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Abstract

The effects of plasma deformability on the feedback stabilization of axisymmetric
modes of tokamak plasmas are studied. It is seen that plasmas with strongly shaped cross
sections have unstable motion different from a rigid shift. Furthermore, the placement of
passive conductors is shown to modify the non-rigid components of the eigenfunction in
a way that reduces the stabilizing eddy currents in these conductors. Passive feedback
results using several equilibria of varying shape are presented. The eigenfunction is also
modified under the effects of active feedback. This deformation is seen to depend strongly
on the position of the flux loops which are used to determine plasma vertical position
for the active feedback system. The variations of these non-rigid components of the
eigenfunction always serve to reduce the stabilizing effect of the active feedback system
by reducing the measurable poloidal flux at the flux-loop locations. Active feedback

results are presented for the PBX-M tokamak configuration.

1. Introduction

It is well known that shaping the tokamak cross section allows increasing the total
plasma current, which implies both increased maximum stable 8 values and increased
energy confinement time. This has been demonstrated both theoretically and experi-
mentally [1-5]. However, tokamak plasmas with any significant cross-sectional shaping
are subject to troublesome axisymmetric instabilities which must be stabilized by a con-
ducting wall near the plasma and by an active feedback system to compensate for the

resistive losses in these conductors [6].

The axisymmetric instability has been studied in great detail with regard to stabi-
lization with passive conductors [7-15] and an active feedback system [14-20]. However,
most studies have been limited in one way or another. Linear MHD stability codes

[21,22], which can accurately treat the plasma motion, have mostly been limited to ideal



configurations in which there is an ideally conducting wall and no active feedback sys-
tem (or one which is limited to special, unrealistic symmetry constraints [16,23]). Most
other models which include realistic circuit equations for the passive conductors treat the
plasma in some simplified fashion which does not account for the true plasma motion.
This usually involves modeling the plasma as a collection of current filaments and/or
prescribing some simplified (usually rigid) plasma motion. Even the sophisticated active
feedback system [19,20] used for the optimization of plasma shape and § in DIII-D [5]
is based upon an assumed rigid motion of the plasma. Transport time-scale simulation
codes such as the Tokamak Simulation Code (T'SC) [18] can accurately compute the full
nonlinear axisymmetric motion with all the realistic control aspects such as an active
feedback system, resistive conductors, circuit and power supply dynamics. However, it is
computationally expensive and difficult to obtain linear growth rates and very difficult

to resolve the details of the plasma motion with these comprehensive nonlinear codes.

It is known that the true unstable motion of highly shaped tokamak plasmas involves
non-rigid deformations [24]. The non-rigid components of the motion can be affected,
and even enhanced, by certain aspects of a feedback system. It has been shown [23]
that for certain locations of the detectors which control the active feedback system, even
though able to detect a rigid plasma motion, the detectors are ineffective in detecting
the motion of a deformable plasma, and the feedback system is unable to stabilize the
plasma regardless of the feedback gain. This was found to be due to a deformation in the
motion dictated by the details of the active feedback system itself. Experimentally it has
been reported that the further optimization of plasma shape in DIII-D may be limited
by the difficulties in detecting and controlling a significant nonrigid component to the

plasma motion [20].

In this paper we study the linear MHD stability of the axisymmetric mode in tokamak
plasmas with realistic passive conductors and active feedback systems. We focus on the
effects of passive conductors and active feedback on the eigenfunction of the instability. It

is shown that the eigenfunction is modified in each case in such a way that the stabilizing



effects of the particular feedback system are reduced.

To perform this study we use the NOVA-W stability code [25]. This linear MHD sta-
bility code includes the effects due to realistic resistive conductors and an active feedback
system in the vacuum region. The following section gives a brief overview of the NOVA-W
calculation, outlining the calculation of the vacuum boundary condition. However, the
reader is referred to Ref. [25] for a complete description of the formulation, numerical
calculation, convergence studies, and the code comparisons to analytic and numerical

models demonstrating its accuracy and utility.

Section 3 focuses on a study of the effect of the position of discrete passive conductors
on the instability eigenfunction and growth rate. We examine three equilibria of differing
shape and aspect ratio. For a particular position of a pair of discrete passive conductors,
we show that the plasma eigenfunction is modified to reduce the stabilizing effects of the

conductors.

It i1s important to understand and to be able to predict the most effective location
for placement of discrete conductors for passive stabilization. In a reactor design, for
example, the space near the plasma is valuable, and it would be desirable to reduce the
volume of passive conductors that must lie close to the plasma. It is therefore of interest
to understand how different passive conductor configurations affect the eigenfunction and
the growth rate. This analysis is not only important for the case of individual discrete
conducting plates, but also for the case of a complete conducting shell. The analysis
provides insight on where one might increase the wall thickness to significantly improve
the passive stabilization without everywhere increasing the thickness which might have

otherwise detrimental effects.

In Section 4 we study the effects of an active feedback system on the PBX-M equilib-
rium. Varying the position of the flux-loop detectors which measure the plasma vertical
position is shown to change the deformation that the eigenfunction experiences due to

the feedback system. These deformations are such that the measurable signal at the



flux loops, and thus the ability of the feedback system to detect vertical displacement, is
reduced. This confirms the conclusion of Ref. [23] for a similar PBX-M equilibrium, but
here we explicitly show the eigenfunction deformation and how it affects the effectiveness

of the feedback system.

2. Numerical Formulation

The NOVA-W stability code solves the linear ideal MHD stability eigenvalue equations

pw? € =Vp +b5x (Vx B)+ B x (Vx5 (1)
p+E€ - VP+yPV.E=0, (2)

where
b=V x (€ x B) _ (3)

is the perturbed magnetic field in the plasma, B is the equilibrium magnetic field, p,
and P are the perturbed and equilibrium particle pressures, respectively, p is the plasma
mass density, v = % is the ratio of specific heats, 5 is the displacement vector, and w is
the eigenvalue (normalized growth rate). The equilibrium magnetic field is represented

by
B =V{x Vi +q(1)Vy x VO (4)

or
B =V¢xVy+gth)Ve, (5)

where 271 is the poloidal flux contained within a surface, © is the generalized poloidal
angle, ¢ is the generalized toroidal angle, ¢ is the standard toroidal angle from (X, ¢, Z)
cylindrical coordinates, ¢(¢) is the safety factor, and g(t)) is the toroidal field function.
The second definition for ﬁ, Eq. (5), follows for an axisymmetric equilibrium. The
generalized angle coordinates (©,() are chosen to make the magnetic field lines appear

straight in this coordinate system.



We use an axisymmetric flux formulation for the perturbed vacuum magnetic field.
This is the natural representation for the axisymmetric mode and allows the existence
of perturbed axisymmetric (feedback) currents in the vacuum. The perturbed flux also
allows simple boundary conditions for a thin wall approximation of the resistive wall, and
allows the use of flux difference measurements as the measurement of perturbed position.

