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Abstract

Research into neural networks has gained a large
following in recent years. In spite of the long term timescale
of this Artificial Intelligence research, the tools which the
community is developing can already find useful applications
to real practical problems in experimental research. One of
the main advantages of the parallel algorithms being
developed in Al is the structural simplicity of the required
hardware implementation, and the simple nature of the
calculations involved. This makes these techniques ideal for
problems in which both speed and data volume reduction are
important, the case for most front-end processing tasks.

In this paper we illusirate the use of a particular
neural network known as the Multi-Layer Perceptron as a
method for solving several different tasks, all drawn from
the field of Tokamak rescarch. We also briefly discuss the use
of the Multi-Layer Perceptron as a non-linear controller in a
feedback loop.

'We outline the type of problem which can be usefully
addressed by these techniques, even before the large-scale
parallel processing hardware currently under development
becomes cheaply available. We also present some of the
difficulties encountered in applying these networks.

I. INTRODUCTION

Although a computer can beat a human at arithmetic
tasks, it has trouble distinguishing a Mercedes from a BMW.,
This implies that certain biological processes are superior in
handling large quantities of information,.although they have
intrinsically slower cycle times than present day computers.
The quest for artificial systems which imitate some of the
biological features which lead to this performance motivated
even the earliest computer research, and this quest continues,
driving the study of Artificial Neural Systems.

Current fields of research include vision, robotic
control, speech recognition, handwriting analysis, sonar and
radar analysis, time-series analysis. Existing commercial
applications cover character recognition, credit risk
assessment and production line quality control.

There is a correspondingly large number of classes of
neural network, beyond the scope of this paper. The reader is
referred to [1,2] for more information. Some networks
operate with binary values, some produce an output which is a

"recognized" version of the input (auto-associative) and some
produce an independent "answer" (hetero-associative). In
some, the information circulates, and in others it flows
directly towards a set of outputs. In this short paper we only
discuss one network, the Multi-Layer Perceptron (MLP).
This is generally a hetero-associative network which we
define in Section III, We introduce the ideas behind it by
using simple analogies in Section II. We will show how
MLP networks can solve practical front end processing tasks,
by describing four simple but real examples, all taken from
Tokamak research, Sections IV-VIL. Another important and
expanding domain of application of neural networks is non-
linear dynamic control, which we introduce with a simple
example in Section VIII. We briefly mention hardware
implementation in Section IX, some practical difficulties in
Section X and some conclusions in Section XI. There is no
attempt to provide a review of the enormous bibliography,
although a few papers are cited where appropriate.

II. NEURAL NETWORKS

As already stated, there is a large variety of neural
networks being explored at present, and in this paper we
choose to restrict ourselves to one, the MLP, which yields a
multi-dimensional mapping. It accepts a large number of
inputs and must provide one or more outputs whose values
are continuous functions of the given input values. It
possesses a forward-pass structure; this means that no
information processed is re-used in a previous part of the
processing. This class of network is particularly simple to
understand and to use. It is a wide class and corresponds to
most data analysis, data reduction, decisional and
interpretative tasks.

Figure 1 shows four networks which are simple to
understand and which perform obvious functions. We discuss
these so that the use of the MLP subsequently appears a
natural generalisation of some simple ideas. The first, Fig.
1(a), illustrates an averaging network. The inputs are A and
B; the output is (A+B)/2. There are two weights (each 0.5)
connecting the inputs to a summing processing element (PE),
and a weight (1.0) connecting this PE to the output.

Figure 1(b) shows 4 input weights [1,1,-1,-1] into the
summing PE which has an output value of A+B-C-D. This is
passed through a non-linear PE which is a threshold function,
The output 8(A+B-C-D) is a binary level indicating whether
A+B>C+D.



Figure 1(c) shows two inputs into two logarithmic
PEs, whose outputs are summed and passed through an
exponentiation PE. The output is simply the product AB.
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Fig.1 Schematics of four arithmetic neural networks
calculating : (a) the average of A and B, (b) a logical
value representing A+B>C+D, (c) the product AB
and (d) a polynomial expansion a+bx+cx2+dx3.

