor. The dielectric tensor is established in terms of its components
relative to the local magnetic coordinate system, a natural choice with respect to the
physical properties of the plasma. The integration is performed in the cylindrical variables
(vi,v)). The integrations over v, are performed first and are quite straightforward. The

integrations relative to v|; are somewhat more lengthy. By repeated use of the relations

1 1 11 ,

o - (=10 (E"'ﬂ—u) #1 (70)
1 _]. 3 1 'l)“ _ 6 1
o =i H#0, AT
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we can reduce all these integrals to the two dispersion functions :
- Maxwellian distribution (Shafranov® definition) :

z too ]

Zsh _ 2 —z2 .
(2) Tr ) 7 xe dz Imz>0 (71)
- Force-free current :
400
Y(z) = / 9 a2 4, Imz>0 (72)
~-00 & — X
For convenience we define
Zh = Z%(z) with z= 2" (73)
kg |ven
> . wz sh _ T jid
Z1 = o _IQZI ) Zl - m AR (74)
YE = Y(Z[), (75)
Y} = Y(M\yz) with A= %"1 and Y =(\-1)"1, (76)

where wj, is the local plasma frequency. In relations containing the term V,Fj E, we can
replace V,, by the new operator V!, which by definition operates on ¢ and E but not
on B and k,. This convention allows us to commute the operator with the integral sign.

Putting the results obtained in this way in the most elegant form using the recurrence

equation

d sh _ 1 sh sh

527 () = ~27(2) = 22(2*(2) - 1), (77)
and the relation

the dielectric tensor can finally be written as follows.

- Dielectric tensor in zero order in € :

1 ~ ~
€0 = € =1-—(Z1+Z-), (79)
© _ 2 [ N]
R 80
i +(k¢vth)2 w, —w Zo|, (80)
i~
0 _ g0 _ £(0) _ £(0) _
€l = €jn =€y =€)y =0 (#2)



- Contribution to the dielectric tensor of first order in ¢ :

k 3 1
K )
+—2— [X1 + X4+ A (W — W_l)] ,

i , k,
E1(111;) = (1) ’I;"{V [Bn||+ % 2Q(Z 1 —Zl)] }

Q0

K 2
+z? [Xl -X,+ A;(Wl +W_, - 3\‘)] )

§)) 1 650 w 2 w 2
1 _ t _ Ay
‘i = g, (V"Bk )+2K (k¢vth) [A(Y" ¥5) (kwvth) Yol

€ = Buy (Vo +Bin) +iBuy (Vo — Bie)

tq :w (BBt — 1B B ) + ;1; (v,, 50) )

€ = (=VotBut) Boy +i (Vo + By Buy

42 oo (BB + 0By + 751; (%, 50)- ,

€ = By (=Y +8p) +iBy (Vo + Bim) |
+%3 (B Ba + 1B Ban) + G

€ = (Va+8u) By +1 (Vo = ) Buj

2w .
+5 (BieBaj — B Bay) + Gy

- Contribution to the dielectric tensor of order e.¢, and €Z :

=2 =R oI
€ =€ +1¢€,

an = (Vn + By — ﬂ”b) AnnVio + (Vp — By + ﬂ”n) AnV,

(Vnﬂb“) C{m + ,BZ“C;W + ﬁ[[bﬂb“c:?n)

€ — €, =2D [ﬂ“bvp — Biin (Vn + ﬂbll)] +
1

3 (Va(Zo1 — Z1)] Vo,
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(Vn + By — ﬂ||b) AV + (Vp — By + ﬁnn) AmnVy

(Vnﬂbn) CP + BHCF™ + BB C3 + g“" B(Z (Zor = Z1), (93)
Anp [2ﬂn“Vn + Bb” (2Vp + ,3||n + (Vyln Anb)) ( pﬂb”)] +

D™ (B16V5 + BinVi) = D™ [B1sVs = Byn (Vi + By)| + DYV, (94)
(Y + B = Bip) AV + (Vo — Buy + Bin) AV, (95)
DI (¥, + BjaVa) + DI, (96)

~Aun [2Bu V' + Boy (2V5 + B + (VoI Ann)) + (Vi) ]

+BuVy (Va + Byy) + C2 (B Vi + B V)

+C32 [B16V5 — Bin (Vi + Boy)) | + C5V, — C3* BBy (97)
(Vn + By — ﬂub) AV, + (V,, — By + ﬁun) AV,

+ (VBu) Di* + B3 D5* = BBy Di™ — D™ (B Vo + Bie Vs + BB

(Zy— Z_)] Vi — 2”“ T —(Z1+ Z-1), (98)

Apn [2ﬂn||Vn + By (2Vp + Bjn + (VpIn Ann)) + (Vpﬁbu)]