Therefore the perturbed magnetic field in the vacuum is represented by
b= 2iv¢ X VX + 2.V, (6)
T

where X is the perturbed poloidal flux in the vacuum and a; is the perturbed toroidal

component.

One can relate the perturbed flux X to the sum of all the perturbed currents in the

vacuum region and Green’s integrals over the boundary surfaces of the vacuum region:

N

X(F) =S 1 6 7) + 3 5= § FEXTAG(i7%) - GVl (D)
Here, G(7;7s) is the toroidal Green’s function for this problem. The three boundary
surfaces consist of the plasma-vacuum interface, the inside surface of the resistive wall,
and the outside surface of the resistive wall. Here V,, = # - V where # is the unit vector
normal to the surface, and the feedback currents are defined as linear combinations of
the perturbed flux and the corresponding time-derivative terms at prescribed observation
points. Perturbed magnetic field measurements (magnetic probe measurements) can also
be included in the feedback law. As an example we can consider a simple feedback law
in which the desired current for a given feedback coil is proportional to the difference in
the perturbed flux (and its time derivative) at two observation points symmetric about
the midplane. This flux difference serves as a measure of the vertical displacement of the
plasma, and can be very accurate in the case of rigid plasma motion. In this case the

feedback currents are defined as

In = am[X(Xo1, Zo1) = X(Xo2, Zoz)] + B X (Xo1, Zo1) — X (Xozs Zo2)]- (8)



The boundary condition at the resistive wall is found by using the thin-wall approx-
imation. This leads to an expression relating the jump in the normal derivative of the

flux at the resistive wall to the perturbed flux at the wall:

; b
(- VXN = 27X %06, T - Vo = £ ‘;76‘”6—55— = ~twho X (9)

where [[- - -] denotes the jump across the thin resistive wall, §,, is the thickness, and 7 is

the resistivity of the wall.

The boundary condition required by NOVA to solve the eigenvalue equations is to
relate the Fourier components P, of the total perturbed pressure to the components £y,
of the radial displacement £, at the plasma-vacuum interface. The perturbed pressure
P, at the P-V interface is found in terms of the normal derivative of the flux at the

boundary:

Pr=B.b= (V¢ x V) (V¢ x !;?X) + 8(Vedge) Vo - 2 V9, (10)

VY| 1
= 2w X2 VnX + atg(zbedge)ﬁ

where 1.4, is the value of ¢ at the plasma-vacuum boundary. Similarly, the normal com-

ponent of the displacement of the plasma boundary is related to the perturbed poloidal
flux at the boundary by

€ = €V = 3 Eymexp(im®) = —5_X. (1)
The goal of the vacuum calculation is to find V,, )X in terms of X at the plasma-vacuum
boundary. This then gives the required relationship between P; and ¢, through Eqgs. (10)
and (11). The reader is referred to Ref. [25] for details on this calculation including

specifics on the passive conductors and the feedback system in the calculation.

3. Non-rigid effects on passive stabilization

In this section we will examine how variations in the passive conductor configuration

alters the form of the eigenfunction and how this affects overall stability. We consider



first a very large aspect ratio (A = 100) elliptical equilibrium with elongation x = 2.0
and with a nearly flat current profile. This equilibrium was used [25] for comparison of
NOVA-W calculations to a simplified analytic model [12]. With this equilibrium we can
consider the effects of the deformability of the eigenfunction with respect to variations
in the passive conductors without the effects of toroidicity or triangularity. Next we will
consider toroidal effects with an elliptical equilibrium at lower aspect-ratio, and finally the
CIT design equilibrium which has significant triangularity in addition to toroidicity. The
wall contour for both of the elliptical equilibria is a concentric ellipse with the distance
between the wall and the plasma on the midplane equal to one half the plasma minor
radius. The wall contour for the CIT equilibrium corresponds to the design vacuum vessel

contour, as was used in previous studies [25,26], but with a uniform thickness.

The NOVA-W code calculates the linear eigenfunction of the instability as a sum over
poloidal harmonics: &, = ¥, éym exp(tm®). For configurations completely symmetric
about the midplane (the only configurations considered here) this sum can be reduced
to a sum over sin(m®). For an infinite-aspect-ratio plasma with a circular cross-section,
a rigid shift would be represented by a pure m =1 component in the eigenfunction.
However, for the more complicated cross-sectional shapes at finite aspect ratio that we
consider here, a rigid shift, when decomposed into Fourier poloidal harmonics of the
equal-arc-length magnetic coordinate system, is not a pure m = 1 mode. This rigid shift

is still dominated by the m = 1 component, but there are higher m contributions as well.

3.1. A very large aspect-ratio ellipse

We demonstrate here that when only a small conducting segment of the wall is present,
there is a strong dependence of the normalized magnitude of the m > 1 components on
the poloidal position of the plate. There is also a drastic variation in the growth rate
with respect to the poloidal position. In order to study this phenomenon in detail, we

performed a series of calculations in which there is only a single pair of up-down symmetric



conducting sections of the wall. The length of each of these conducting “plates” is
approximately 1/8 of the circumference of the complete wall contour, and has a resistance
equal to a 1 cm thickness of aluminum. The ratio §/7 is reduced over a few grid points
from the value of the conducting plate to the value of the “vacuum.” This helps to avoid
numerical difficulties. In each calculation the plates are centered at a different poloidal
location |0}, where © is measured with respect to the outboard midplane. The value
of |®] is changed, between calculations, in increments from |©| = 0 at the outboard
midplane to |®| = 7 at the inboard midplane. We are particularly interested in how the
non-rigid components of the motion change with regard to the variation of the passive
conductor position. To characterize these variations we show the changes in the ratios of
the m # 1 components to the m = 1 component of the eigenfunction, &, /€y1, measured

at the plasma edge.

The very large aspect-ratio ellipse results are shown in Fig. 1. The figure shows the
computed values of £y2/€y; and €y3/Ey1 as a function of |©|. Also shown is the growth
rate v as a function of |©|. The values of 7, £y2/€y1, and €y3 /&y, for a uniform, continuous
wall (at left; solid) and with no wall (at right; solid) are also shown, as are the £y0/&y
and £y3/&y1 ratios for the Fourier representation of the uniform vertical rigid shift (on

the axis) for comparison.

