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Abstract: The linear resistive magnetohydrodynamical (MHD) stability of the n = 1
internal kink mode in tokamaks is studied by toroidal computations. The stabilizing
influence of small aspect ratio [Holmes, et al., Phys. Fluids B1, 788 (1989)] is
confirmed, but it is found that shaping of the cross section influences the internal kink
mode significantly. For finite pressure and small resistivity, curvature effects at the g = 1
surface make the stability sensitively dependent on shape, and ellipticity (including JET
shape) is destabilizing. Only a very restricted set of finite pressure equilibria is
completely stable for qy < 1. A typical result is that the resistive kink mode is slowed
down by toroidal effects to a weak tearing/resistive interchange mode. It is suggested
that weak resistive instabilities are stabilized during the ramp phase of the sawteeth by
effects not included in the linear resistive MHD model. Possible mechanisms for
triggering a sawtooth crash are discussed.



I. Introduction

The stability properties of the internal kink mode are of interest for understanding
the sawtooth oscillations in tokamaks. Kadomtsev! suggested that the sawteeth are
triggered by an internal kink mode of toroidal mode number n = 1 becoming unstable
when the central safety factor qq falls below unity, and that the nonlinear evolution of this
instability leads to complete resistive reconnection. Bussac et al2.3 studied the stability of
the internal kink by means of a large aspect ratio expansion. In contrast with the
cylindrical result, they found that the ideal internal kink mode is stable in toroidal
geometry when the poloidal beta at the q = 1 surface is below a threshold value (typically
between 0.1 and 0.3, depending on the current profile).2 Similarly, the resistive mode is
slowed down from the resistive kink behavior (ideally marginal with A' = ) at infinite
aspect ratio and small pressure to a weaker tearing instability (0 < A' < =) at finite aspect
ratio.3 Recent experimental investigations show a safety factor in the center of tokamaks
well below unity45 and indicate that it remains so even after the sawtooth crash,6.7 while
other measurements have found q-profiles that are flat and close to unity in the central
region.8.9 It has been found computationally that the resistive internal kink can be
linearly stable if the shear at the q = 1 surface is weak.4:10 This holds, in particular,
when q is well below unity, provided the shear is locally reduced at the q = 1 surface,
i.e., for current profile with "shoulders" at q = 1, as found on the TEXTOR tokamak.4
In addition to profile effects, the internal kink mode can be stabilized by the presence of
hot particles.1112 The sawtooth oscillations have been stabilized in discharges with qq <
1, and the stabilization has been attributed either to current profile modification!3 or to hot
particle effects.14 It is well known that non-MHD effects can strongly modify the
stability of the internal kink mode.13-17 Nevertheless, it is of interest to understand its
stability properties within the simplest theoretical framework of resistive MHD. This is
the goal of the present paper.

Even within magnetohydrodynamics, the internal kink mode is sensitive to a large
number of parameters.10.18 Here, we examine the effects of aspect ratio, shaping of the
cross section, current profiles, pressure and wall separation. Growth rates of the n =1
mode are computed numerically from the full, resistive, compressible MHD equations for
two-dimensional, static, toroidal equilibria, using the recently developed, toroidal,
resistive code MARS!9 and the equilibrium code CHEASE.20 Several of the numerical
results can be understood analytically by considering the resistive and ideal interchange
criteria, which play important roles for the linear stability of the internal kink. For very
low pressure and circular cross section, our results confirm those of Holmes et al.10
Stability is favored by small aspect ratio, low shear at q = 1, and low qg. However, even
slight pressure severely restricts the region of complete resistive MHD stability with qg <
1. This is due in part to violation of the resistive interchange criterion. A typical result,
when pressure and shape effects are taken into account, is that the mode is slowed down
by toroidal effects and is turned into a weak tearing/resistive interchange mode at small
resistivities. Elliptic shaping renders pressure gradients considerably more destabilizing
than for circular flux surfaces by violation of the resistive interchange criterion.



II. Dependence on aspect ratio, shaping and wall separation
IILA  Specification of equilibria

We first study the effects of aspect ratio, shear at the q = 1 surface and wall
separation for different cross sections at zero pressure. The plasma-vacuum boundary is
prescribed according to the INTOR formula:

R =Rg+acos(8 +9sinf) ,
M

Z=axsind ,

where a is the minor radius, Ry the major radius of the geometrical center, X the
elongation and & the triangularity. For this study, we have chosen three particular
shapes: circular (x =1, § = 0), elliptic (k = 1.7, = 0) and JET shape (x = 1.7, = 0.3).

The current profiles are specified by the surface averaged toroidal current density,
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[where J is the Jacobian for the transformation from flux coordinates (v, %, ¢) to
Cartesian coordinates] as a function of the normalized poloidal flux Wifayis  T*(W/Waxio)
is prescribed except for a multiplicative factor that is adjusted to specify the q = 1 radius.

