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1. Introduction

The ideal MHD stability of the Reversed Field Pinch (RFP) is rather
well understood in the cylindrical approximation [1,2]. However, the
importance of toroidal effects has not been given much attention
theoretically and even less is known about the effect of shaping on
RFP performance. The purpose of the present investigation is to
study these issues by means of numerical computation using two
dimensional toroidal equilibrium and stability codes. The
parametrization of the equilibrium has been chosen so as to make
possible a meaningful comparison with previous stability analyses
[3,4] of the RFP in cylindrical geometry. The aspect ratio has
generally been chosen R/a=4 motivated by the design of the RFX
experiment in Padova.

In the first part of the work the effect of toroidicity on current and
pressure driven modes for a circular RFP has been considered. For
the circular RFP at zero B, we recover the cylindrical limits; these
modes are not much affected by toroidal effects.

Moreover enhancing the B, for current driven stable configurations,
has the effect to destabilize pressure driven localized interchange
modes of the Mercier type [5]. They seem also, as expected for
circular plasma section [6], not much affected by toroidal effects. It is
interesting to note that for realistic RFP configurations the ideal B
limits set by these Mercier modes are in the range 10 + 15 %, which
is in the same range as the B values observed in experiments [7]. The
limiting role played by the Mercier modes differs from the condition
in tokamaks, where the P limit is due to ballooning instabilities [8],
or "ballooning-like" low n modes [13].

Here, we have considered the circular RFP as a reference case,
actually the most important part of the work has dealt with the
effect of shaping on stability. We have considered four different
plasma shapes: elliptic, triangular, D-shaped and also " x-point" like
sections.

A first result of the computations is that the plasma shaping has little
effect on current driven modes, although ellipticity is slightly
destabilizing. A very simple criterion for the stability of m=1 current
driven modes in terms of macroscopic quantities has been also found.
Moreover it seems not to be possible to enhance the B limits using
ellipticity, triangularity or D shapes, probably due to the average



bad curvature of the RFP [9]. Although this rather pessimistic result
is not completely unexpected, our study shows an important
difference between RFP and tokamak. It appears that in an RFP,
shaping does not give access to more favorable regions of operating
space (such as the increased current capability of the tokamak)
where the B limit could be increased.

Concerning the "x-point" like configurations, we find that they do not
affect appreciably the current driven stability boundaries and also
the ideal B limits obtained for the circular cross section, at least if
the "x-point" is positioned inside the torus. This result can be
considered interesting for future RFPs with divertors. Obviously a
question which has been not addressed by the present computations,
is the effect of an x-point on the destruction of magnetic surfaces and
on the related stochastic transport. This represents an important
topic to be clarified.

The paper content is organized as follows: section 2 deals with the
equilibrium parametrization, section 3 with the stability for the
circular case, and finally section 4 presents the results of shaped
plasma cross sections.

2. Equilibrium parametrization

In this study we have used the equilibrium code CHEASE [10] for
solution of the Grad-Shafranov equation and the toroidal stability
code MARS [11].

The Grad-Shafranov equation allows the specification of two profiles.
We have chosen to specify p and T=RB, as function of poloidal flux ¥.
In order to facilitate the comparison with previous results [3,4], the
following parametrization has been chosen for the T profile:

T = T(o) - Roju ds (2.1 a)

with

L=pn©):-(1-5% (2.1b)

where s=1- ¥/¥W, is the radial coordinate with s=0 on the magnetic
axis, s=1 on the plasma-vacuum boundary and R, is the radius of the
plasma magnetic axis.

In the cylindrical limit this parametrization gives:
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Note that the value of q(o) can be known only a posteriori, after the
Grad-Shafranov equation has been solved and ¥, , By(0) are
determined. In the cylindrical case [3], pu(o) a =2 @, (a being the
plasma minor radius), was directly connected with q(o):

= 2__ -_a 2.
q(o) Ri() RO, (2.3)

Actually (2.3) can be taken as a definition of ®,. In this way the
results presented here can be compared with the previous, for
example in terms of stability plots in the a-®, plane.

Obviously the parametrization (2.1) for p resembles the cylindrical
case although with some differences. In fact, while previously p was
a function of minor radius r [3], now it is a function of ¥. In the next
section we shall see that this produces only a small effect on the
equilibria. More importantly, with finite pressure our choice of p
(2.1b) connects the poloidal current to the poloidal field, while in the
definition used in [3,4] p is related to the field aligned current
u=J-B/B2.

Another point which can be useful to remark is that setting in (2.2)
B4(1)=0 the following relation is obtained:

M(0) = By(o) (1 + L)

This equation represents the marginal curve at which the magnetic
field is zero at the wall. For values of p(o) above this curve the

reversal point is inside the wall, on the opposite case the toroidal
field is not reversed.

It is also necessary to specify a function for the pressure, p(¥). The
pressure profile has been chosen as follows:



p = c(1l4s+35%) (2.4)

This gives p=0 on the boundary and p' = dp/d¥ vanishes linearly on
the boundary and quadratically on the magnetic axis. This choice
corresponds to a quite broad pressure profile, as is optimal for the
Mercier criterion which becomes rather restrictive in the central
region.