The results show that the most effective stabilizing position for the plates is directly
above and below the plasma at |©| = 7 /2. The growth rate rises rapidly as the conductors
are moved away from this center position. It is interesting to note that the highest growth
rate, corresponding to the case in which the plates are adjacent at the inboard midplane,
is nearly as large as the growth rate with no passive stabilization whatsoever. In fact,
this point and the neighboring positions are ideally unstable, i.e., unstable with ideal
conductors. The vertical lines mark the ideal stability boundaries. The points outside
the region bounded by these lines re ideally unstable. It is clear that conductors located
on the far outboard or inboard sides provide very little stabilization. There is, however,

a well defined minimum in the growth rate for the plates located at |®] = 7/2, where
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the growth rate is only about 3.5 times that for a completely enclosing wall. Therefore,

optimally placed conductors can provide much stabilization.

The form of £, for the purely vertical rigid shift is essentially identical to the true
eigenfunction with no wall. This is also very similar to the eigenfunction with a completely
enclosing resistive wall. But when discrete passive conductors are present, and are moved

in poloidal position, the resulting eigenfunctions vary significantly from a rigid shift.

The relative contribution of the m = 2,3 components to the eigenfunction is seen to
vary considerably as the plate position is varied, with the m = 2 contribution dominating
the m = 3 contribution by as much as a factor of 4. It is interesting that for the cases with
either a completely surrounding resistive wall, or no wall at all, the m = 2 contribution
is nearly zero, and the m = 3 component is the only significant higher m contribution
to the eigenfunction. Also, the m = 2 contribution is zero when the plates are placed at
|©] = 7 /2. Therefore it is only for off-center placement of the discrete conductors that
we see any m = 2 contribution. It is also seen that the variations in the eigenfunction
and growth rate are almost completely symmetric (or antisymmetric) with respect to
|©] = m/2. We show in the following sections that the curves for v, £y2/&y1, and €ys3/En
exhibit less symmetry with respect to |®| = 7 /2 for equilibria with lower aspect ratio

and especially for those with triangularity.

Let us now consider the variations in the relative magnitudes of the m =2 and m =3
components of the eigenfunction. The induced currents in a resistive conductor that pas-
sively stabilizes the plasma are proportional to the magnitude of the perturbed poloidal
flux that diffuses through the conductor. In the thin-wall approximation this is reflected
in the jump condition [25] at the resistive wall, Eq. 9. Figure 2a,b shows the perturbed
flux, for the large aspect ratio elliptical equilibrium surrounded by a uniform, continuous
resistive wall, due only to the m = 2 and m = 3 components of the eigenfunction, respec-
tively. The signs of these components of the perturbed flux with respect to the dominant

m = 1 component are also shown.
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The m = 1 component of the eigenfunction always dominates and therefore accounts
for the largest part of the stabilizing wall currents. In certain regions the perturbed flux
due to one of the m > 1 components of the eigenfunction is of the opposite sign to the
flux from the dominant m = 1 component. Therefore, the eddy currents induced by these
higher m components of the flux subtract from the overall stabilizing eddy currents for
conductors in those regions. In other regions these components of the flux are of the
same sign as the dominant m = 1 component to the flux and therefore they add to the
stabilizing effect. Clearly an increase in one of the m > 1 components would enhance
the stabilizing effect of a conductor which is present in the region where this component
of the flux has the same sign at the m = 1 component, but would detract from the
stabilizing effect when it is in a region of the opposite sign flux. For this simple case the
m'* poloidal harmonic component of the flux divides each half plane into m regions of

roughly equal extent in © and of alternating sign.

If we examine the variation in £;3/¢,1 in Fig. 1 and compare to Fig. 2a we see that
when the conductor is in the region where a positive £;2/€,1 would induce positive wall
currents the ratio £,2/&y; is, in fact, negative. Conversely, when the conductor is in the
other region of the half-plane (where a positive £,/€,: induces a negative contribution
to the wall currents) the ratio £y2/€y1 is positive. So we see that the m = 2 contribution
to the induced currents in the conductor always reduces the total induced current and
is thereby destabilizing. Only when the conductors are directly above and below the
plasma, centered at |@| = 7/2 where the m = 2 component would cancel itself anyway,

is this component zero, as it is in the case with no wall or a complete continuous wall.

The variation in £y3/€y; shows similar behavior. This curve changes sign twice as |O|
is varied and this is such that the m = 3 component induces destabilizing eddy currents
when the discrete conductor is any region. The curve is weighted towards the negative
side since the rigid shift eigenfunction has a small, negative m = 3 component, but it
does become small and positive in the region centered about |®| = 7/2 which induces

destabilizing currents in a conductor in that region.
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Therefore the growth rate is smallest and the plasma is effectively stabilized on the
ideal time scale when the conductors are centered at |@| = n/2. Here the m = 2
contribution is zero, and the m = 3 component is destabilizing, but small. As the
conductors are moved away from |@| = /2 the m = 2 component increases rapidly in
magnitude and is always destabilizing. These modifications of the eigenfunction lead to

vast changes in the growth rate as the conductors are moved in ©.

The form of the eigenfunction with a uniform surrounding resistive wall reflects the
sum of the effects of the conductors at all the poloidal positions along the wall contour.

The values for £y2/€y1 and for €;3/€y1 with the complete wall are roughly in the middle
of the range of the different points in Fig. 1.

Next we consider toroidal effects by studying a lower aspect-ratio ellipse with A = 4.5,
and k£ = 1.6. The effect of toroidicity is clearly seen in Fig. 3. These curves show the
normalized stabilizing radial field at the magnetic axis, 5,(0), due to a unit current at
every poloidal position © on the wall contour. This is shown for both the low aspect ratio
ellipse of Section 3.2 (solid) and for the very large aspect ratio ellipse (dotted). Clearly
the currents on the outboard side provide a much more stabilizing effect than those on
the inboard side for the low aspect ratio case. We expect, therefore, significantly higher
growth rates for conductors on the inboard side compared to outboard conductors for
this case. It is interesting to note, however, the dominating effect of the modification
of the eigenfunction. For the very large aspect-ratio case, if the conducting plates are
centered at either of the two maxima of ,(0) on either side of |©| = 7 /2 the growth rate
is much higher (by over a factor of 200—i.e., ideally unstable) than for the conductor at
|©| = 7/2. This is true even though the stabilizing effect of a unit current is highest at
those points. This is due to the large destabilizing contributions from the m = 2 and
m = 3 components of the modified eigenfunction which significantly reduce the overall
induced current. These modifications reduce the stabilizing currents to such an extent

that passive conductors at these positions are ineffective in spite of the slight advantage

in 5,(0).
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3.2. A lower aspect-ratio elliptical equilibrium

We perform this study again with an elliptical plasma at lower aspect ratio (A = 4.5).
The equilibrium parameters such as physical dimension, elongation, and toroidal field are
the same as the for ARIES-I equilibrium [27-29] but the triangularity is zero. We can
compare the results of this case to the previous case in order to see how toroidal effects

come into play.

