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Abstract: Stability limits for the internal kink mode in tokamaks are calculated for
different current profiles and plasma cross sections using ideal magnetohydrodynamics
(MHD). The maximum stable poloidal beta at the q = 1 surface (Bp) is sensitive to the
current profile, but for circular cross sections, it is typically between 0.1 and 0.2. Large
aspect ratio theory gives similar predictions when the appropriate boundary conditions are
applied at the plasma-vacuum surface. The pressure driven internal kink is significantly
destabilized by ellipticity. For JET geometry, the Bp-limit is typically between 0.05 and
0.1, but arbitrarily low limits can result if the shear is reduced at the g = 1 surface. A
large aspect ratio expansion of the Mercier criterion retaining the effects of ellipticity and

triangularity is given to illustrate the destabilizing influence of ellipticity.



1. INTRODUCTION

Ideal MHD theory has been successful in predicting the global pressure limit for
tokamaks. However, for the stability of the central region, where the n = 1 internal kink
mode can become unstable and trigger the so-called sawtooth oscillations, the theoretical
understanding is at present very incomplete. The uncertainties are manyfold: no clear
understanding of what is the appropriate physics model; poor knowledge of the current
profile, to which the internal kink is highly sensitive; and incomplete knowledge of the
stability limits even in the simplest theoretical model - ideal MHD. In this paper, we
present a numerical and analytical study with the aim of clarifying the stability properties
of the internal kink within the ideal MHD model. Our main result is that the pressure
limit is lower than previously thought.

Bussac et al [1] calculated the pressure limit for internal kink stability by a large
aspect ratio expansion. For a circular cross section, parabolic current profile and a small
q = 1 radius, they found that the mode is stable when B, < (13/144)1/2 = 0.3. For other
current profiles, the large aspect ratio expansion predicts limits between 0 and 0.1 [2,3].
In this paper, we reconsider the large aspect ratio calculation for the safne profiles as in
Ref. [1]. Our results differ from those of [1] because of a difference in boundary
conditions. We assume the q = 2 surface always lies within the conducting plasma.
Thus, when q(a) < 2, we replace the conducting wall at r = a in [1], by a perfectly
conducting, currentless plasma that extends beyond the q = 2 surface. With this
prescription, rounded current profiles give a Bp-limit that is typically between 0.1 and
0.2. This limit decreases monotonically with increasing q = 1 radius and for qg below
some profile-dependent threshold, the n = 1 internal kink is unstable at zero beta [4].

With respect to shaping, analytical studies [3, 5] suggest that the effect of
ellipticity is weak when the central safety factor qq is close to unity, whereas numerical
computations indicate a strong effect [6 - 8]. Our numerical calculations, without
recourse to geometrical orderings, confirm that ellipticity is strongly destabilizing, in
particular, at low shear. The destabilization appears to be connected to interchange
effects which are disregarded in the standard large aspect ratio expansion. We give a
modified large aspect ratio expression for the Mercier criterion which includes the effects

of ellipticity and triangularity.



2. CIRCULAR CROSS SECTION - CURRENT PROFILE EFFECTS
2.1 Large aspect ratio expansion

For circular equilibria, stability limits for the internal kink mode have been
calculated by means of the large aspect ratio expansion [1], however, rather different
limits in B, were found for different current profiles [1-3]. For a parabolic current
profile, Bussac et al [1] found a limit of about 0.3 when rg_; << a which falls to a
minimum of 0.23 for ry-1/a = 0.4 and then increases again for larger q = 1 radii. For
profiles that are more peaked than parabolic, the pressure limit decreases more sharply
with Tg=1- Véry steep current profiles, such as the Shafranov (step-function) profile are
more unstable. The Bp-limit for the Shafranov profile has a maximum of about 0.095 for
qp = 0.9, and falls to zero at an upper and lower limit in qg: 1 and about 0.58 [3].

The stability diagram (Bp cri; VS. Tq=1/2) of Bussac et al [1] was computed
assuming a fixed plasma boundary. Thus, the m = 2 perturbation induced by toroidal
coupling is wall stabilized whenever q, <2 (q, is the safety factor on the plasma surface,
r=a). For the parabolic current profile, q,/qq = 2, and therefore g, < 2 occurs whenever
qo <1 (i.e., when the internal kink is of interest). Thus, the results for the parabolic
profile in [1] refer to non-standard case of very-low-q operation, q, < 2 with a close-
fitting wall. Although tokamaks can be operated this way, the standard operating regime
is qa > 2. All calculations presented in this paper assume q, > 2.