We first consider two current profiles that give a rather uniform and low shear
inside a certain radius p = Pp = 0.44 [where p(y) = (V(y)/V o0 172 is a normalized minor
radius and V() denotes the volume enclosed by a flux surface y = constant]. Outside
this radius, the shear rises sharply. For p < Pp, I* is taken to be a quadratic polynomial
in (YY,yis)1/2 with zero slope at p = Pp but nonzero slope at the origin. In studying the
aspect ratio dependence, we hold the q = 1 radius fixed at p = 0.40, slightly inside the
"knee" of the g-profile at p = pp,. Two different values of the central shear have been
chosen, such that

I* =

, (2)
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atq =1 is about 0.04 and 0.07, and qg = 0.935 and 0.88 respectively. The shear varies
slightly with the aspect ratio and the shape. Figure 1 shows I*(p), q(p) and s(p) for the
circular equilibrium with low central shear, Sq=1 = 0.04, and aspect ratio A = Rg/a =3.

For simplicity, the mass density and resistivity 1| are taken constant in space. The
resistivity is indicated by the Lundquist number S = 1,/t5, where 1, = uga?/n is the
resistive time connected with the minor radius and T4 = Rg/vag is the toroidal Alfvén
time. The growth rates are normalized with respect to T,.



II.LB  Fixed boundary results for zero pressure

At low pressure, the resistive internal kink mode is stabilized by small aspect ratio
and weak shear at the q = 1 surface.10 This is exemplified in Fig. 2, which shows the
fixed boundary growth rates of the resistive kink mode vs. the inverse aspect ratio € =
a/R for the three different cross sections under study (circle, ellipse and JET shape) and
the two different values of central shear. The Lundquist number is S = 106, Figure 2
shows that not only shear but also shaping is important.

The shaping effects are more significant at large aspect ratio. For example, the
elliptic case (k = 1.7, 8 = 0) shows strong instability as the aspect ratio increases. The
destabilization by ellipticity has been analyzed for ideal modes at large aspect ratio.21.22 It
is connected to contributions proportional to (x-1)2 in the normalized potential energy
dW/a2. The destabilizing elliptic term competes with the O(e2) stabilizing toroidal
contribution.2 At sufficiently large aspect ratio, the shaping terms dominate over the
toroidal terms and an elliptical equilibrium with qg < 1 is ideally unstable at sufficiently
large aspect ratio. As shown by Fig. 2, the resistive internal mode is significantly
destabilized by an ellipticity of x = 1.7 for aspect ratios of interest. However, a
triangularity of 8 = 0.3, in combination with the same ellipticity, improves stability
compared to the circle. This can be explained in terms of stabilizing terms of order
g(x -1)3 and 82 in 8W/a2. These shaping terms become significant at large aspect ratio,
as shown by Fig. 2.

At low aspect ratio, the toroidal effects tend to dominate over the shaping effects
and the growth rates of the internal kink mode are significantly reduced. Figure 2 shows
that, for the low shear profile, the three shapes are stabilized at roughly the same aspect
ratio, A = Rg/a = 3. For the high shear profile, the circular and JET-shaped equilibria are
stable for A less than about 1.5 and 1.8 respectively. By contrast, the elliptic cross
section is never completely stabilized, and the growth rate even increases for € > 0.6 [as a
consequence of destabilizing terms of order (x-1)e2 in 8W/a2). Thus, ellipticity alone is
destabilizing, but a combination of triangularity and ellipticity is favorable for stability
also at Jow aspect ratio.

To summarize the results of Fig. 2 for the fixed boundary internal kink at zero
pressure: toroidicity and weak shear at the q = 1 surface are stabilizing, ellipticity is
destabilizing, but a combination of ellipticity and sufficient triangularity is more stable
than a circular equilibrium.

II.C  Free boundary results for zero pressure

Next, we consider the effects of a free boundary. Figure 3 a shows the growth
rate of the n = 1 mode at S = 100 for a circular zero beta equilibrium (the case of weak
central shear in Fig. 2). One curve gives the result for a fixed boundary and the two
others apply to free boundary modes with a conducting wall placed at a radius of b =
1.2a.



At large aspect ratio, the two free boundary modes correspond in an unambiguous
way to their cylindrical counterparts: one is the internal "m = 1" and the other is the
external "m = 2" mode. For the equilibria considered here, the external mode is stable
with the wall on the plasma, but it becomes unstable for wall radii b > 1.1a. Figure 3 a
shows that, as the aspect ratio is decreased, the "m = 1" mode is stabilized whereas the
free boundary "m = 2" mode is only weakly affected by toroidicity. At a certain aspect
ratio (A = 3 for this case) the two branches cross over and the identification of "internal"
or "m = 1" and "external" or "m = 2" breaks down. For aspect ratios below the cross
over, the branch connected to the large aspect ratio "internal” mode acquires a dominant
m = 2 magnetic component and transforms into an "external” mode with a growth rate
almost independent of A, while the large aspect ratio "external” branch is stabilized. (The
"m = 2" mode is independent of aspect ratio only for low pressure. For higher pressure,
the toroidal effects on the "m = 2" mode are stabilizing because of favorable curvature at
the q = 2 surface.) Figures 3 b - d show the radial displacement and perturbed magnetic
flux for the two different modes at aspect ratio A =5 and the single unstable mode at A =
2.5. The mixture of m = 1 and m = 2 components with displacements localized around
the g = 1 and q = 2 surfaces is evident in all cases, but the phase between the m = 1 and
m = 2 components is different for the two branches. For the more unstable branch, the
m =1 and m = 2 magnetic perturbations have the same phase, i.e., reinforce one another
on the outboard side.