+ (Va = B1t) VoBus + (Bjn = ) BV — C3* (B15Vp + B V)

—C3* (8165 — B (Vi + Bon) | — C5*V5 — C5* BB (99)
= (Vn+ By - ﬁnb) AV = (Vo = Bui + Bin) AnsVy

- ( nﬂbu) — B D3’ + BBy Dy — D" (ﬂnbvn + BjjnVp + ﬁubﬂbn)

1 o By 9
+on V= 201 Va4 5o —(Zy + Z1), (100)
KL,
(Cnll - m) Vo, (101)
KL,
(Dn“ + m) Va, (102)
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= —€R

7|’
KL,
(v

€ln = DaiVa +29k

nt ﬂbll) ’

KL,
€ = ( Cryi + )V

20k

KI,
&) = (Dnu+29k )V

KL,
€ = CoVa-— 50k, (V +ﬁb||)
€p = €y

We have used the following notations :

- Terms relative to the Maxwellian distribution :

1

Am = 5=m:(Zat 22— T — Z-0),

A = s=oa(Tyt 2oy~ 32— 301 +400),

Ay = Mi—zkg [(w — Q) Z1 +(w + Q) Zoa —2 Eo] :

Ap = 20)192 (Zy — Z_3 — 22, +2Z_4),

By = 2w§12k¢ [(w —0) 71 —(w+9Q) 5_1] ;

By = Qw;lk [2w Zo —(w—-9) 7 —(w+9Q) 2-1] ,

Bu = Q2(Z1 7, —22),

O = O A,

o = 5 Q2(2z0 A 192 i (270
2198?2(Z2+Z 2)+ Anb kl 82 ko Bu)s

c = 555 (4%~ ~ 20~ 2y~ 7, )+2a%(zl+z Il
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(103)

(104)

(105)

(106)

(107)

(108)

(109)
(110)

(111)

(112)

(113)
(114)

(115)
(116)

(117)

(118)

(119)



bb
Cs

bb
Cs

nb
i

nn
D2

nn
Dy

1 [1 ]
— [.ﬁ.(z1 + 21~ 2= Za) + 55 (2 + Z_l)] , (120)

1 (1
{—(522 +5Z_y — 27y — 271 — 625) — —a—(z2 + 7o+ 271 +27)

w0 a0
ke 0 gz 22422 —62,) 13[ Q) 7 Q) 7
Qak 2 2 1 -1 — 04 +—ﬁ— (Ww+Q)Z1 —(w-Q) 71
+-(-2—2— (w=202Z; - (W+2Z_2 —2(w-V)Z; + 2w+ Q) Z_1] }, (121)
1 é] k, 0
5Ann+2 Q{ aQ(Z2+Z 2 +22,+22_,)+ 2 Q ok, 27420 — 2y — Z_y — Z; — Z_,)

4
+m (w - 2Q)22 et (w + 2Q)Z__2 —_ 2(w - Q)Z] + 2(w + Q)Z_l]
1 0 ~ ~ 1 ~ ~
b @+ W 2 —@-0) ]+ 5 @ -9 2 @+ ) z-l]}, (122)
¥ ¥ 7
1 0 1 0
5 [ 3B + kwak‘anb + — ol aﬂ(Z1 +Z_ )] (123)
! 1 ~
{92 [+ g 2 - )]} ook, e — 20 (124)
1 (_, [B. 1
1 (1 8 " " k, 0 0
50 76:5];; [(w -0 Z1+(w+9Q) Z—l] + (ﬁﬁ; + 8Q) (Zy—Z_o+ 7y — Z_,)
4

+ [2 {(w — Q)Z] + (w + Q)Z_l — wZo} — (w — 2Q)Z2 — (w + ZQ)Z_Q]

+%(Z 2=~ 2o+ 21— Z_ )}7 (126)
s Lo [0 = V% + (0 + )71 — 202
ik o
= {?z% V4%~ 2ot = 2y # Zea)l = =5 [V + Z20))
9
g —(Z1+ Z- 1)} (128)
DY + == V4%~ Z2), (129)

1 0? B 0
i |(55 +25) o (24 1) B

+20By, (2 (%)2 -~ 1)] : (130)
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m 1 o [ 0 1 K
bt = wﬂ{v"[w(l+k¢8k¢)zo+2ﬂ Lkogp ) (2= 2)

b, 0 a \ ~
+ :;'5];—‘; (1 + kwm‘;) Zo, (131)
pp = Ll la,—m+2z-z 132
U = =5 |agZ-2—22) + 55(Z1 = Z44)| , (132)
1 d
D = —= [ (Zoy— Za+ 71— Z_1) + BQ(Z Z——l)] , (133)
_ 1 /
Dy = m{v [ Fr (Z1~ Zl)_;(Z1+Z—1)]}’ (134)
1{ 1 ) d
Gy = Q w_]% [Vn(wp —-w Zo)] - ,5||b3—k¢ Zo (- (135)
- Terms relative to the force-free current :
. AU (wp
K = Lc)k (’Uﬁ,,) ’ (136)
X = @A -1)% =Y =2 (Yi+ M), (137)
Wi = Y1+ (ra)] - ¥, (138)
L = (w42)Xos - (w— Q)X +40 — A% [(w F )W + (0 — Q)W — -27“’] (139)
L, = 20X - (w-D)X; —(w+ QX1 + /\g [(w + QW_; — (w — QW — 2—;—] (140)