For comparison with the numerical results at finite aspect ratio, we have
recomputed the large aspect ratio limit, using the boundary conditions appropriate for q,

>2. Figure 1 shows the results for different current profiles: two polynomial profiles,

jo(l-12/ad)f r<a
jr) = (1)

with [= 1, 2 (parabolic and parabolic-squared), and the Shafranov profile, with the step
placed atr =1y = 0.5 a. We assume that the q = 2 surface is always inside the conducting
plasma. Thus, if q; <2 [qg < 2/(£{ + 1) for the profiles (1)], we add a region of
currentless but perfectly conducting plasma that extends to the q = 2 surface atr/a =
(2/q,)172. (In this case, "a" denotes the radius of the current channel, not the plasma

radius.) For the two smooth profiles (1), the B,-limit falls monotonically when the q = 1
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radius increases as shown in Fig, 1a. This is in contrast with the result if Ref. [1] for the
parabolic profile, where the stabilization by the wall at r = a becomes stronger with
increasing q = 1 radius, and the pressure limit even goes to infinity for ry—y/a > 0.79.
With the modified treatment of the wall, we find "typical” limits in the range of 0.1 to 0.2
rather than the usually quoted result 0.3 which is valid as rg-;/a — 0.

Figure 1 shows that the Bp-limit goes to zero for qg below some profile-dependent
threshold, ranging from 0.40 for the parabolic-squared profile to 0.58 for the Shafranov
profile. For qq close to unity, the pressure limit is highly sensitive to the current profile:

the Shafranov profile gives a much lower value than the rounded-off current profiles (1).
2.2 Finite aspect ratio calculations - definitions

We have numerically calculated the full-MHD stability limits for the internal kink
at finite aspect ratio using the stability code MARS [8] and the equilibrium code CHEASE

[9]. The plasma vacuum surface in equilibrium is prescribed as

R =Rg +acos(0 + 5 sind) ,
)

Z =axsinf ,

where a is the minor radius, Ry the major radius of the geometrical center, x the
elongation and 0 the triangularity. In this paper, we present results for two geometries
corresponding to he TEXTOR tokamak: Rg/a =4, x =1, 8 = 0 (medium aspect ratio
circle), and JET: Rg/a =2.7, ¥ =1.7, & = 0.3 (small aspect ratio dee).

In all cases, we have used the same pressure profile p/py. The pressure is
prescribed as a function of the poloidal flux y, such that dp/dy is constant in the central
region and falls to zero ‘smoothly at the edge. Figure 2 shows the pressure vs. the
normalized minor radius p = [V(y)/V,y;]11/2, where V() is the volume enclosed by a
constant-y surface.

The current profiles are specified by the surface averaged toroidal current density,

I = [ jg U/R) dy
[ am)ydy

, (3)



[where J is the Jacobian for the transformation from flux coordinates (y, %, ¢) to
Cartesian coordinates] as a function of the normalized poloidal flux W/y,xis  I*(W/Waxis)
is prescribed except for a multiplicative factor that is adjusted to specify the q = 1 radius.

Two important quantities for characterizing the equilibria are the shear

= P dq 4
5= 4 ap 4)
and the poloidal beta
4 Yo
Bpy) = - —5—— f L vy dy' . 5)
Ho To(w) Ry ay

In (5), Iq,(\y) is the toroidal current within a constant-y surface and R, is the major
radius of the magnetic axis. The poloidal beta at the q = 1 surface is denoted f3,,.

The stability diagrams presented in the following give [3p as a function of the q =
1 radius pg-1 at constant growth rates, Yo =0, 1 x 10-3,3 x 10-3 and 5 x 10-3, where
wp = Va/R is the toroidal Alfvén frequency. These curves have been obtained after
interpolation of Y(B, pg=1) for equilibria with different values of B, and identical I*
profiles.