Shown in Fig. 4 are the Fourier components for the true eigenfunction for the case
of a completely surrounding conducting wall (Fig. 4a) and for the uniform vertical rigid
shift (Fig. 4b). The form of the components for the actual eigenfunction and the rigid
shift are very similar, indicating that the most unstable displacement when a full wall
is present is, in fact, very nearly a uniform rigid shift. Nevertheless, we see from Fig. 5
that the form of the eigenfunction changes significantly with respect to the position of
the plates, and thus shows some deformability and variance from the rigid shift. Figure 5

also shows how the growth rate « varies with respect to poloidal plate position.

The form of the curves in Fig. 5 is noticeably different from the very large aspect-
ratio case, Fig. 1. The curves in this case are less symmetric about |®| = n/2, which is
a consequence of toroidal effects. The optimal plate position for passive stability is now
slightly towards the outboard side at about |@| = 0.4487. The points on the outboard
side (© < m/2) have significantly lower growth rates than their corresponding points on
the inboard side. The £y2/€y1 curve is no longer symmetric about {y2/€y1 = 0. The
value of £y2/&y1 at |©] = /2 is approximately 0.1, which is very close to the values both
for the case with a complete resistive wall and for the case with no wall. Thus we see
that the £,/ values are shifted towards the positive. It is interesting to note that the
point where £9/&,1 crosses zero has roughly the lowest growth rate (this was also true in
the large aspect ratio case) indicating that a nonzero m = 2 component is destabilizing.
The &y3/&y1 curve is also shifted far to the positive side, and is no longer symmetric

with respect to |©] = /2. The vertical lines in Fig. 5 again show the ideal stability
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boundaries. This region is no longer symmetric with respect to |©| = 7/2, but is shifted

slightly to the outboard side which reflects the toroidal effects.

We again see that the eigenfunction is modified by the position of the conductor in
such a way that the m = 2,3 components change to reduce their contribution to the
stabilizing eddy currents for each configuration of passive plates. When the poloidal
plates are in the outboard region the eigenfunction is such that the m = 2 component is
negative and therefore destabilizing. As the plates are positioned in the inboard region
the m = 2 component becomes positive, which is strongly destabilizing for conductors
in this region. Also, while the m = 3 component never becomes negative, it does vary
greatly in magnitude with respect to the plate position in order to weaken the stabilizing

influence of the plates.

An explicit demonstration of the plasma deformation is presented in Figs. 6 and 7. The
figures show the Fourier decomposition of the radial eigenfunction ¢, and the projection
of the displacement E onto the poloidal plane for the case of the plates on the inboard
side |®| = 37 /4 (Fig. 6) and on the outboard side at |®| ~ 7 /4 (Fig. 7). It is seen that
the unstable plasma displacement adjusts as the plates are moved so that the stabilizing

effect of the plates is reduced.

Figure 6a shows the eigenfunction £, for the case with the passive plates on the
inboard side at |©| & 37 /4 (second point from the right on the curves in Fig. 5). The
eigenfunction &, is noticeably different from the eigenfunction for the case with a full wall
and also from the rigid displacement. The differences result in the plasma displacement
shown in Fig. 6b in which the displacement is seen to be small on the inboard side near
the plates, and is such that the displacement normal to the conducting plates is reduced
near the plates. In this way the plasma appears to “slip” around the plates in a way to

reduce the resistance to the motion.

Figure 7 shows the eigenfunction of the instability with the passive plates on the

outboard side at |@| = 7/4 (second point from the left on the curves in Fig. 5). The
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Plasma Current I, 12.30 MA

Major Radius Ry 2.182m

Minor Radius a 0.660 m
Elongation x(95%) 1.996
Triangularity §(95%) 0.258

Toroidal Field Br(0) 11.0T

q(95%) 4.5

B 0.0092

n0(0) 1.08 x 102! =3

Table 1: Equilibrium parameters of CIT plasma used in the passive stabilization study.

deformation of the eigenfunction is clearly different from that of Fig. 6, and it is again
quite different from the rigid shift. This difference can be traced to a change in magnitude
of the m = 3 component and a change in sign and magnitude of the m = 2 component.
The displacement vector plot shows the plasma is again displaced in such a way that the
stabilizing effect of the plates is reduced. The magnitude of the displacement is seen to
be very small on the outboard side near the plates, and the displacement normal to the

conductors is reduced which causes reduced stabilization from the plates.

3.3. The CIT equilibrium

We now perform the same study using the CIT design equilibrium. This equilibrium
has been studied in depth using the NOVA-W code with regard to convergence studies and
active feedback stabilization [25]. The equilibrium parameters are shown in Table 1. This
equilibrium has significant triangularity (6 = 0.26) as well as elongation (k = 2.0). We

study the variations in the growth rate and the relative non-rigid component contributions
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to the eigenfunction with respect to the position of the symmetric poloidal plates as was
done in the previous sections. The results are shown in Fig. 8, in the same fashion as the

results of previous two cases.

The same reasoning can be applied to the variations in the relative contributions
Eym /€y for this equilibrium. Figure 9 shows the contributions of the m = 2 and m = 3
components to the perturbed flux in the vacuum. We note that the £y2/&y1 ratio in
Fig. 8 changes sign as the conducting plates are moved from the outboard region to the
inboard region, so that the m = 2 contribution to the eddy currents in the conductors is
always of opposite sign to the overall stabilizing currents. However, the maximum positive
magnitude is over twice as large as the maximum negative magnitude. This reflects the
significant m = 2 component to the eigenfunction in the case with no conductors. The
m = 3 component to the eigenfunction doesn’t change sign like the m = 2 component,
however its magnitude is much higher when the conductors are in the region in which the
m = 3 component adds negatively to the overall eddy currents. It varies with respect to
the position of the conductors to increase its destabilizing contribution and decrease its

stabilizing contribution.

The eigenfunction for this equilibrium with significant triangularity (both with a
complete wall and with no wall) is quite different from the uniform vertical rigid shift.
The displacement has a prominent inward motion towards the X-point region [25]. For
the configurations with the conductors on the outboard side this effect is enhanced and
the eigenfunction differs even further from a rigid shift. However, when the conductors
are on the inboard side this effect is reduced and the most unstable motion for this case
is, in fact, nearly a uniform, vertical shift. Both cases show the effect of the placement
of the passive conductors to modify the eigenfunction such that the motion towards the

conductors is reduced.

The effect of triangularity in this equilibrium makes the curves in Fig. 8 even less

symmetric with respect to |©| = n/2 than the previous case. The most effective plate

16



position is further to the outboard side at about |©| = 0.4037. The vertical lines show the
ideal stability boundaries, and it is seen that all configurations with the plates centered
on the inboard side are ideally unstable. The region in which passive conductors give
ideal stability is narrower than the previous cases and is exclusively on the outboard side,

basically limited to n/4 < |©] < 7/2.