The cases shown in Fig. 3 indicate that the current profile must be stable to the
m = 2/n = 1 tearing mode in the straight tokamak approximation in order to be completely
stable at finite aspect ratio and zero pressure. One way to stabilize the m = 2 tearing
mode is to decrease qq to values substantially below unity. However, for such profiles,
the shear must be reduced locally at the q = 1 surface in order for the m = 1 resistive kink
to remain stable. Thus, at zero pressure, free boundary stability can be achieved at finite
aspect ratio by a TEXTOR type profile# with qp well below unity and low shear at the q =
1 surface induced by shoulders in the current profile. An example of such a profile is
shown in Fig. 4. The free boundary growth rates for this equilibrium are shown as
functions of aspect ratio in Fig. 5. The external mode is now completely stable and the
internal mode is stabilized for aspect ratios below approximately 10. The shear atq =1
for this equilibrium is s = 0.035, which is similar to the low shear profiles in Fig. 2, but
the internal mode is stabilized at much larger aspect ratio than for the monotonic I*
profile.

The examples in Figs. 3 - 5 show that the stability of the resistive internal kink at
zero pressure is sensitive to the current profile, aspect ratio and wall position. Coupling
to the external "m = 2" mode becomes important at low aspect ratio. Stability to both
internal and external free boundary modes at zero pressure requires non-monotonic
current profiles of the TEXTOR type. In the following, we shall often consider the
purely internal modes by imposing a fixed boundary.



III. Pressure effects

III. A Theory

A main factor for the stability of the internal kink is pressure. The global effects
of pressure are described primarily by the poloidal beta at the q = 1 surface.?2 For general
cross sections, we use the following definition:

Bo(y) = f J’—V(w)dw , @)
uo Iq,(w)R

where I¢,(\|I) is the toroidal current flowing through a constant-y surface, V(y) the
enclosed volume and R, is the major radius of the magnetic axis. The poloidal beta at
the q = 1 surface will be referred to simply as Bp The large aspect ratio theory of
Bussac et al? for circular cross sections predicts an ideal stability limit in Bp This limit
varies considerably with the current profile.22

In addition to global effects, pressure also has local effects on interchange
stability. These are of particular importance for equilibria with low shear at the q = 1
surface. We find that the combination of low shear and ellipticity easily leads to violation
of the resistive, and even the ideal, interchange criterion, and that violation of the ideal
interchange criterion on the q = 1 surface gives rise to a global "m =1"/n = 1 mode with
a rather high growth rate. :

The ideal?3 and resistive24 interchange criteria are given by

Dy = (pgb S )+ (Jl'% (Is'-p' ) (T2h+1) >0 ,  (5a)

-Dg=-Dp-(H-3)*> 0 . (5b)
whereT-—-T(ql):RBq, and

H=%1?—' (12-15%—22—11%114;) , (5¢)
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To discuss the effects of shaping, we give here the simplified expressions obtained from
a large aspect ratio expansion. The flux surfaces are assumed to have the form

R =Rg- [r- E()] cos ® - Ar) + T(r) cos 2w+ Ry O(e3) ,
Z= [r + E@)] sin ® + T(r) sin 20 + Ry O(e3) ,

where E is the elliptic deformation related to the elongation by x = 1 + 2E/r + O((E/)2),
A(r) is the Shafranov shift, and T(r) is the triangular deformation related to the
triangularity by 6 = 4T(r)/r. Keeping the terms proportional to E and T to first order, we
obtain from an expansion to second order in € [where E/r is considered as O(e0) and T/r
as O(el) and pgis set to 1]:
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Here, prime denotes differentiation with respect to the minor radius r and A = RoA'/r. To
the lowest order, this is given by A = Bp(r) + 4(r)/2, where (1) is the internal inductance.
The expressions (6a,b) generalize the formulae for circular flux surfaces of Shafranov
and Yurchenko?> and Glasser, Greene and Johnson.26 The derivation of (6) will be
given elsewhere. Within the large aspect ratio expansion, E(r) and T(r) satisfy second
order differential equations with respect to r.