The results presented here have been obtained after convergence studies and
extrapolation to zero mesh size, however, it should be noted that ideal-MHD growth rates
of the order 10-3 @ are non-trivial to compute. Our results for Y= 103 w, should be
reliable, but in certain cases, extrapolation to marginal stability is somewhat uncertain.
This may be acceptable from a physics point of view, since instabilities with very small

growth rates must be expected to be strongly modified by non-MHD effects.
2.3 Numerical results for circular boundary

We have studied four different current profiles for plasmas with a circular
boundary and a fixed aspect ratio of 4: one rounded profile, two profiles with 1* flattened
at a certain radius, and a TEXTOR profile where I* has "shoulders".

Figure 3 shows I*(p), q(p) and s(p) for the rounded profile, and the
corresponding stability results are shown in Fig. 4. Both the current profile and the
marginal stability curve are close to those for the parabolic-squared profile discussed in

Sec. 2.1. Figure 4b shows the marginal [Sp Vvs. gg, to be compared with Fig. 1b.



Evidently, for an aspect ratio of 4 and circular boundary, the large aspect ratio theory is in
good agreement with the full-MHD result.

Figure 5 shows the influence of the wall position for circular equilibria with 2 <
q < 3. The different curves show the growth rates of the n =1 internal kink for different
aspect ratios and a circular boundary, with the boundary either fixed or free (and the wall
at infinity). For circular equilibria with g, > 2, the large aspect ratio expansion shows no
effect to lowest order of the wall position, and according to Fig. 5, this is a good
approximation at large aspect ratio, A = 10. A detailed analysis of the numerical results
shows that the difference in marginal [3, between the free and fixed boundary cases is
proportional to (a/Rg)? at large aspect ratio. At tight aspect ratio, A = 2.7, the difference
between the fixed and free boundary results is appreciable: B, = 0.1 for free boundary
and B, = 0.2 for fixed boundary. The numerical results show a very weak influence of
the wall position for circular equilibria with g, > 3. In the following, we shall consider
configurations where the wall is placed 20 % of the minor radius away from the plasma.

The two flartened current profiles have a plateau at a certain radius: dI*/dp =0 for
p = 0.42. Inside this radius, the shear s(p) is rather uniform, and on the outside, it
increases sharply. We consider two profiles with different central shear: one with small
central shear, qp/q(p=0.42) = 0.95, and one with medium central shear, qg/q(p=0.42)
= (.80.

Figure 6 shows I*(p), q(p) and s(p) for the flattened profile with low central
shear at aspect ratio 4 and the stability results are shown in Fig. 7. The marginal values
of Bp are similar to those for the rounded profile (Fig. 4) when the q = 1 surface is far
away from the current plateau at p = 0.42, but when the q = 1 surface is near the plateau,
the marginal 3 has a local minimum of about 0.08.

Figure 8 shows the stability for the flattened current profile with medium central
shear. The equilibrium is similar to that in Fig. 6 except the central shear is four times
larger. The limits in B, are higher than for the low-shear equilibrium. They are quite
similar to those for the rounded profile (Figs. 3 - 4), except for slightly higher values
when the q = 1 radius is small, due to the higher shear near the magnetic axis.

Finally, Figs. 9 and 10 give profiles and stability results for a current profile of
the TEXTOR type with shoulders at p = 0.4. The marginal Bp has a rather high
maximum (= 0.46) when the q = 1 surface is located inside the shoulders, but the limit
falls abruptly to values between 0.1 and 0.2 when the q = 1 radius increases and reaches
the low-shear region. The TEXTOR profile is particularly stable to the internal kink
mode and can even be resistively stable at fairly high Bp [8,10,11].



The large aspect ratio results in Sec. 2.1 show that the n = 1 mode is unstable
even at zero pressure when qq is below a threshold value ranging from 0.58 for the
Shafranov profile to 0.40 for the parabolic-squared profile. We have studied this purely
current driven mode for two finite aspect ratio equilibria with zero pressure: (a) the
rounded profile surrounded by a region of currentless but conducting plasma and (b) the
Shafranov profile. The aspect ratios of the current channels (Rg/a and Ry/rg,
respectively) are 4 in both cases. Figure 11 shows the resulting growth rates as functions
of qg. Instability occurs below certain thresholds in qg, which are in good agreement
with the large aspect ratio result in Fig. 1. The instability at low qg has been observed
previously by Turnbull and Troyon [4]. It is sensitive to the current profile, and the
Shafranov profile is more unstable than the rounded profiles.