Figure 1(d) illustrates a single input fanned out with
a unity weight to four non-linear PEs, each raising its input
to a power 0-3. Their output weights and a summing PE
define an output equal to a+bx+cx2+dx3.

Figure 2 shows a more complicated network with 100
inputs equal to a signal defined by a time-series. These are
connected via weights equal to cos(nwt;) (n=1...10) to 10
summing PEs. The outputs are the real part of the first ten
harmonic Fourier components of the input time-series.

These five simple illustrations of interconnected
forward-pass networks can be considered a priori as valid
"neural" networks. They are all buildable; they are all useful;
they are all simple; they are all correct; they are all based on
well-established arithmetic; but they are all highly specific,
and only apply to the problem they were designed for. As a

given problem becomes larger and the operations become
more complex, any conventional network will have a smaller
ressemblance to any other existing network. These networks,
although of extreme importance to the physicist or engineer,
have strictly no interest as Artificial Neural Systems.
Therefore it would be preferable to look for a more general
network capable of being adapted to solve a larger class of
tasks.
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Fig.2 A schematic of the Fourier components of a time-
series.

The quest for a neural network which has some
similitude with biological networks focusses on two main
biological observations - a high multiplicity of similar cells
and a large degree of connectivity. Early research into
mathematical models of highly interconnected networks
flourished in the 1960's to be hurriedly extinguished on the
basis of a false alarm. The wounded discipline only took off
again in the early 1980's. The false alarm had been the
undeniable inability of a single matrix (known as the
Perceptron) to emulate the exclusive-OR function of two
binary inputs. The Perceptron was subsequently replaced by a
more powerful but more complex structure known as the
Multi-Layer Perceptron, described in the following section.

Both the Perceptron and the Multi-Layer Perceptron
have the same goal - to reproduce a given input-output
mapping using a multiplicity of simple but most
importantly identical processing elements. The structures of
Figs 1 and 2 must and can be replaced by a homogeneous
neural network which can be made to be almost as good as the
true functions they emulate, for a given range of input values.
These structures can then be considered as generic transfer
functions, or mappings, which can be adapted to solve any
particular problem. The homogeneity of the solution offers a
further advantage, namely highly parallel calculations,
suited to future parallel processing.

These characteristic features - parallelism,
homogeneity and generality - are what motivate the research



into neural networks, and which render them extremely
attractive for many front-end processing tasks.

III. THE MULTI-LAYER PERCEPTRON

The MLP is an explicit non-linear and continuous
mathematical relationship between a multi-variable input
data vector (in our case experimentally measured signals) and
a multi-variable output data vector (in our case parameters to
be estimated on the basis of the available data). The MLP is
often represented schematically as in Fig. 3. The input vector
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Fig.3 The schematic description of a Multi Layer
Perceptron

of dimension Nj, is linearly transformed by a matrix W12
into an intermediate vector of dimension Nj, known as the
hidden layer. The size of this intermediate vector , which may
be smaller or greater than the input vector, is the only design
choice when specifying the MLP configuration. The hidden
layer vector is then passed element by element through a
compression function s, known as a sigmoidal function,
which is continuous, differentiable and monotonically
increasing. The sigmoidal function we use is symmetric and
bounded (1) :

2
= - 1
s(x) d+em 1 (1)
The compressed vector is then linearly transformed by
a second matrix W23 into an output vector of dimension N3.

Such a configuration is referred to as a 1-hidden-layer MLP

(an MLP-1); if we recompress and re-transform the output -

vector to produce a new output vector, we have a 2-hidden-
layer MLP (an MLP-2) and so on. If we make a simple linear
projection, we have the historically special case of an MLP-0.

The different MLP configurations share the property
of transforming a vector of input data (S;) into a vector of
output data (xx). This mapping can be written as xi = G(S).
Any particular MLP-1 mapping G is defined by the values of
the weights in the matrices W12 and W23. A wide range of
literature can be found on the generality of MLP-1 and MLP-
2 mappings [3,4]. It has been demonstrated that all bounded

continuous functions can be approximated using the sigmoid
(1) by some MLP-2 over a given volume in the space of S,
given suitably large transformation matrices. A similar
demonstration has been proposed for the case of the MLP-1.
The work in this paper is restricted to MLP-1 mappings
which are found to be adequate for the particular problems
investigated.