The form (6a) for the Mercier criterion is consistent with previous expressions
retaining shaping effects near the magnetic axis27 [obtained by letting q' — 0 and taking
E/r and T/r2 constant in (6a)]. For the internal kink mode, a useful approximation of (6)
is obtained by considering almost flat current profiles with q' small and E/r and T/r2
constant [taking s = O(E/r) and dropping terms O((E/r)2)] . Together with q = 1, this
gives

.1, m 3B . 8T R
D= z+v+aom T (-7 79 . (7a)



-Dgr = 232[ (I-ST&I) 2sA] (7b)

Equation (7b) shows that if the shear is small (and higher order corrections are
negligible) a slight ellipticity, e = E/r > 2sA/3, leads to violation of the resistive
interchange criterion. For larger elongations, such as JET shape, even ideal interchange
instability can occur for modest pressure and not-so-low shear. As an example, we
assume that triangularity is negligible and the pressure profile is parabolic [[3 =-(p'/rB2)
(R2g2/2)]. The Mercier criterion (7a) then reduces to Bp < s2/(24e€?). Even though the
expansion to first order in ellipticity is not very accurate for JET geometry, we consider a
JET-like case with €g=1= 0.16 and €q=1= 0.2 for which (7a) gives Bp < 8s2. Evidently,
ideal instability may be expected for rather modest pressures when the shear is less than
about 0.1. This is confirmed by numerical evaluation of the Mercier criterion without
recourse to geometrical orderings.

III.LB  Numerical results for low shear equilibria with different cross sections

To illustrate the significance of the layer effects for the internal kink mode, we
show in Figs. 6 - 8 the resistive growth rates vs. inverse aspect ratio for three different
cross sections: circle (x = 1, § = 0) in Fig. 6, slightly oblate (x = 0.9, § = 0) in Fig. 7
and JET shape (x = 1.7, § = 0.3) in Fig. 8. In all these cases, Bp =0.05and S =107,
and we have used the low-shear current profile of Sec. II, for which qg = 0.935. The
pressure profiles are characterized by dp/dy = const except for the outer 10 % of the
poloidal flux, where pressure gradient goes smoothly to zero at the edge.

Figure 6 a shows the resistive growth rates vs. € for equilibria with a circular
boundary, Bp = 0.05 and two different wall positions b=a and b = 1.2 a. The behavior
at large aspect ratio is similar to the corresponding zero pressure case in Fig. 2. The
major effect of finite pressure is that the fixed boundary mode remains unstable also at
low aspect ratio. This mode is now predominantly "m = 1" and is only weakly
dependent on the wall position. It is driven unstable by interchange effects. Figure 6 b
shows that the resistive interchange criterion becomes increasingly violated at low aspect
ratio. The principal reason for this appears to be the slight "natural” ellipticity of the
internal flux surfaces that occurs at finite aspect ratio. The ellipticity eg=1 of theq =1
surface is also shown in Fig. 6 b. With a circular boundary, the ellipticity is, to leading
order, proportional to €2, and for the sequence of equilibria in Fig. 6, a good numerical
fitis eq=1 = 5.98 x 10-2 €2 +2.06 x 10-2 ¢4 (with € = a/Rg). For A < 3, the
destabilizing ellipticity correction in the resistive interchange criterion dominates over the
shear term. Thus, even though the plasma boundary is circular, the O(e2) modifications
of the shape of the internal surfaces change the stability of the internal kink significantly
at relevant aspect ratios. This current profile is sensitive to "small" effects because of the
low shear on q = 1, but similar behavior is observed for the equilibrium of moderate
shear in paragraph ILB. [For the sequence of equilibria in Fig. 6, where the current



profile is held fixed, the shear depends weakly on the aspect ratio, but this is not of
primary importance. A good numerical fit is s = (2.99 + 14.0 €2 - 9.3 ¢4) x 10-2. It
should be remarked that the large aspect ratio expansion that led to (6) is not strictly valid
when the ellipticity is of order €2, but (6) nevertheless seems to give a good
approximation.]

Figure 7 a shows the growth rate for the case with a weakly oblate boundary (x =
0.9). As the aspect ratio decreases, these equilibria first become overstable and are then
stabilized. The resistive interchange criterion is satisfied, see Fig. 7 b. In this respect,
the important difference from the case of a circular boundary is that the q = 1 surface
remains oblate also for small aspect ratios [the ellipticity is well fitted numerically by E/r
= (- 4.09 + 6.6 €2) x 10-2]. For these equilibria with a slightly oblate boundary and
moderate pressure, the internal kink mode is completely stable at low aspect ratio.
Although the favorable curvature is important for completely stabilizing the mode, the
stabilization at small aspect ratio is mainly a global (A') effect similar to the zero beta
case. Note that even though both the deviation from circular boundary (x = 0.9) and the
S-number (107) are modest, the resistive internal mode behaves quite differently than in
the case of a circular boundary. With more pronounced shaping and larger S the
influence of curvature of course becomes stronger.

Figure 8 a shows the growth rates for the JET-shaped equilibrium (x = 1.7, 8 =
0.3). These results differ clearly from those of the two previous cases. With JET shape
and Bp = 0.05, the growth rate increases with € for € 2 0.08. The internal kink is now
ideally unstable for € > 0.21 and its growth rate is high (> 5 x 103 ® A) at low aspect
ratio. The reason for the ideal instability at low Bp can be seen in Fig. 8 b: the ideal
interchange criterion is violated for € > 0.22. Thus, ideal instability sets in almost exactly
when (actually slightly before) the Mercier criterion is violated and the growth rate soon |
reaches rather high values. For 0.14 < &€ < 0.22, the resistive, but not the ideal,
interchange criterion is violated and the equilibrium is resistively unstable with much
smaller growth rates.