The results for circular equilibria can be simply summarized. Except at very low
aspect ratio, the stability of the internal kink is in good agreement with the large aspect
ratio theory. The B,-limit decreases monotonically with increasing q = 1 radius (except
in cases with non-monotonic or centrally very flat g-profile). With the appropriate
treatment of the wall, typical B-limits lie between 0.1 and 0.2. The position of the wall

makes a substantial difference only for tight aspect ratio and g, < 3.
3. SHAPING EFFECTS
3.1 Numerical results for JET geometry

It is well known that internal kinks are destabilized by ellipticity [12]. To
illustrate this, we give numerical results for the full ideal-MHD stability problem in JET
geometry: aspect ratio A = 2.7, elongation x = 1.7, and triangularity & = 0.3. We apply
the same current profiles as for the circular cross section. The q(p) and s(p) profiles are
slightly different from their circular equivalents, but the differences are insignificant in the
central region, say p < 0.6.

The Bp-lirnits for JET geometry are generally significantly lower than for the
circle. The results for the rounded current profile are shown in Fig. 12. The maximum
stable Bp is about 0.09 and the limit decreases as the q = 1 surface approaches the
magnetic axis. The effect of ellipticity was estimated analytically in Refs [3, 5] by
computing the shaping contribution to W at infinite aspect ratio and zero pressure. This
shaping term was found to have a vanishing effect on the marginal Bp asqg — 1. By

contrast, the full-MHD result in Fig. 12 shows that the Bp-limit is strongly reduced for



JET shape and small q = 1 radius. In fact, with JET shape, Bp,cm vanishes, or is very
small, as qq approaches unity.

Similarly, for the two flattened current profiles, the beta-limits are lower with the-
JET cross section than for a circle, see Figs 13 and 14. The decrease is rather dramatic
for the profile with weak central shear for which the -limit in JET geometry is typically
around 0.03, while the medium-shear profile gives about 0.08. Thus, contrary to
expectation from the analytical expansions [3, 5], the destabilization is stronger in the
case of weak central shear. This destabilization by shaping appears to be connected with
interchange instability. The shaded region of Fig. 13 indicates violation of the Mercier
criterion on the q = 1 surface. The minimum in Bp,crit is clearly set by interchange
instability for this equilibrium. It is well known [13] that, when the Mercier criterion is
violated on a rational surface q = m/n, there exist unstable modes with toroidal mode
number n. Our numerical calculations show that violation of the Mercier criterion on the
q = 1 surface leads to an n = 1 internal kink, typically with a large growth rate.

Further evidence of the importance of interchange stability can be found in the
stability diagram for the TEXTOR current profile, Fig. 15. This figure shows a
dependence on shear locally at the q = 1 surface. The Bp-limit drops from about 0.17
(the highest value we have found with JET geometry) when the q = 1 surface is in the
high-shear region inside the shoulders to about 0.03 when it enters the region of
minimum shear. The minimum of the Bp-limit again coincides with the threshold for
interchange at the q = 1 surface. The minimum in Bp’cm increases if the minimum shear
is increased, e.g., by reducing the shoulders in the current profile. Figure 16 shows the
stability diagram for a TEXTOR profile with reduced shoulders and larger minimum
shear (Spip =s (p = 0.38) = 0.16). Note the absence of a local minimum in the marginal
ﬁp at the radius of minimum shear for this equilibrium.

We conclude that the ideal MHD pressure limit for the internal kink is significantly
lower in JET geometry than for a circle. For most of the JET cases we have examined,
the critical Bp is below 0.1. With elliptic shaping and weak shear, the Mercier criterion
can be violated at low Bp, and this generally gives rise to global instabilities with large

growth rates.
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3.2 Large aspect ratio Mercier criterion including shape effects

Comparison of the numerical results for circular and JET-shaped cross section
shows that ellipticity is destabilizing. The destabilization is particularly noticable at low
shear, which appears to contradict the large aspect ratio results in [3, 5]. However, the
shape corrections in [3, 5] were evaluated at infinite aspect ratio and zero pressure, while
the destabilization of the internal kink in our numerical examples with low shear is
connected with violation of the Mercier criterion on q = 1. This instability is well known:
for vertically elongated flux surfaces, the Mercier criterion on the magnetic axis [14] is
violated when q = 1, unless the triangularity is sufficiently large. It is evident that terms
which are normally "small" in the large aspect ratio expansion can become non-negligible
for equilibria with weak shear.