This analysis has also been performed for the ARIES-I design equilibrium [26]. This
equilibrium has a smaller elongation (x = 1.61), but larger triangularity (§ = 0.43),
than the CIT design equilibrium. The eigenfunction is much further from a uniform,
vertical shift than the previous case, again even more so when the conductors are on the
outboard side, but again to a lesser extent when the conductors are on the inboard side.
The greater triangularity of this equilibrium eliminates even further any symmetry about
|©| = 7 /2, and the most effective conductor position is slightly further to the outboard
side at about |©| = 0.3947. This is true even though the ARIES-I equilibrium has a
larger aspect ratio than the CIT equilibrium. This indicates that triangularity leads to
preferred outboard positions of the conductors to an even greater extent than toroidal

effects.

A similar analysis, but one which used a rigid plasma motion assumption, has been
carried out for the ITER configuration [13]. In this case a comparison was made between
growth rates with a full wall and a partial wall covering about half the area on the
outboard side. It was shown that an optimally placed partial wall would stabilize the
plasma almost as well as a complete wall—the partial wall growth time being higher by an
average factor of only 1.6 times the full wall growth rate. Another study for the ARIES-I
reactor design [29] gave similar results with this rigid plasma model. It was also shown
that the growth rate for ARIES-I with a full wall using the rigid plasma model was 20%
lower than the result from NOVA-W. In general, we see that stabilization by a partial
wall will be much less effective because of deformations in the plasma eigenfunction.
Clearly plasma deformations can play a significant role in the passive stabilization of

highly shaped tokamak plasmas.
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Plasma Current I, 567.4 kA

Major Radius Ry 1.635 m

Minor Radius a 0.308 m
Elongation «(95%) 1.951

Toroidal Field Bz(0) 120 T

q(95%) 2.51

8 0.02

n.(0) 3.35 x 10" m~3

Table 2: Equilibrium parameters of PBX-M plasma used in the active feedback sta-
bilization study. This equilibrium corresponds to a modification of the equilibrium of

experimental shot #226879.

4. Non-rigid effects on the active feedback stabilization of PBX-M

In this section we consider the effects of an active feedback system on the form of
the eigenfunction and how this affects the overall stability. In Ref. [23] a numerical
calculation using the Tokamak Simulation Code [18] of the active feedback stabilization of
the axisymmetric instability in the PBX-M tokamak was described. It was demonstrated
that different flux-loop locations which measure equally well the plasma displacement in
the passive sense do not work equally well in stabilizing the axisymmetric motion given
the same active feedback coils and gain law. In particular, it was shown that the flux loop
pair on the inboard side was ineffective in stabilizing the vertical instability regardless of
the value of the gain. The outboard pair, however, could be used successfully to stabilize

the plasma.
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These results were demonstrated using Nyquist techniques, and it was suggested that
if the plasma were unstable enough, it would be able to deform under the influence of
the active feedback (i.e., the eigenfunction would be modified) which in such a way that
the flux difference measurement at the flux loops could be made so close to zero that
the active feedback system would be rendered ineffective. The feedback system would
operate normally, but the flux-loop measurements would be worthless owing to the plasma
deformation. It was impossible, however, to explicitly demonstrate this conjecture using
TSC and the other analysis methods used. The NOVA-W code, on the other hand, is
ideally suited for examining this problem, and we will show how the active feedback
system can induce a modification of the PBX-M eigenfunction in such a way as to make
the active feedback system ineffective for certain flux-loop locations, and how it will
minimize the stabilizing effect of the feedback system for any flux-loop configuration.

For this we consider a PBX-M equilibrium similar to that used in Ref. [23].

4.1. Active feedback stabilization of PBX-M using the inboard flux loops

We use a PBX-M equilibrium corresponding to experimental shot #226879. The
equilibrium parameters are listed in Table 2. The equilibrium used here was taken from
a time-dependent TSC simulation in which the actual experimental coil currents from
this shot were used for the simulation, and the TSC results compared well with the ex-
perimental magnetics data [30]. This was done in the same fashion as an earlier study
of the PBX tokamak [17]. To produce the modified equilibrium used in these calcula-
tions, the vertical field was increased in order to move the plasma inward, away from
the outboard stabilizing plates and toward higher negative field index. This makes the
equilibrium more vertically unstable than the original experimental equilibrium. Such
an inward radial shift could be caused in an experiment by a loss of thermal energy or

redistribution of current [17).

Figure 10 shows the equilibrium plasma boundary, the PBX-M wall contour (the
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wall contour is composed of sections of high conductivity which represent the passive
stabilizing plates used in the PBX-M device and includes connecting regions of very high
resistivity representing the axisymmetric gaps between the passive stabilizers), the active
feedback coils, and the three sets of flux loops to. be used. We consider first the case
of the inboard flux loops, (X,, Z,) = (1.255,+0.10), which were found previously [23] to
be ineffective for active feedback stabilization. A proportional gain law was used in this

calculation. The normalized feedback gain is equal to p/2 times the gain given in units

of Amps/Weber-radian.

Figure 11 shows the instability growth rate vs. normalized feedback gain, and selected
component ratios (£yz/&y1 and Eya/Ey1) vs. gain. As the feedback gain is increased from
zero, the growth rate drops rapidly, indicating that the feedback system is operating
properly. The components of the eigenfunction remain fairly constant with respect to
the gain. At higher gain (approximately a > 1.5), however, we see that the m = 2
component of the eigenfunction changes significantly. It becomes less negative, then
positive, and then rapidly increases in magnitude with increasing gain. In the same
region of gain space where we see the sudden rapid increase of £;,/£,; we also notice that
the growth rate v starts to level off. The growth rate approaches marginal stability and
does not appear to become more stable at high values of feedback gain. At a, = 6.0,
double the maximum gain shown in Fig. 11, the growth rate is still at marginal stability.
It is virtually unchanged (only very slightly smaller) from the gain at a, = 3.0. At
these high values of gain the active feedback is no longer effective in providing additional
stabilization to the plasma. Instead, the eigenfunction is changing in form, thereby
maintaining the instability. The ratio £y4/€y1 also changes significantly as the feedback

gain is increased—it roughly quadruples in magnitude in this range of the feedback gain.

Figures 12-14 show the perturbed flux contour plots at three different values of nor-
malized gain (e, = 1.0, 2.0, 3.0) spanning the range of Fig. 11. Examining these perturbed
flux plots allows us to see how the eigenfunction modification changes the effectiveness

of the feedback system which uses the inboard flux loops.
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Figure 12 shows the perturbed flux contours with normalized gain o, = 1.0. Referring
to Fig. 11 we see that the eigenfunction is nearly identical to the form it takes with no
active feedback—the ratio {y2/£y; is virtually unchanged, and &4/ is only slightly
more negative. Therefore Fig. 12 shows, in effect, a plot of the perturbed flux contours of
the feedback system interacting with essentially the original unstable eigenfunction. We
see that the perturbed flux contours from the plasma are fairly equally weighted on both
sides of the plasma. The zero contour, shown as a dotted line on this diagram, is distant
from the flux loops, and the value of the perturbed flux at the flux loops (measurable

signal) is relatively large.