It may be noted, as a curiosity, that for large aspect ratios, € < 0.14, the resistive
interchange criterion is satisfied for these JET-shaped equilibria and the growth rate at
moderate pressure is reduced below the zero beta value. This is connected to the
stabilizing influence of triangularity in combination with ellipticity, readily seen in Eq.
(7). For fixed shape (E, T independent of €) the stabilizing terms proportional to E x T
become dominant at large aspect ratio. Of course in the limit of € — 0 with Bp fixed, the
pressure effects become negligible (Dj — - 1/4 and Dg — 0), and the straight tokamak
internal kink mode reappears. This is shown by Fig. 8 a where the growth rate increases
again for € < 0.05.
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IV. Current profile effects
IV. A Circular shape

In this section, we study the influence of the current profile in combination with
finite pressure and shaping and discuss how the triggering of a sawtooth crash might be
related to changes in the current profile. We first consider circular cross section and the
two types of current profiles used in Sec. II, the centrally flat current profile (I) and the
TEXTOR profile (I). To generate families of self-similar profiles, we apply a uniform
scaling of the toroidal current density, keeping the poloidal beta, the internal inductance
and the vacuum toroidal field fixed (see Ref. 20 for details). The scaling approximately
corresponds to multiplying the g-profile by a certain factor and allows to prescribe the g-
value at a specified radius, dp = q(pp) or the q = 1 radius.

For the centrally flat profile (I), the shear is low in a central region and has a local
minimum at p = p, = 0.44 where dI*/dp = 0. Outside this radius, the shear increases
rapidly. The local minimum s(pp) is about 0.03 and the central safety factor qg is related
to g, by qp = 0.935 qp- For qp > 1, the shear at q = 1 is low, but when qp is decreased
below unity, the q = 1 surface moves out into the region of rapidly increasing shear. For
Qp = 1, the g = 1 surface is located at the radius of minimum shear. Such a set of profiles
may correspond approximately to the evolution in time during the ramp phase of a
sawtooth, if the preceding crash leads to complete reconnection and almost flat central q,
followed by peaking of the current due to trapped particle effects on the resistivity, as
suggested in Ref. 28. The same pressure profile p(y)/p; is applied as in Sec. IIL.B, The
central beta is related to Bp (poloidal beta at q = 1) by By = 0.096 Bp and the volume
averaged beta (<f> = 2u<p>/<B2>) by <B> = 0.039 Bp. The poloidal beta at the edge
is Bpp =1) = 2.73 Bp(a=1).

Figures 9 and 10 show the growth rates of the internal kink mode for the centrally
flat current profile as functions of qp at different values of Bp and Lundquist numbers S
(6 x 106 in Fig. 9 and 6 x 108 in Fig. 10). In these cases, the aspect ratio is 4 and a
conducting wall is assumed at r = b = 1.2a. We note that complete resistive MHD
stability is never achieved for this profile. However, for Bp <0.05, the resistive growth-
rate is small when the q = 1 surface is in the region of small shear, and the instability is a
free boundary mode with a large m = 2 magnetic perturbation, as discussed in Sec. II.
Modes with such small resistive MHD growth rates may be stabilized by effects not
included in the linear resistive-MHD model.

By comparing Figs. 9 and 10, one can identify regions of resistive and ideal
instability. The instabilities for Bp 2 0.15 and g, < 1 (i.e., when the q = 1 surface is in
the outer region of high shear) are ideal. The normalized growth rates are several times
10-3 and are almost independent of the resistivity. The growth rate peaks when the shear
at q = 1 is small, as expected for ideal modes.2:18 For Bp < 0.05, the instabilities are
resistive. The growth rates follow the tearing scaling with respect to resistivity and have
a minimum when the shear is small at q = 1. (The growth rates are mainly affected by
global effects on W, but the different dependencies of ideal and resistive growth rates on
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the local shear can nevertheless be observed in Figs. 9 and 10.) The case Bp =0.101s
near marginal stability for an ideal mode when gp<1 and the instability shows a weaker
dependence on S. Figure 10 shows that the resistive growth rates are very small at high
S. These growth rates do not even come close to those observed experimentally in
sawtooth precursors where, typically, Ywa > 10-3,

An interesting feature is evident for the cases with Bp 20.15 (and also Bp =0.10
at high S). The pressure driven instabilities are sensitive to the value of Qps Or to the
location of the q = 1 surface with respect to the "knee" of the g-profile. The finite-beta
growth rates have maxima when the q = 1 surface is at the point of minimum shear and
remain high when the q = 1 surface reaches the outer, high-shear region. Thus,
depending on the evolution in time of the experimental profiles, a "pressure driven"
instability may be triggered by changes in the current profile rather than by an increase in
the pressure itself. If we invoke stabilization of a weak resistive-MHD instability by
some unspecified mechanism, a sawtooth crash could be triggered by the increase in
MHD growth rates when the q = 1 surface approaches, or moves out into, the outer high-
shear region. Such a trigger mechanism for the sawteeth may explain why the inversion
radius remains almost constant between successive crashes. A "knee" in the q-profile
created by reconnection during the preceding crash would only be partially smoothed out
by resistive diffusion before the next crash and could then act as a spatially localized
magnetic trigger for the following sawtooth.