It would be desirable to express the ellipticity corrections to the potential energy of
the internal kink by extending the large aspect ratio calculation of Bussac et al [1]. This
entails retaining the toroidicity- and ellipticity-induced couplings of the m = 1 component
to its four side-bands, m = -1, 0, 2, 3, and calculating all O(e2e) terms (where €= rq=1/R0
and e is the ellipticity) in 8W/e2. This is a rather formidable calculation, and, to illustrate
the point, we shall content ourselves by giving the corrections to the Mercier criterion due
to ellipticity and triangularity at large aspect ratio.

We modify the standard large aspect ratio expansion by introducing two small
parameters: toroidicity, € [=1/Rg], and ellipticity, e [= (k-1)/2]. The poloidal beta and
safety factor q will be considered as order one. The expansion will be taken to second
order in € and to first order in e, keeping the contributions of order £2e. This is justified
because the normally leading O(e?) pressure contribution to the Mercier parameter
vanishes for q = 1, so that the O(e2e) shaping terms give the leading contribution. We
stress the importance of ordering ellipticity independently from aspect ratio. Connor and
Hastie [5] set e = O(¢) (so that, in the limit of infinite aspect ratio, the equilibrium is
circular), and this makes the ellipticity-induced terms higher order in €. The modified
ordering allows us to calculate the ellipticity contribution without going beyond second
order in €.

Except for the difference in ordering, our calculation follows that of Connor and

Hastie [5). The flux surfaces are assumed to have the shape
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R=Rp-elr-eE@]cos - A(r) + €2 T(r) cos 20+ e3Pcos o +...,
6)

Z= g [r + e E(r)] sin @ +e2T()sin20 — e3Psinw+...,

where r and ® are two non-orthogonal coordinates corresponding to minor radius and
poloidal angle, and € and e are independent expansion parameters. The elliptic
deformation E(r) is related to the elongation by k¥ = 1 + 2E/r + O((E/r)2), A(r) is the
Shafranov shift, and T(r) is the triangular deformation related to the triangularity by & =
4T()/r. Keeping the terms up to second order in € and first order in e, we obtain the

Mercier criterion as - Dy > 0, where

1, 2p' @2 3¢2 E oo .3¢2 , B L
-DI=Zf;}%&%[l-q2+%—(;+E)+—%—A(;-E)
7
Rpq? , 2ET . 6E'T | 7ET" 3 _in:
T oor (r2 T Y o 'EET)]’

Details of the calculation are given in the Appendix. In (7), prime denotes differentiation
with respect to the minor radius r and A =Ry A'fr = Bp(r) + 4(1)/2, Where L(r) is the
internal inductance. Equation (7) generalizes the formula for circular flux surfaces of
Shafranov and Yurchenko [15] and Glasser, Greene and Johnson [16] and is consistent
with previous expressions retaining shaping effects near the magnetic axis [14]. Figure
17 shows that (7) is in reasonable agreement with the full Mercier criterion for two
equilibria with (a) large aspect ratio A = 10, x = 1.3 and (b) small aspect ratio A = 2.7,
K = 1.7. Figure 17 also shows the standard Shafranov-Yurchenko expression, which
ignores the effect of ellipticity and excludes interchange instability at q = 1.

An approximation of (7) that is sometimes useful for the internal kink mode is
obtained by considering almost flat current profiles with q' small and E/r and T/r2

constant. Together with q = 1, this gives

1 ' 3E 8T Rg
D= g+ T (T ®
Equation (8) shows that for sufficient ellipticity, ideal interchange instability can

occur for modest pressure and not-so-low shear. As an example, we assume that the

pressure profile is parabolic [Bp = -(p'/tB?) (R(z)q2/2)] and that triangularity is negligible.