IV. TASK 1 - OVERLAPPING GAUSSIANS

The first task we look at is the analysis of data from a
spectrometer assumed to cover the range of two Gaussian
spectral lines. These lines are of different amplitudes, central
wavelengths and widths Aj 2, fo1,2, dfy,2, as illustrated in
Fig. 4. The value of the signal at each of 20 sampling points
(D) is given by

yi; A1z fon2. 401 = T Ajexp(-(o-f2E)  (2)
=12
We are not interested in the raw data, but only need a
real time estimate of the peak widths and centres, which

OVERLAPPING GAUSSIANS
10
Signal a Signal b
0
10
Signal c Signal d
fo
df<i>
0 .
[} 10 2 0 10
Wavelength Wavelength

Fig.4 The MLP fit of two overlapping Gaussian
distributions to 20 spectral measurements, using a
(20:10:6) MLP-1 network

might represent impurity ion temperatures and Doppler shift
velocities in a Tokamak plasma. In order to estimate the six
unknowns, we most commonly perform a least-squares fit,
minimising the cost function

A A
QA1,2.801,2.361,)=F(S;y(h; ; A1 2. F01.2, 861202 (3)
i
Except in simple cases when y is a linear function of the
unknown variables (xx), the minimisation of Q requires an
iterative procedure which is time-consuming and not
particularly suited to front-end processing



The resulting mapping, Gy , relating the data to the
unknowns is clearly continuous and differentiable due to
(2,3). However the iterative minimisation of the cost
function does not make use of the fact that slightly different
measurements are associated with only slightly different
parameters. In principle, we could interpolate between
neighbouring points, therefore a direct mapping G between
the measured quantities Sj(i=1,20) and the parameters
xk(k=1,6) exists. Since there will rarely be a closed form for
G, we are obliged to look for an approximation of each Gk,
denoted Gy, so that

Xk = X = G(S) (4)

The ability of the MLP to approximate any
continuous mapping makes it an excellent candidate for
providing the sought for representation of Gi(S;). To find
the specific MLP which can represent the Gy for this
particular problem, we proceed as follows.

The range of xy must first be defined, so that the
required range of validity of Gi(S;) can be known, For this
example we chose the ranges:

A =12,7] and [5,10]
fo=1[8,12] and [16,18]
df=[1,8]and [1,2]
f;=1,.20

Examples of the {S;, xi} pairs were created using (2)
for 1000 values of the set of 6 parameters, randomly
distributed within their given ranges. The first 500 examples
of the Sj—xx mapping were used to define an MLP-1 of
architecture (N1:N2:N3)=(20:10:6). The MLP-1 is obtained
by adjusting the weights in the two matrices so as to
minimise the mean square residual between the example
outputs and the MLP representation of these outputs. The
methods used to perform this minimisation are usually
modified gradient descent techniques. The end product of this
procedure is the pair of weight matrices W12 and W23 (Fig.
3) which generates the required mapping to approximate G.

To test the applicability of the @k mapping, we
evaluated xi = 61((81) for the second batch of 500 examples,
and looked at the Root Mean Square (RMS) of the residuals
(Xk - xg) expressed as a percentage of the full scale of each
variable (%FS). All variables were well represented, with an
RMS residual of 1.6%FS. Figure 4Ashows the measured points
S; (asterisks) and fitted curve S;(xx) for four very different
widths and positions, illustrating the excellent quality of
the Gx mapping provided by the MLP-1.

TheAforward pass calculation of ék provides a set of
estimates xy which is of high quality, quick to implement
and fast in execution.

V. TASK 2 - PLASMA EQUILIBRIUM

A challenging problem confronting research in
Tokamaks is the precise definition of the plasma shape at any
given instant. The estimation of this shape is essential for
closed-loop feedback control, and must be carried out with a
bandwidth of up to a few kilohertz. The result must also be
precise since it ultimately limits the precision of the
feedback control loop.