For comparison with other geometries, we note that the resistive interchange
criterion generally indicates stability for circular cross section with A = 4, but Dy, takes
small numerical values (due to finite shear rather than favorable curvature). It may be
noted that the growth rates are generally slightly higher for Bp = O than for Bp =0.05
which is explained by the increased inertia associated with the motion along the field lines
in the finite beta case.

The details of the results in Figs. 9 and 10 depend on the choice of the current
profile. For instance, if the central shear is reduced, the ideal pressure driven instabilities
are enhanced, while the growth rates of the resistive instabilities for low pressure are
reduced. The inverse holds for profiles with larger central shear.

Next, we consider current profile of the TEXTOR type. The shoulders in I* have
been adjusted so that the shear has a minimum of about 0.034 at p = Pp = 0.44, the
central q is qp = 0.634 qp and the aspect ratio is 4. Figures 11 and 12 show the growth
rates for different S and Bp = 0.0, 0.1, 0.2, and 0.3. The behavior is similar to that for
the centrally flat profiles, but the TEXTOR profile supports about twice the pressure
before becoming ideally unstable and the growth rates are very sensitive to the g = 1
location at high pressure, Bp 2 0.2. For the TEXTOR profile, there is indeed an interval
in qp where the equilibrium is entirely stable. However, this interval is small, and
certainly less than the shift in q during the sawtooth cycle. This again indicates that the
resistive kink mode is stabilized during most of the sawtooth cycle by effects not included
in the linear resistive MHD model.

As discussed in Sec. II, low aspect ratio is stabilizing for the internal kink mode.
An example is given by Fig. 13 which shows the growth rate 7 as a function of qp fora
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sequence of equilibria with aspect ratio A = 2.5 and TEXTOR profiles. Figure 13 refers
to an S-number of 6 x 108 and differs from Fig. 12 only with respect to the aspect ratio.
We note that the region of complete stability is larger at the smaller aspect ratio and that
there is even a small interval in qp giving complete resistive stability for Bp. =0.20.

IV. B JET shape

As noted in Sec II, the large elliptic deformation of the g = 1 surface in a JET-
shaped cross section (x = 1.7, 8 = 0.3, A = 2.7) can lead to ideal instability at moderate
pressure if the shear at q = 1 is small. Therefore, we consider current profiles with
higher shear in this section. To show the dependence on the shear, we choose two
values of the minimum shear for each of the two types of profiles: "centrally flat" denoted
(I-H) and (I-L) for high and low shear respectively, and "TEXTOR" denoted (II-H) and
(II-L). The shear at g=1 is shown in Fig. 14 for the four profiles vs dp = q(p=pp=0.41).
The fixed boundary growth rates for S = 6 x 108 are shown for Bp = 0in Fig. 15, for ﬁp
=0.05 in Fig. 16 and for f; = 0.10 in Fig. 17.

Figure 15 shows that there are only minor differences between the growth rates
for the four current profiles at zero pressure. These growth rates are generally lower than
in the circular case at A = 4. However, the JET cross section is more sensitive to
pressure, and a clear increase in growth rates resulting from Bp = 0.05 is evident in Fig.
16. Notably, there is no case that is completely stable for this pressure. However, the
large shear profiles have low growth rates for Bp = 0.05, in particular with the TEXTOR
current profile. The pressure driven instability for the low shear TEXTOR profile is
highly sensitive to the g-value. ‘

For higher pressure, Bp = 0.10 (see Fig. 17), the two centrally flat profiles both
give rather high growth rates for all values of Qp, Whereas the TEXTOR profile gives
normalized growth rates as low as a few times 10-4 when qp > 1, i.e., when the g = 1
surface is inside the "shoulder".

IV. C Oblate cross section

To illustrate the importance of the average curvature, we again consider the
slightly academic example of an oblate cross section. We choose a plasma boundary
given by (1) with x = 0.9, § = 0 and the aspect ratio is A = 4. The current profile is of
the TEXTOR type with a minimum shear of 0.042. The result for Bp =0.05and S =
6 x 107 is shown in Fig. 18. When the q = 1 surface is located near the radius of
minimum shear, the growth rate becomes complex, and in a certain interval, 0.995 <9
< 1.005, the mode is stabilized. The complex frequency shows that the mode is
stabilized by favorable average curvature. The resistive interchange parameter - Dy
reaches a maximum of about 0.07 for qp=1.

For higher pressure, Bp = 0.10, and oblate cross section, the destabilizing global
effects of pressure dominate over the stabilizing layer effects, and the resistive internal
kink is no longer stable for any qp < 1.
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V. Summary and discussion

The internal kink mode is sensitive to a large number of effects, and the following
summary is an attempt to delineate the most important of these.