The Mercier criterion then reduces to B, < s?/(24e€2). Even though the expansion to first

order in ellipticity is not very accurate for JET geometry, we consider a JET-like case
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with €g=1= 0.16 and €q=1= 0.2 for which (8) gives Bp < 8 s2. This criterion is violated
for rather modest pressures when the shear is less than about 0.1. For low shear, say
s £0.03, even a minute pressure gradient will violate the Mercier criterion at q = 1 in an

elongated tokamak.
4. SUMMARY

In circular equilibria, the ideal MHD stability of the internal kink is relatively
uncomplicated. Our numerical results from full-MHD calculations are in good agreement
with the large aspect ratio theory when boundary conditions are properly taken into
account. We have modified the large aspect ratio calculation of Bussac et al [1] with
respect to the boundary conditions so that it applies for tokamak equilibria with g, > 2.
With this modification, most current profiles give Bp-lirnits that decrease monotonically
with increasing q = 1 radius. Typically, the large aspect ratio expansion predicts Bp-
limits in the range of 0.1 to 0.2, in good agreement our full-MHD results. Both large
aspect ratio theory and numerical computations predict instability at low values of qq (in
combination with high shear at q = 1). The stability of the internal kink is dependent on
the current profile, e.g., the Shafranov profile is less stable than profiles that are rounded
in the central region, while current profiles with shoulders just outside the q = 1 surface
are more stable.

With regard to shaping, the numerical results show that ellipticity can significantly
reduce the Bp-limit. For JET geometry, typical values of the marginal ]3p are between
0.05 and 0.1. The reduction of the pressure limit by elongation is accentuated in cases of
weak shear in the q < 1 region. This can be correlated with violation of the Mercier
criterion (7).

Finally, we remark that the internal kink mode is a weak MHD instability and can
therefore be strongly modified by a multitude of other effects such as resistivity, trapped
particles, diamagnetic rotation and electron inertia. Such corrections can be expected to
be particularly important when the shear at q = 1 is weak and the stability is sensitive to
various small effects. In addition, the nonlinear evolution may be different from the
indications of linear theory. Nevertheless, it is important to know the result of linear,
ideal MHD results with some precision to be able to develop more sophisticated models
with confidence.

Acknowledgement: This work was funded in part by the Swiss National Science

Foundation.
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APPENDIX EXPANSION FOR THE MERCIER CRITERION

The Mercier criterion in axisymmetric geometry is given by [8, 13, 14]

"Gl 1,2 PR
_DIE(p—q,——Z-E)+~§,—§(I5-pl3)(G211+I4)>0 . (AD)

Here, the equilibrium field is represented as B = V¢ x Vy + G(y) V9, the flux surface

integrals are defined as

(1.5, 13, 1, 15}

1 R2Z 1 1} , (A2)

N Jdo {
2x  R2 IleZ Vg2’ Vg2’ R2’

W = const

and J is the J acobian from (y, , ¢) to Cartesian coordinates.

We now introduce the (r, ®) coordinates as in Eq. (6) and the usual low-beta
ordering with B, finite as € — 0. Thus, we write G = RoBog(r) with g =1+ O(e2), p/B0
= O(g2), and dy/dr = RoBg f(r). The first step of the calculation is to express the
components of the metric tensor g, = 19r/dri2, g, = (Or/0r) » Or/0w), g, = lOr/dwi2
and the Jacobian J = R d(R, Z)/d(r, ®) as functions of r and ® by differentiating (6).
Next, we need equilibrium relations from the Grad-Shafranov equation, which, in (r,®)

coordinates reads

fro fgwm g8 _

with * = ¢-1 d/dr. The Grad-Shafranov equation is then expanded in € and e. The w-

independent piece gives the cylindrical pressure balance equation
g + p'/Bg +(EMEH =0, (A4)

that allows to eliminate g'. Equations for the Shafranov shift and the elliptic and
triangular deformation of the flux surfaces are obtained from the cos ® component at

O(g), cos 2m component at O(e) and cos 3w component at O(g), respectively:



woog2f 1y 1 21p'
A+ (- +2)A =
e+ 7) Ro ~ ppi
3p' 3A' 12T | ST | 2Tf
+e[E( f2 5t 3t gt r2f) (AS5)
v, 3rp' 3A'" 10T 2T 3T'f 1
+E + + + - - 5]
2 f 2 T f Rg
RoBo g
w28 1y 3
E+(T+;)E-;§E—O ’ (A6)
w28 1y, 8
T ()T T
3A' ./ 3rp’ 4A"  3A'f
=e[E( >)-E'( +—— + -] . @n
Ry (2)f2 RoBgfz j PR