Figure 5 represents a simplified Tokamak. The small
circles represent the positions of measurements of magnetic
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Fig.5 Sketch of the tokamak equilibrium geometry.
Variables are the major radius (R), vertical position
(Z) and asymmetry factor (A)

flux. The large circle represents the plasma current with
variable position (R,Z) and equilibrium asymmetry (A). The
signals from the flux loops represent the experimental data
(S7) and the 3 unknowns [R,Z,A] represent the parameters to
be estimated (xy), continuing the notation of the previous
section.



‘We must therefore develop a useful representation of
the mapping between S;—>xx. We possess a description of the
inverse mapping, which means that we can calculate the
signals for a given configuration, but we cannot derive a
closed form of the forward mapping. Thus we must construct
an approximation 6, to be valid over the entire range of
interest of the vector of measurements S;.

For almost fixed circular plasmas, an approximate
mapping can be obtained by linearising, and then inverting,
the known physical mapping. As the shape of the plasma
varies and the range of parameters increases, the linearised
mapping becomes less and less reliable, especially for
extreme values of plasma parameters, which are of most
interest to us.

We consider the simplified test-case of a circular
plasma within a 3:1 rectangular aperture as in Fig. 5. The flux
distribution is known to be approximated by

1 I
YRZ,A,p,0) =32 [In(8R/p)-2] - 222 [In(p/a) +
(A+0.5)(1-a%/p2)lpcosm’ (5)
where p, a, @' are shown in the figure.

The values [R,Z,A] were varied randomly and
uniformly between [0.7, 0.9], [-0.48, 0.48], [0.5, 4.0]
respectively, to create a set of 1000 examples. As before, the
first 500 examples were mapped by both a linear relationship
obtained by Singular Value Decomposition techniques as
well as by an MLP-1 with N=10.

To obtain a reasonable linear representation of y—[R,
Z, A] we need at least 15 flux-loops. On the other hand, the
MLP-1 mapping provided a good fit even when the total
number of flux loops was reduced to 6. An example of the
quality of representation, fitted value vs. actual value, is
shown in Fig. 6 with 6 input signals. The MLP-1 inherent
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Fig. 6 Quality of the mapping for 6 flux loop differences;
(a) MLP-1 mapping and (b) linear mapping

non-linearity is clearly well suited to reproduce the non-
linear mapping problem represented by (5).

The range of R, [0.7 - 0.9], means that either the inner
or outer wall defines the effective plasma aperture. This
produces a bend in the mapping where the plasma surface
touches both walls. Figure 7 shows the flux signals for 4
flux loops as the major radius R is varied for a vertically
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Fig.7 Four flux signals with both inside and outside
limited plasmas (A = 1.5,Z=0.0, a=0.14- 0.24)

centred and fixed A plasma, illustrating the structure of the
mapping required. The crosses show the fitted data and the
solid line shows the underlying function. This example with
a gradient discontinuity was solved using a (9:10:3) MLP-1
network which gave a precision of 1.2%FS.

A more difficult problem was solved with more
output variables to be estimated from more input data, using
a (42:15:13) MLP-1, and training on real experimental data
from the DIII-D Tokamak. The results were very encouraging
[5]1 and provide an option for implementation on the TCV
Tokamak.

VI. TASK 3 - SOFT X-RAY IMAGES

This section presents a new method of extracting
crude global information from Tokamak soft X-ray imaging
with a precision and speed which could render these
diagnostics more useful for plasma control. The method
relies on approximating a direct non-linear mapping between
either tangential or poloidal soft X-ray images and the
plasma parameters to be estimated.