For zero pressure, the resistive MHD stability of the internal kink is influenced
primarily by the aspect ratio and the current profile I* = <j¢/R>/ <1/R>. Low aspect
ratio is stabilizing. Stability is improved by low shear at the q = 1 surface but also by
low qg. Equilibria with monotonic I* are stable with a fixed boundary when the aspect
ratio is below a threshold value that varies inversely with the shear. Free boundary
stability appears to require non-monotonic I*. Current profiles of the TEXTOR type#
with shoulders near the q = 1 surface are much more stable than monotonic profiles and
can remain completely stable with a free boundary at very large aspect ratios.

The internal kink stability is affected by shaping already at zero pressure. The
shaping effects are more pronounced at large aspect ratio where the toroidal stabilization
is weak. Ellipticity alone is destabilizing, but a combination of ellipticity and sufficient
triangularity, such as JET shape, is more stable than a circular equilibrium.

Central pressure gradients are generally strongly destabilizing for the resistive
internal kink mode. Part of the reason for this is global (i.e., A') effects on the
eigenfunction. However, local interchange effects at the q = 1 resonant surface are
important, in particular when the shear is low, and this makes the stability at finite
pressure highly sensitive to shaping. For many shapes of interest, notably, JET shape,
the curvature at the q = 1 surface is unfavorable because of ellipticity, and the resistive
interchange criterion is violated for low shear (and finite pressure). For JET-shaped
cross section, we do not find any profile that is resistively stable with go < 1 and poloidal
beta at the q = 1 surface of order 0.05. At low shear, even the Mercier criterion can be
violated at pressures well below the Bussac limit.29 This typically leads to global ideal
internal kinks with rather high growth rates. A more detailed study of the ideal stability
will be presented elsewhere.

The sensitivity of the resistive MHD stability to the layer effects and geometry
was exemplified by the observation that for equilibria with a circular boundary, even the
slight natural ellipticity of the q = 1 surface at low aspect ratio can destabilize a resistive
interchange driven internal kink if the shear is low. For an oblate boundary, where the
curvature at q = 1 is favorable also at low aspect ratio, the layer effects are stabilizing,
and a finite window of free boundary stability exists for moderate Bp. ’

One conclusion of the present study is that despite the stabilizing effects of low
aspect ratio on the internal kink mode, complete resistive MHD stability is difficult to
achieve when finite pressure and free boundary are taken into account. It appears
unlikely that such stringent stability conditions can be met during the entire ramp phase of
the sawtooth cycle when the internal kink mode is manifestly stable. When confronted
with the experimental observations of qq < 1, this leads us to conclude that the criterion
of complete resistive MHD stability is too stringent and that weak resistive instabilities are
stabilized by effects not included in the linear MHD model.
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Nevertheless, finite aspect ratio effects are strongly stabilizing and often reduce
the resistive kink mode to a weak tearing/resistive interchange instability with a growth
rate that becomes very small at high S. In particular, the growth rate is often well below
10-3 w,, which is a characteristic growth rate of sawtooth precursors, e.g., in JET. If
we adopt 10-3 w,, or a value of the order of the diamagnetic frequency as an ad hoc
threshold for stability, the stability boundary in large tokamaks will be close to the ideal
stability boundary. (For such modes one may expect important effects of electron
inertia, 30-32)

Several effects are known which can stabilize weak resistive-MHD instabilities.
One is nonlinear saturation of tearing/resistive interchange modes at finite island size. A
finite island reduces the destabilizing layer effects that are dominant at small resistivity for
elliptic shaping. Nonlinear saturation by the reduced destabilization from unfavorable
curvature is the inverse process to the nonlinear destabilization of tearing modes by finite
island size in regions of favorable curvature discussed by Kotschenreuther et al.33 In
addition, the effective layer width may increase, and therefore the effect of curvature
decrease, as a consequence of microturbulence. We mention that nonlinear simulations34
of the sawtooth activity based on the "straight tokamak” resistive MHD model showed
generally good agreement with experimental results for low Lundquist numbers (S
< 107), while difficulties appeared for higher values of S, where more detailed physics
effects should be important.

Other mechanisms for stabilizing modes that are weakly unstable in resistive
MHD are offered by more detailed physics models, including diamagnetic rotation3.15.16
and trapped particle effects.11.12.17 Tt appears clear that non-MHD effects, and/or
nonlinearity, have to be taken into account in order to understand the behavior of the
sawteeth in large tokamaks, in particular, for auxiliary heating experiments. The present
study has nevertheless shown a number of parametric dependencies, and points out the
importance of the curvature effects at the q = 1 surface. If the stability of the internal kink
mode is governed by linear theory, curvature effects should be significant also when
more detailed physics models are applied.
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Figure Captions

FIG. 1 Profiles of (a) surface averaged current density I*, (b) safety factor q, and
(c) shear s vs. normalized minor radius p = (V(y)/V o) !/2 for "low-shear"
equilibrium.

FIG. 2 Fixed boundary resistive growth rates 7y vs. inverse aspect ratio €, for zero
pressure equilibria with different shapes: circle, ellipse (indicated by squares) and
JET shape (indicated by triangles) and different central shear (low shear indicated
by filled symbols, high shear by open symbols). The S-number is 106.

FIG. 3 a Resistive growth rates y for S = 106 vs. inverse aspect ratio € for a circular
equilibrium with low central shear and zero pressure. The filled-in circles refer to
the fixed boundary "internal” mode, while the open symbols show the result with
a free boundary and a conducting wall atb = 1.2 a.