Figure 13 shows the perturbed flux contours for a, = 2.0. Referring to Fig. 11 we see
that the eigenfunction has undergone considerable modification at this value of gain. In
particular, the m = 2 component is quite different and has even changed sign. One can
see from the plot of the perturbed flux contours that the contours of piasma flux have
become shifted toward the outboard side, and the value of perturbed flux on the inboard
side near the flux loops has been greatly reduced. The null contour has moved closer
to the flux loops. We see from Fig. 11 that at this point the growth rate has already
begun to level off with respect to increasing feedback gain. The change in the form of the
perturbed flux contours from the plasma indicates a shift in the unstable plasma motion

toward the outboard side.

Figure 14 shows the perturbed flux contours when the normalized gain o, = 3.0,
the highest gain value shown in Fig. 11. The plasma deformation is quite large at this
point, especially with regard to the m = 2 component. The perturbed flux contours
also reflect the considerable deformation of the plasma. The contours from the plasma
are heavily weighted toward the outboard side. The perturbed flux indicates that the
unstable motion is now more of a purely vertical motion instead of the motion towards the
x-point (in the direction of the tip of the bean) which is characteristic of the instability
with little or no active feedback—see Fig. 12. Notice also that the perturbed flux on the

inboard side, near the flux loops, is almost zero. There are no contours of plasma flux
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seen on the inboard side, and the deformation of the eigenfunction has allowed the null
contour to move very close to the flux loops. The measured flux difference at the flux
loops is now very small. The feedback system is rendered ineffective because it can no

longer measure and feed-back on the deformed vertical motion.

It should be noted that although the case we examined in this section had zero
derivative gain, an increase in the derivative gain was found to have no real effect on
the stabilization. The growth rate at large gain «, is still at the marginal stability
limit with increased derivative gain. This is not surprising, since the results show the
oscillation frequency w, to be zero. Therefore there is no overshoot and no oscillation.
The ineffectiveness of the feedback using these flux loops is due solely to the eigenfunction

deformation.

4.2. Active feedback stabilization using the centered-outboard flux loops

We next consider feedback stabilization using the centered-outboard pair of flux loops
of Fig. 10, (X,, Z,) = (1.64, £.56). This flux-loop pair location corresponds most closely
to the actual flux loops used for vertical control in the PBX-M experiment. Figure 15a
shows the growth rates vs. proportional gain a, for three different values of derivative gain
Bg. Figure 15b shows the growth rate v vs. oscillation frequency w, for the same three
values of derivative gain. It can be seen that with zero derivative gain the axisymmetric
mode cannot be stabilized. The growth rate can be reduced to about 20 s7! at o, = 1.5,
but further increases in gain do not appreciably lower the growth rate while they do
however, significantly increase the oscillation frequency w,. Large proportional gain is
driving a large overshoot that leads these to oscillations. Clearly some derivative gain
is necessary. By increasing the derivative gain to f,/a, = 0.05s! the plasma can be
stabilized and the oscillations significantly reduced. A further increase in derivative gain
to B,/a, = 0.10s™! decreases the oscillation frequency even more and allows stabilization

to occur at a lower value of proportional feedback. Unlike the inboard flux-loop pair,
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this pair of flux loops does allow for adequate stabilization of the plasma provided the
derivative gain is large enough. This agrees with results obtained with TSC for this
same equilibrium [30]. Figure 16 shows the variation of the m = 2,4 components of the
eigenfunction, as well as the growth rate 4 and oscillation frequency w,, with respect to

feedback gain a, for the three values of derivative gain.

Figure 16a shows these results for the case with no derivative gain. We see a strong
reduction in the growth rate ¥ with increasing gain a, until the gain reaches a, ~ 1.5. At
this point the 4 curve levels off and does not stabilize much more with further increase
in gain. Furthermore, we see w, increase rapidly from zero beginning at o, ~ 1.25.
The oscillation frequency w, increases steadily with increasing gain, while v no longer
decreases by any significant amount. This demonstrates that the restoring force from
the feedback system is driving the oscillations instead of stabilizing the plasma. We also
see some modification of the m = 2,4 components of the eigenfunction in Fig. 16a. This

deformation, while noticeable, is not strong at this point.

Figure 16b shows the results for the case using the centered-outboard flux loops with
B/, = 0.05s~! derivative gain. In this case the plasma can be stabilized with sufficiently
large feedback gain. The oscillation frequency here is less than that in the zero derivative
gain case, although it is still a significant fraction of that case and continues to increase
with increasing gain. We also see a larger change in £,3/£,: with respect to increasing gain
ay than in the zero derivative gain case. After a small decrease in negative magnitude
at oy ~ 0.75, the value of £y2/€y1 begins to get more negative with increasing gain.
This change in {y;/{y1 corresponds to a change in the slope of the v vs. a, curve. As
£y2/&y1 begins to become more negative, the reduction in v with respect to a, decreases.
Thus, there appears to be a plasma deformation that is reducing the effectiveness of the
feedback system with the flux loops at this location. This modiﬁcati;n is not enough to
keep the feedback system from stabilizing the vertical instability, but it does reduce the

effectiveness as shown by the change in slope of the v vs. a, curve.
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Finally, Fig. 16c shows the results for the case with 8,/a, = 0.10s~! derivative gain.
In this case the oscillations have been much reduced, and the plasma is stabilized at a
lower value of a;,. Here also, we see a large change in £,,/¢y, with respect to the gain.
There is a rapid decrease in {y,/{y1 with respect to a, starting at a, ~ 0.75. This is
strongly correlated with the sudden change in the slope of the 4 vs. @y curve. The v
vs. a, curve levels off in the region where the eigenfunction is significantly deformed.
This corresponds to about the point where the axisymmetric mode becomes stable, so
the deformation is not enough to keep the plasma unstable when these flux loops are
used, but it does keep the feedback system from stabilizing the motion any further, as

witnessed by the sudden change in slope of the v vs. a, curve.

The m = 2 component ratio £y2/€y1 begins to decrease (increase in negative mag-
nitude) as the gain is increased above a, = 1.0-1.5. Note that this change is opposite
to the change in £,,/¢,; from Fig. 11 for the inboard flux loops. In that case we found
that {yo2/&y1 changed sign and grew to a large (positive) value with increasing feedback
gain. This caused the perturbed flux contours from the plasma to be shifted toward the
outboard side away from the flux loops. This left a relatively small value of perturbed
plasma flux at the inboard flux loops. In the present case, when the centered-outboard
flux loops are used to control the feedback system, we see the opposite effect. This im-
plies that the perturbed flux on the outboard region near these flux loops is somewhat

reduced.