Figure 8 illustrates two typical soft X-ray systems,
using pinhole imaging, viewing either tangentially or
poloidally. In both cases the images contain an enormous
amount of information. The conventional approach to
extracting some simple quantities such as the position of the
peak, the elongation, and the vertical and horizontal half-
widths of the emission profile involves a 2-step process.
Since the pinhole camera provides a linear mapping between



the emission profile and the detector signals in the planes
"P1", "P2", "T", the emission profile in the poloidal plane "P"

SOFT X-RAY IMAGING
P1

Elongation

Position

Half-Widths

Fig. 8 A sketch of the soft X-ray imaging geometry. The 2-
step analysis ("A","B") and one-step analysis using
the neural network ("C") are indicated.

can be extracted by calculating and inverting this mapping,
and applying it to the raw data, illustrated as the arrow "A"
in Fig. 8. This operation is delicate due to the ill-conditioned
nature of the pinhole projection matrix, and considerable
effort has to be invested to perform this step.

In order to estimate the chosen basic parameters, we
must subsequently fit some given form to the reconstructed
emission profile. This is illustrated by the arrow "B" in Fig.
8. This 2-step process is unsatisfactory for our purposes for
two reasons; we require a large dimension matrix multiply,
and the estimation path is inevitably iterative for non-trivial
parameterisation. The excessive computations required
exclude real time estimates. The poloidal imaging does not
require the inversion phase, but still requires the time
consuming estimation phase.

We have investigated the use of an MLP-1 to provide
the direct, non-linear mapping indicated as "C" in Fig. 8. We
first showed that a (144:10:5) MLP-1 could accurately (~
1%FS) map a 12x12 pixel array in the plane "T" to the
amplitude, widths and positions of simple emission profiles
in the plane "P". A more stringent challenge was to map a
6x6 pixel array to the central vertical elongation of varying

shaped plasmas, as this information is useful for the control
of the plasma, if available in real time. As previously, we
generated 500 examples of varied plasma shapes, and trained a
(36:10:1) MLP-1 network to map to the vertical elongation
used to generate the examples. The results in Fig. 9, are
encouraging, giving an error of 7%FS, corresponding to an
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Fig.9 Estimated values of elongation versus the true value
for tangential viewing.

RMS error of 0.14 in terms of the absolute value of the
plasma core elongation, which lay between 1.05 and 3.0 for
the examples generated.

Tests on mapping the poloidal plane imaging through
slits S1,2 gave almost as good results as the tangential
viewing, the mapping being learned from the same set of
emission profile examples.

VII. TASK 4 - LANGMUIR PROBES

Tokamaks are presently equipped with many Langmuir
probes. These are conducting surfaces immersed in the plasma
and draw a current when electrically biased with a voltage V.
The drawn current depends on the plasma density, the plasma
electron temperature (Te) and the floating potential (Vy) of
the plasma, according to

Si =I1(V) =Jgar x (1.0 — exp (Vi — Vi)/Te) ©

where Jgq; is itself a function of density. Figure 10 shows
four such characteristic curves for different combinations of
[Jsats Te. V¢l. Estimating the parameters from the data
represents a similar problem of finding a mapping S; =1 (V})
— [Jsat, Te, V] where the inverse mapping (6) is explicit and
the direct mapping is not.



‘We proceeded as before, generating 1000 examples of
{Si xi}, in the ranges Jgu = [0.33,1.0], Te=(33,100], V¢=
[-2Te-20, -20]. A (30:5:3) MLP-1 was fitted with 500
examples, and the residuals were calculated for the remaining
500 examples obtaining 3.2%FS. Figure 10 shows four
characteristic curves with the data (asterisks) and fitted

LANGMUIR PROBE CHARACTERISTICS
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the data analysis extremely fast and suited to front-end
processing. The analysed data can be used locally, or passed up
to a higher level of processing, but with a much reduced
volume.

VII. DYNAMIC CONTROL

The vast majority of current applications of feedback
control assume that the system to be controlled can be
linearised, at least over a finite region of operating space. This
assumption is often valid when the system is non-linear; a
good example is the balancing of an inverted pendulum, for
which a conventional proportional-differential (PD) control
of the locally linearised system, Fig. 11(a), gives excellent
results.