Of course, Eqs (A4 - A7) contain higher order corrections, which do not contribute to the
Mercier criterion at the order considered here. For the geometric coefficients, it is
convenient to choose the €3 terms in (6) [represented by P, although in fact, there are
more terms at this order] such that | (J/R2) do = 2nr/Rg. (This amounts to defining a
free normalization constant at higher order in €.) With this choice, f can be expressed in
terms of the safety factor: f =rg/qRy. To perform the flux surface integrals, we also
need IVri2 = gI't =R2g /12, To the required order, we obtain

23
- Rod 2 2A 3
I = —263-[1+Co-302-82(r—2+“"—)+682E—%] (A8a)
r RO R 2R
0 0
43
Ry
0 2 4A + 3rA’
I, = 2G3[1+c0+3c1+302-52(3r2+ r )
r 2RO RO

(A8b)
2 OrE + 3r2E ]

4RO
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63
ki 6A + 6rA’ 32E'
Iy= = |1+cp+6cy+9cy-e2——— - ee? 3
3 r2G3[ 0 1 R 2R2
0 0
14=-°GL
Rga 2 24 A 25
IS'—"EO‘ [1+cl-£2(—r——2-+-——- +£__) +c£23rE+2rE ]
2R} R, R, 4R?

where ¢ contains the O(e3) shaping corrections in (6) and

o) ee2 CED ,
Ry
2Ry

(A8c)

(A8d)

(A8e)

(A9a)

(A9b)

Substituting Eqs (A8) into (A1) we obtain expression (7) for the Mercier criterion.
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FIGURE CAPTIONS

FIGURE 1  Marginal B, for circular equilibria from large aspect ratio theory. Results
are given for three current profiles: Shafranov (with the step at ry = a/2) parabolic

(f=1) and parabolic-squared (/= 2), in (a) vs. 14-1/a and in (b) vs. qq.
FIGURE 2  Pressure vs. normalized minor radius p for the numerical equilibria.

FIGURE 3  Profiles of (a) averaged toroidal current density I*, (b) safety factor q and

(c) shear s vs. p for the rounded current profile.

FIGURE 4  Stability limits in 3, for circular equilibrium with aspect ratio 4 and the
rounded current profile shown in Fig. 3. (a) Bp vs. Pg=1 and (b) Bp VS. qg-

FIGURE 5 Internal kink growth-rates vs. Bp for a circular equilibrium with fixed
boundary (filled symbols) and free boundary (open symbols). Three different
aspect ratios are shown A =Rp/a = 10, 5 and 2.7 and pg-; = 0.6.

FIGURE 6  Profiles of (a) averaged toroidal current density I*, (b) safety factor q and

(c) shear s vs. p for the flattened current profile with low central shear.

FIGURE 7  Stability limits in Bp for the flattened current profile with low central shear

(Fig. 6). The cross section is circular with A =4,

FIGURE 8  Stability limits in Bp for the flattened current profile with higher central

shear (four times larger than in Fig. 6). The cross section is circular with A =4,

FIGURE9  Profiles of (a) averaged toroidal current density I*, (b) safety factor q and
(c) shear s vs. p for the TEXTOR profile.

FIGURE 10 Stability limits in [Sp for the TEXTOR current profile in Fig. 9. The

cross section is circular with A =4,
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FIGURE 11 Internal kink instability at zero pressure for low qg, circular equilibrium
(A = 4) with the rounded current profile (circles) and the Shafranov profile

(squares).

FIGURE 12  Stability limits in B for JET geometry and the rounded current profile
(Fig. 3).

FIGURE 13 Stability limits in |3p for JET geometry and the flattened current profile
with low central shear (Fig. 6). The dashed region indicates violation of the

Mercier criterion atq = 1.

FIGURE 14 Stability limits in Bp for JET geometry and the flattened current profile

with higher central shear.

FIGURE 15 Stability limits in ﬂp for JET geometry and the TEXTOR current profile

(Fig. 9). The dashed region indicates violation of the Mercier criterion at q = 1.

FIGURE 16 Stability limits in 3, for equilibria with JET geometry and the TEXTOR

current profile with reduced shoulders.

FIGURE 17 The Mercier criterion for an equilibrium with ellipﬁc cross section and low
shear around the q = 1 surface. The solid line gives the full criterion (A1), the
curve with long dashes the large aspect ratio expansion with ellipticity (7), and the
curve with short dashes gives the Shafranov-Yurchenko approximation.

(a) aspect ratio A = 10, elongation x=1.3 and (b) A =2.7 and k= 1.7.
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