As the tensor is established up to second order in the small parameters € it is also of
second order as a differential operator in the poloidal plane. If the imaginary parts of
the dispersion functions are neglected, € is Hermitian with respect to the scalar product
defined for vector fields

<1?|Z:>=/F* .G & (141)
This follows from the fact that the time-averaged power absorbed by the plasma is given

by
— 0

1
P= —2-Re <Jj |E>— —2—— <E|€ E>, (142)

—a > H'I'
where € = 1/2(€ — € ) is the anti-Hermitian part of the tensor. In the absence of
dissipation, represented by the imaginary parts of the dispersion functions, there is no

power absorbed and the tensor must therefore be Hermitian. This property implies that
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the components of the tensor as operators on a scalar field must satisfy the relation
€ = €}, v € {n, b1}, (143)

with respect to the scalar product

<flg >=/f*gd3x. (144)

One can easily show that € is Hermitian to the order considered by checking condition

(143) and using the adjoint forms of the operators in the poloidal plane

(vn)Jr =-V,— (V _én) =-V.+ (ﬂllb - ﬂb“))

—

(145)
(Vp)T ==V, = (V- €)==V, + (5n|] - 18||n)~

V. Conclusions

The equations describing a stationary toroidal axisymmetric plasma have been derived
from kinetic theory up to the first order in the small parameter ¢,. With the appropriate
assumptions, we obtain the Grad-Shafranov equation of MHD. The dielectric tensor of
such a plasma has then been derived up to the orders ., and ¢2 in these small param-
eters. In the absence of dissipation the tensor is shown to be a Hermitian second order
differential operator in the poloidal plane. It is therefore suitable for implementation in

a numerical code based on a variational formulation.

Acknowledgments

This work was partly supported by the Swiss National Science Foundation.

21



Appendix

We express the coeflicients 8,,, i, v € {n, b, ||} defined by Eq.(9) in terms of the variables
(%, %,%) :

ﬂnn =0, ﬁ"b = pﬂmp, ﬁn” = bwﬂmps (Al)
b
Pin = —bpBon — Vobp, B = _bpbw(ﬁw + :Bwp) + bavni’ 56“ = baﬂpw - bgﬂwp,
b
Bin = boBon + Viby, By = bZWBW’ - bIZ)IBW’ Bl = boby(Bpe + Bop) + biani’
@

where

Brp = Vpln | Vi |, Boo = =Valn | Vx|,
Bon=—~Vypln| Ve |, Bep=Valn| Ve |.

Using a Solovev® solution of Eq.(33), one can evaluate the leading orders of the different

(A.2)

coefficients §,,. To obtain this solution one sets the following profiles

I() = const
A3
p($) = ay (4.3)
In toroidal variables (g, 6,¢), defined from the cylindrical variables by the following
relations
r=R+4 pcosf
z = —psinb, (A.4)

this solution, to first order in the small inverse aspect ratio /R and for a circular cross

section of magnetic surfaces, is given by
1 2 2
P = ——ZaugR , (A.5)

where R is the major radius of the magnetic axis.

The corresponding magnetic field can be written as

- R — —
B= "B, (qu,, ep + %) : (A.6)

where ¢; is the safety factor.
Evaluating relations (A.1) using Eqgs.(A.5) and (A.6) yields the leading order of the

coefficients :

Brn =0, Bapls Bins Bip = Olee) By = O(€p),

(A7)
ﬂnb7ﬂbn7,3bb = O(eg)’ :3|||| = 0(66619)'

22



Note that the coefficients By and By have been weighted with the small parameter ¢,
relative to the perturbation. This is due to the fact that the Solovev solution leads to

the following results

1 b
Boo = 2 = 0(¢), Vb, = ‘5 = O(ectp), (A.8)
as ¢ can be of the same order as the wavelength of the perturbation. Furthermore,
By is the only non-vanishing coefficient in a straight cylindrical geometry, therefore the
coeflicients must be given the above weighting so as to recover the correct results in the
corresponding limit. However we must realize that the stationary state solved to second

order in ¢, would contain terms of the order of B V,F', which consequently must be

considered of order €.
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