Signal

True Fit
Jsat 0.54 0.55

-100

Fit
Jsat 072 074
Te 614 50.8 lTfe 281 380
Vi 808 944 VI 465 -50.4
0 100 200 ° 100 200
Voltage Voitage

Fig. 10 The MLP fit of the Langmuir probe characteristics
to 30 points in a voltage sweep, using a (30:5:3)
MLP-1 network.

curves (line). Three are perfectly fitted, whereas the fourth is
systematically wrong. The floating potential (V¢=-90 V)
is at the edge of its range, where the quality of the mapping
was systematically found to be poorer. Training an MLP to
learn a given input-output mapping is prone to the same
problems as any functional fitting; the quality of fit near the
edge of the data volume is generally inferior, and
extrapolation is generally dubious, in spite of some
extravagant claims to the contrary. This is even particularly
so for MLPs due to the rich surface structures they can
generate.

In practice, multiple Langmuir probes are repetitively
swept to measure the characteristic curve (6). The large
quantity of data generated and the significant CPU time of
the non-linear fitting analysis makes the MLP-1 an attractive
solution to this problem, implementable in the front-end
electronics. The accuracy of the mapping is at least as good as
the physical reality of the underlying expression (6).

The four example tasks discussed possess similar
properties. Input data are reduced to some output data, non-
linearly but continuously related to the values of the inputs.
The result is not necessarily exact, but can have an acceptable
and useful precision. The simplicity of the calculations makes
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Fig. 11 Schematic of (a) a linear PD controller and (b) an
MLP-1 driven non-linear controller showing the
MLP reference model.

Other systems are more complicated, and are more
fundamentally non-linear. This may be due to the underlying
system, to an extended range of operation, or to complicated
behaviour such as backlash, hysteresis, viscosity, all of which
may evolve with time. The first approach to such problems is
to maintain the lincarised formalism but to adapt the
feedback control, by automatic optimisation or by simply
programming the feedback control parameters (gain
scheduling).

An alternative approach to this type of problem is to
leave the linearised world; the cost is high, however, as the
powerful mathematical framework developed must also be
abandoned. The generality of the MLP surface representation
has aroused considerable interest as a candidate for a non-
linear controller, Fig. 11(b). A number of groups are active in
this field, and the work of one serves as an excellent example

[61.



The system considered here is the levitation of a
magnetisable ball using an electromagnet, Fig. 12. The non-
linearity arises from the fact that the attractive force varies

BALL LEVITATION PROBLEM

Current (l)

Position (x)

Fig. 12 The ball levitation problem.

as F = k(I/x)> where I is the magnetising current and x is the
magnet-ball separation. The 1/x2 dependence gives rise to
severe problems as x becomes small, and the 12 dependence
means that we cannot repel the ball with a negative current.
The same problem would arise with a high thermal inertia
DC current heater. The response of the system to the
reference signal shown in Fig. 13 using a PD controller was
difficult to optimise, and gave an inadequate result.

BALL RESPONSES

-0.04

-0.08 | | | ] -10
0 4 Time (secs) 8

Fig. 13. Results of 3 controllers used to levitate the ball.

Rendering the controller non-linear by the intuitive
modification, I = Max (Ipp, 0), improves the system
response, Fig. 13, but this solution has already required a
small input of understanding and intuition.

Using an MLP-1 in the feedback loop fed with the
reference position, the actual position, the actual speed of the
ball and an offset, Fig 11(b), allows us to obtain an improved
control compared with that obtained with the PD controller
and the modified PD controller. In Fig. 12 the lower group of
curves shows the reference signal (dotted) and the system
response with the 3 controllers. The upper group of curves
shows the magnet currents. Using a simple (4:2:1) MLP-1
has produced a faster and less structured step response. It has
most importantly acquired the property of not changing the
sign of the current in the magnet, like the modified PD
controller.

The optimisation of such a controller for an unknown
process is not straightforward, and there have been many
approaches proposed. One which appears encouraging is to use
two neural networks, one to act as the non-linear controller,
and one to act as the non-linear model reference, by analogy
with the Model Reference Adaptive Systems (MRAS) of
linearised systems (dotted system in Fig. 11(b)). The MLP
emulating the non-linear system can be taught by example,
identifying the system, and the controller MLP can be
optimised on the predictive use of this reference model. Such
studies are underway in several groups.