Figure 17 shows the perturbed flux contours for the active feedback at gain a, = 2.25
using the centered-outboard flux loops. Careful examination and comparison with Fig. 12
shows that the perturbed flux near the flux loops is slightly reduced from the case with
little or no feedback gain. This is most clear by noticing how much closer the zero-flux
contour has moved to the controlling pair of flux loops. The plasma eigenfunction is
again deformed in such a way to reduce the effectiveness of the feedback system using
this particular pair of flux loops. However, the deformation is clearly very different from

the inboard flux-loop case as one can see by the difference in £,5/€4; vs. a, in Figs. 11 and
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16. This results in a quite different modification of the perturbed flux contours between
Figs. 14 and 17. The only difference between these two cases is the location of the flux

loops, and this difference leads to vastly different plasma deformations.

It is interesting that the deformation is weak when the feedback system is ineffective
due to insufficient derivative gain. However, as the derivative gain is increased, thereby
reducing the unwanted oscillations, the feedback is more effective in reducing the growth
rate, but it is also more effective at inducing a deformation in the eigenfunction. This
deformation becomes larger with increasing gain, and the effectiveness of the feedback

system is reduced.

4.3. Active feedback stabilization using the far-outboard flux loops

Next we consider active feedback using the far-outboard flux loops shown in Fig. 10.
Figure 18 shows the results using this pair of flux loops with a gain law that includes

derivative gain of f;/a, = 0.10s~*

. We see that even with this large derivative gain and
the correspondingly low values of w, shown in Fig. 18, the plasma cannot be stabilized
beyond a certain point (y = 4 s7!). Figure 18 shows a large initial drop in v with

increasing gain. This stabilization begins to level off, however, at o, ~ 1.75.

The component ratios €y2/€y1 and £44/€y1 show a significant and varied deformation of
the eigenfunction with respect to increasing gain. Initially there is a sharp rise in €ya/&y
toward less negative values. This mimics the rapid rise in £,2/€y1 shown in Fig. 11 for
the case using the inboard flux loops. In that case, however, &,,/&;; moves to positive
values and continues to increase in magnitude. In Fig. 18 we see such an initial rise in
£42/&y1, but then a sharp reversal occurs at o, = 1.75, followed by a rapid decrease of
€42/&y1 (toward more negative values) at higher gain. This is paralleled by a similar, but
much less dramatic, change in £;4/£,; at about the same point. The v vs. ay curve levels

off at a, ~ 1.75, near the point where we see the sudden changes in the eigenfunction.
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Figure 19 shows the perturbed flux contours for this case with the gain o, = 2.0 and

the derivative gain §,/a, = 0.10s71.

We see from this figure that the null contour lies
almost directly on the flux loops. This seems to be a natural consequence of the geometry
of the feedback system and this particular inward-shifted equilibrium. Note from Fig. 12
(inboard flux loops, gain a, = 1.0) that the null contour on the outboard side is in
about the same place even when the flux loops are on the inboard side. However, in the
case using the inboard flux loops, we see that at higher values of gain the eigenfunction

deformation is such that the perturbed flux contours are shifted strongly toward the

outboard side. This, in turn, pushes the null contour away from the plasma.

If this same deformation of the eigenfunction were to occur when the flux loops are on
the outboard side of the plasma, then the feedback system would be more effective owing
to the large measurable perturbed plasma flux at the flux-loop locations (see Figs. 13—
14). What we do see when the flux loops are on the outboard side is a deformation
initially similar to the previous case, but then there is a sudden reversal in the plasma
deformation at the point where continued deformation would move the null contour away
from the flux loops. Instead, the eigenfunction is modified so as to keep the null contour

on the flux loops and thereby reduce the stabilizing effect of the feedback system.

5. Summary

For the case of passive stabilization, we have seen that different m-components of
the eigenfunction induce different poloidal current distributions in a surrounding wall.
Conducting elements at different locations around the plasma will induce differing modifi-
cations of these non-rigid components of the eigenfunction. The eigenfunction is modified
to either increase the relative magnitude of the m > 1 components if they induce desta-
bilizing currents for a particular conductor, or to decrease them if they are stabilizing.
Therefore the plasma motion is modified in such a way that it can “slip” around the

passive conductors in order to reduce the resistance to its motion. A more precise way
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to state this is to say that the plasma eigenfunction is modified in such a way that the
stabilizing eddy currents in the surrounding conductors are reduced as much as possible.
Toroidal effects remove the symmetry with respect to |©| = /2 and push the most ef-
fective position for passive conductors to the outboard side. Triangularity removes the
symmetry even further and gives even greater advantage to outboard positioning of con-
ductors. In general, effects due to plasma shaping and deformability of the eigenfunction
are over and above the relative advantage of placing conductors on the outboard side due
to toroidal effects. Therefore, the optimal placement of the discrete conducting plates

can be of critical importance for a shaped tokamak plasma.

We have also seen in Section 4 that the eigenfunction of the axisymmetric mode for
the PBX-M plasma will modify itself under the influence of an active feedback system to
provide a much weaker signal to the flux loops that measure the plasma displacement.
This compromises the stabilizing effect of the active feedback system, and can in some
cases leave the feedback system so ineffective that stability cannot be achieved regardless
of the strength of the feedback gain. We examined, in particular, three possible locations
for placement of the flux loops that control the feedback, and in each case we see a
different plasma deformation that leads to a reduced flux signal for each particular pair
of flux loops. These eigenfunction deformations do not leave the plasma unstable in
every case, but they always do reduce the stabilizing effect of the particular feedback

configuration.

Note that for all three active feedback cases, the perturbed flux contour plots show
that the eigenfunction is modified in such a way that the zero-flux contour is pushed
toward the particular set of controlling flux loops. This reflects the reduction in the
measurable signal at the flux loops, and thereby the reduction in the effectiveness of a

feedback system to control the unstable motion.

We have shown that effects due to the deformability of the plasma can therefore play

an important role in determining the properties of passive and active feedback stabiliza-
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tion of highly shaped tokamak plasmas. This should be an important consideration in

the future design and operation of such tokamaks.
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Figures

Fig. 1. Effect of poloidal position |©| of conducting plates on the eigenfunction and
growth rate of the very large aspect-ratio elliptical equilibrium. The ratios of the
m = 2 (circles) and m = 3 (triangles) components of the eigenfunction to the m =1
component at the plasma edge are plotted as a function of the poloidal position of
the conducting plates. Also shown is the growth rate v (squares) as a function of the
plate position. The corresponding values for a continuous complete wall are shown in
solid on the left, and the values for the case with no wall are shown in solid on the
right. The values of the ratio ;. /&y1 for the Fourier representation of the rigid shift
are shown on the left axis. The vertical lines show the ideal stability boundaries, i.e.,
the configuration is ideally stable when the conductors are located at |©| values in

the region between the lines.