FIG. 3b - d Fourier components of radial perturbed velocity v=v » V(W ysup2 and
magnetic flux b=1Jb ¢« V(y/yg,)1/2 [in straight field line coordinates with
PEST-1 Jacobian J = C(y) R?] for the free-boundary modes in (a). (b) "'m = 1"
mode for A =5, (¢) "m = 2" mode for A =5, and (d) single unstable mode for A
=2.5. Note that the m = 1 and m = 2 components of the magnetic flux are in
phase (reinforce one another on the outboard side) for the fast growin g branch (b
and d) and out of phase for the slower branch (c).

FIG. 4 Profiles of (a) surface averaged current density I*, (b) safety factor q, and
(c) shear s vs. normalized minor radius p = (V(y)/V o) 1/2 for "TEXTOR"
equilibrium.

FIG.5 Free boundary resistive growth rates y for S = 106 vs. inverse aspect ratio € for
a circular equilibrium with TEXTOR current profile and zero pressure. A
conducting wall is assumed atb= 1.2 a. Note the absence of an "m = 2" branch
at large aspect ratio and the complete stabilization at low aspect ratio.

FIG. 6 a Resistive growth rates y for S = 107 vs. inverse aspect ratio € for a circular
equilibrium with low central shear and Bp =0.05. The filled-in circles refer to
a fixed boundary, while the open circles show the result with a free boundary and
a conducting wall atb=1.2 a.

FIG. 6 b The resistive interchange parameter - Dy, (filled circles) and ellipticity e (open)
at the q = 1 surface for the low-shear circular equilibrium.



18

FIG. 7 a Free boundary growth rates y for S = 107 vs. inverse aspect ratio € for a
weakly oblate equilibrium with low central shear and Bp = 0.05.A conducting
wall is assumed at at b= 1.2 a. The open circles show the growth rate and the
filled circles the real part of the frequency.

FIG.7b The resistive interchange parameter - Dy, (filled circles), ellipticity e (open
circles), and shear s (open triangles) at the q = 1 surface for the low-shear oblate
equilibrium.,

FIG. 8 a Fixed boundary growth rates vs. inverse aspect ratio € for a JET shaped
equilibrium with low central shear and Bp = 0.05. The open circles show the
resistive mode for S = 107 and the filled circles refer to the ideal case.

FIG. 8 b The resistive and ideal interchange parameters - Dy (open circles), and - D;
(filled circles) vs. inverse aspect ratio for the JET shaped low-shear equilibrium.

FIG.9 Free boundary growth rates for S = 6 x 106 vs. qp (safety factor at the point of
minimum shear, p = 0.44) for a circular low-shear equilibrium and different
values of B.p (see symbol table). The aspect ratio is 4 and the conducting wall is at
b=12a.

FIG. 10 Free boundary growth rates vs. qp. All parameters are identical to Fig. 9 except
S =6x108

FIG. 11 Free boundary growth rates for S = 6 x 109 vs. qp (safety factor at the point of
minimum shear, p = 0.44) for a circular equilibrium with TEXTOR current
profile and different values of Bp (see symbol table). The aspectratio is 4 and the
conducting wallisatb=1.2 a.

FIG. 12 Free boundary growth rates vs. qp- All parameters are identical to Fig. 11
except S =6 x 108,

FIG. 13 Free boundary growth rates vs. qp for TEXTOR equilibrium All parameters
are identical to Fig. 12 except the aspect ratio A = 2.5. (a) with full range of ¥,
and (b) on a blown-up scale to show stable region.

FIG. 14 Shear at the q = 1 surface vs. qp (safety factor at the point of minimum shear, p
= 0.41) for JET-shaped equilibria with A = 2.7 and different current profiles.
Circles indicate "centrally flat” current, triangles: "TEXTOR"; open symbols:
"low shear" and filled symbols: "high shear".
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FIG. 15 a Fixed boundary growth rates for S = 6 x 108 vs. qp (safety factor at the point
of minimum shear, p = 0.41) for a JET-shaped equilibrium with centrally flat
current profile and zero pressure (Fig. 14). Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 15 b Fixed boundary growth rates for S = 6 x 108 vs. qp (safety factor at the point
of minimum shear, p = 0.41) for a JET-shaped equilibrium with TEXTOR
current profile and zero pressure (Fig. 14). Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 16 a Identical to Fig. 15 a except Bp =0.05. Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 16 b Identical to Fig. 15 b except Bp =0.05. Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 17 a Identical to Fig. 15 a except Bp =0.10. Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 17 b Identical to Fig. 15 b except Bp = 0.10. Open circles refer to the low-shear
and filled circles to the high-shear profile.

FIG. 18 Free boundary growth rates for S = 6 x 107 vs. qp (safety factor at the point
of minimum shear, p = 0.44) for a weakly oblate equilibrium with TEXTOR
current profile and Bp =0.05. The aspect ratio is 4 and the conducting wall is at b
= 1.2 a. Filled circles show the growth rate and open circles the real frequency.
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