Although the levitated ball problem is not directly
related to the main topics of this conference, the generality of
this approach to non-linear control may find applications in
our fields, where we have badly modelled, badly understood
or simply non-linear systems to control. Neural controllers
may well be more robust than conventional controllers and
casier to adapt. The few particular studies in the literature do
not yet allow us confirm this hope.

IX. IMPLEMENTATION

There have been many implementations of neural
networks. Most of them only perform the forward pass
calculation, the leamning hardware being limited to parallel
accelerators. The interconnected nature of the MLP makes it
suitable for parallel digital processing using a small number
of high speed processors. The interconnectivity is a major
difficulty for all cellular implementations. Analogue
implementations provide an attractive high speed option, but
high density and high precision are still incompatible; our
own implementation of a 3000 weight analogue system for
task number 2 [7] represents several crates of electronics. The
implementation of binary networks is simpler, but again
there is no emerging best solution; optical devices are among
the candidate solutions for such networks.



X. DIFFICULTIES

We have seen several data analysis tasks which can be
successfully solved using the MLP-1 neural network. We can
identify three difficulties when solving a new problem:

- choosing the number of hidden neurons (N of Fig. 3)
- adjusting the MLP weights to fit the given examples
- judging whether the solution is acceptable.

The first difficulty is not particularly significant.
Any fitted function (polynomial series, Fourier series)
requires us to "guesstimate” the required number of free
weights. The choice is somewhat subjective if exhaustive
testing is to be avoided (due to the second difficulty).
Finding a good architecture for these problems and others has
required a little trial and effort and a little feeling.

The third difficulty is somewhat related. Unless we
embark on exhaustive testing, how do we judge our solution.
The use of a large example set for fitting as well as an unseen
test example set is essential to avoid overfitting due to the
specific ability of the MLP to generate highly structured
mappings. We need to ensure that the number of free weights
in the MLP is constrained by an adequate number of
examples. We have avoided fitting fewer than double the
number of example outputs as there are free weights.

The second and major difficulty is in finding the
weights such that the MLP-1 furnishes a reasonably good Gy.
The term reasonably good is important, as there is no way, at
present, of determining whether a given G is the best
possible for the MLP-1 structure chosen. That is to say
whether the fit is converging on a global minimum or lies
within a given distance of a minimum. We must therefore
Jjudge a given ék on its known merits rather than in absolute
terms. Th§ second part of this learning difficulty is in finding
a given Gx within a reasonable time. The conventional
gradient descent algorithm, known as back-propagation when
applied to the MLP [1], is notoriously slow. A recent
appraisal of this problem in terms of convergence eigenmodes
has shown that these can be arbitrarily slow, even with
optimally tuned gradient descent step-lengths. For this
reason most users develop their own recipes for speeding up
learning [7,8,9]. These recipes are difficult to compare, and are
unanalysable. Most authors, however, end up with a
satisfactory learning rate. The future will bring a new
generation of parallel calculators for convergence, and
hopefully this bottleneck will become less significant.

XI. CONCLUSIONS

The field of neural networks has very ambitious aims
for large-scale problems of perception, signal processing and
control. Such research projects are the domain of highly
specialised groups. In this paper we have seen that even in a
specific field, Tokamak research, there are interesting and

useful applications already, using available techniques for
creating and implementing the required networks. The
continuous nature of the MLP mappings even makes them
suitable for analogue techniques. Since many of these simple
problems already require substantial front-end processing,
the use of a simple estimation algorithm, even if slightly less
accurate, can be of great interest.

If a particular front-end processing, or analysis task
has some of the following properties:

- no direct mapping is explicitly known

- the direct mapping is delicate due to noise sensitivity

- the required mapping is functionally continuous

- the known direct mapping is computationally intensive
- the required mapping must be regularly adapted

then an MLP could be a candidate solution. The aim of this
paper is to encourage other researchers with this type of data
processing problem to test these powerful techniques.
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