Fig. 2. (a) Perturbed flux contour plots for the large aspect ratio ellipse corresponding to
the m = 2 component of the motion only. The sign of the flux is shown and changes
through the midplane and across the zero-flux contours positioned at [©] = 7 /2. The
midplane itself is also a zero-flux contour.

(b) Perturbed flux contour plots for the large aspect ratio ellipse corresponding to the
m = 3 component of the motion only. There are two additional zero-flux contours (in
addition to the midplane contour, which is always present for antisymmetric modes).
The additional zero-flux contours are shown along with the signs (shown in the circles)

of the flux contours.

Fig. 3. Magnitude of the perturbed radial magnetic field at the magnetic axis, gr(O), due
to a unit (positive) current at every point along the wall contour used in the lower
aspect ratio elliptical equilibrium calculation (solid line) and in the very large aspect

ratio elliptical equilibrium calculation (dotted line).

Fig. 4. (a) Fourier components of the radial displacement £, vs. /% for the elliptical
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equilibrium with a complete continuous resistive wall.
(b) Fourier components of ¢, for a uniform vertical rigid shift displacement of the

elliptical plasma.

Fig. 5. Effect of poloidal position of conducting plates on eigenfunction and growth rate
of the lower aspect-ratio elliptical cross-section equilibrium. The ratios of the non-
rigid components of the eigenfunction to the rigid component at the plasma edge are
graphed as a function of the poloidal position of the conducting plates. In particular
the m = 2 (circles) and the m = 3 (triangles) contributions are shown here. Also
shown is the growth rate « (squares) as a function of the plate position. The cor-
responding values for a continuous complete wall are shown in solid on the left, and
the values for the case with no wall whatsoever are shown in solid on the right. The
values of £, /&y1 for the Fourier decomposition of the uniform vertical rigid shift are

shown on the left axis. The vertical lines show the ideal stability boundaries.

Fig. 6. (a) Fourier components of the radial displacement ¢, vs. /% for the elliptical
equilibrium with conducting plates at about 45° off the midplane on the inboard side.
(b) Displacement vectors showing the plasma instability. The plasma is partially sta-
bilized by conducting plates on the inboard side of the plasma. Note the deformation

of the plasma motion as it tries to move around the plates.

Fig. 7. (a) Fourier components of the radial displacement £, vs. /% for the elliptical
plasma with conducting plates at about 45° off the midplane on the outboard side.
(b) Displacement vectors showing the plasma instability. The plasma is partially sta-
bilized by conducting plates on the outboard side of the plasma. Note the deformation
of the plasma motion as it tries to move around the plates. Note also the difference

in the deformation compared with that of Fig. 6.

Fig. 8. Effect of poloidal position of conducting plates on eigenfunction and growth rate
for CIT equilibrium. The ratios of the m = 2 (circles) and m = 3 (triangles) com-

ponents of the eigenfunction to the m = 1 component at the plasma edge are plotted
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as a function of the poloidal position of the conducting plates. Also shown is the
growth rate v (squares) as a function of the plate position. The corresponding values
for a continuous complete wall are shown in solid on the left, and the values for the
case with no wall are shown in solid on the right. The values of £,,,/£;, for the
Fourier representation of the uniform vertical rigid shift are shown on the left axis.

The vertical lines show the ideal stability boundaries.

Fig. 9. (a) Perturbed flux contour plots for the CIT equilibrium for the m = 2 component
of the motion. The sign of the flux in each region shown. The midplane is itself a
zero-flux (null) contour. This is a 1), = 0.99 equilibrium.

(b) Perturbed flux contours for CIT due to the m = 3 component of the eigenfunction
only. Note the 3-part structure of the contours in each half-plane. The zero-flux

contours are indicated with arrows.

Fig. 10. The PBX-M plasma boundary, resistive wall contour, active feedback coils, and
three sets of flux observation loops (inboard pair, centered-outboard pair, and far-

outboard pair) to be used in these calculations.

Fig. 11. Growth rate v and variation in m > 1 components vs. normalized feedback gain
ag for flux loops on the inboard side. The ratios of the m = 2 (circles) and m = 4
(triangles) components of the eigenfunction to the m = 1 component at the plasma
edge are graphed as a function of the feedback gain. Also shown is the growth rate

(squares) as a function of the gain.

Fig. 12. Perturbed flux contour plots for PBX-M with active feedback using the inboard
flux loops, and normalized feedback gain oy = 1.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by ‘x’ symbols.

Fig. 13. Perturbed flux contour plots for PBX-M with active feedback using the inboard
flux loops, and normalized feedback gain a; = 2.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by ‘x’ symbols.
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Fig. 14. Perturbed flux contour plots for PBX-M with active feedback using the inboard
flux loops, and normalized feedback gain @, = 3.0. The zero-flux contours are shown

as dashed lines. The flux loops are shown by ‘x’ symbols.

Fig. 15. (a) Growth rate vs. gain oy for 8,/a, = 0. (squares), 8,/a, = 0.05s! (circles),
By/ay = 0.10s™! (triangles).

(b) Growth rate vs. |w,| for the same three values of ,.

Fig. 16. Growth rate v, oscillation frequency w,, and the variation in m > 1 components
vs. feedback gain for centered-outboard flux loops. The ratios of the m = 2 (circles)
and m = 4 (triangles) components of the eigenfunction to the m = 1 component at
the plasma edge are graphed as a function of the feedback gain. Also shown is the
growth rate v (squares) and oscillation frequency w, (diamonds) as a function of the
proportional gain for:

() B,/ = 0.
(b) B,/cty = 0.0551
(¢) By/ay; =0.10s71

Fig. 17. Perturbed flux contour plots for PBX-M with active feedback using the centered-
outboard flux loops, and normalized feedback gain a, = 2.25. The zero-flux contours

are shown as dashed lines. The flux loops are shown by ‘x’ symbols.

Fig. 18. Growth rate v, oscillation frequency w,, and variation in m > 1 components
vs. feedback gain for far-outboard flux loops. The ratios of the m = 2 and m = 4
components of the eigenfunction to the m = 1 component at the plasma edge are
graphed as a function of the feedback gain. Also shown is the growth rate v and

oscillation frequency w, as a function of the proportional gain for §,/a, = 0.10s7*.

Fig. 19. Perturbed flux contour plots for PBX-M with active feedback using the far-
outboard flux loops, and normalized feedback gain a; = 2. The zero-flux contours

are shown as dashed lines. The flux loops are shown by ‘x’ symbols.
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