2.2 F and © for RFPs with arbitrary shape

In describing RFPs configurations, two important parameters are:

poBe
By
(2.5)
W
o=

By

where By " and B," are the toroidal and poloidal magnetic fields at
the plasma wall.
For an RFP configuration with an arbitrary shape the previous
expressions have been generalized and the the following definitions
have been taken:



where 6Q is the plasma boundary and Q the plasma domain.
3. Stability for the circular RFP

In order to show more quantitatively the differences between the
toroidal parametrization (2.1) and the cylindrical case [3], we plot in
Fig.1 the toroidal equilibria as points (triangles) in the cylindrical F-©
diagram. The toroidal profiles are computed for an aspect ratio R/a =
4. The F-© curves are practically indistinguishable for © and F in the
experimentally interesting domain, while the toroidal curves depart
from the cylindrical ones at high values of ©.

The following stability calculation assume a free-boundary plasma
surrounded by a vacuum region of 10% of the minor radius.

3.1 Force-free stability analysis

The stability diagram in ©,- « plane obtained in the cylindrical limit
[3] is shown in Fig.2.

Firstly, we have checked that the stability boundaries on the bottom,
due to external (m=1) modes, and on the right, due to internal (m=1)
modes, are not modified by toroidal effects. Here the words:
"external” and "internal" refer to whether the resonance surface of
the mode is outside or inside the field reversal [3]. Note that this is
somewhat different from the standard distinction, since these
expressions are usually used to identify modes which remain
unstable (internal) or are stabilized (external) in the case of fixed
boundary. In the present free-boundary calculation we wuse the
terminology internal and external in the sense of ref. [3]. We remark
however that both tyes of modes (internal and external resonant) are
influenced by both wall boundary conditions and wall position,
although the internal resonant modes seem somewhat less sensitive
[12].

In Fig.3a,b the growth rates (normalized to the Alfvén time) vs. o
and vs. ©, for internal and external modes respectively, are shown.
The marginal point corresponds almost exactly for both cases with
the stability boundary of Fig.2, as can be easily checked.

In the same figure it is also shown that the growth rates are
independent of the aspect ratio, in fact the circles refer to R/a=4 and
the crosses to R/a=10.

In Fig.4 the particular structure of the internal m=1 current driven
modes is shown. The displacement is peaked near the resonance



surface, wheres the radial component of the magnetic field takes its
maximum near the wall, outside the resonance.

Moreover there is almost no toroidal coupling between different
poloidal harmonics, in fact the contributions to the eigenfunctions for
m=#1 are very small. We therefore conclude that current driven
modes are almost unaffected by toroidal effects (as is, at least
approximately, true also for tokamaks).

3.2 Pressure driven modes

As a first general observation concerning pressure driven modes we
remark that the marginal stability is set by interchange modes of the
Mercier type. In Fig.5 the marginal average B for stability is plotted
vs. ©, for a fixed a. The curve corresponds just to the stabilization of
ideal interchange modes.

The stability is only slightly affected by toroidicity. This is as
expected: for example, the Yurchencko-Shafranov analysis [6], for a
circular low P tokamak shows only a slight alteration of the Suydam
criterion (represented by the (1-q2) factor in (3.1)):
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This can be also seen in Fig.5, in which the same boundary for
stability has been found for two aspect ratios: R/a=4,10.

Moreover from Fig.5 it is possible to see that for typical RFP
configurations (1.5 < ®,< 1.7) the average P limit is in the range 10 +
15 %, and therefore comparable with the experimental values [7].
The sharp stability boundary in Fig.5 at ®,= 1.9 , is set by the
external current driven modes. However this boundary corresponds
to very unlikely configurations in terms of F and © (F<-2, ©>3). The
behavior of the growth rates vs. P ( above the Mercier's stability
limit) is represented in Fig.6 for two values of a. The growth rates
are much lower than those corresponding to current driven modes,
but still appreciable; they increase with B and are little affected by
the current profile. Moreover in Fig.7 the radial component of
velocity eigenfunction (a) and magnetic field (b) for a case with
<B>=30% are shown. A toroidal coupling between different harmonics
is present. The eigenfunctions are normalized to the maximum of



m=1 mode, so that it is clear from the figure that m=0,1 are the
predominant modes.

When the B limit due to interchange modes is violated the unstable
spectrum extends to high n values and localized modes are
destabilized with relatively high (of the order of 10-!) growth rates.
The limiting role of the interchange modes is different from the
tokamak case, where the ballooning modes are normally destabilized
below the Mercier limit, at least in the high-shear region with q well
above unity.

4. Shaping of plasma cross section

In an attempt to improve the current driven and B limits due to ideal
modes, we have considered shaping of the plasma cross section.

It is well known for the tokamak that producing an elliptic plasma
has the effect to enhance the current limit imposed by the q, > 2 limit
and also that plasma shaping produces a beneficial effect on B limits
{13] when the shape is such that the field lines spend most of the
time in the good curvature region.

The stabilizing effect of shaping for RFP, at least on pressure driven
modes, could a priori be expected to be not so strong as in tokamak,
due to the fact that the toroidal favorable curvature in the pinch is
much smaller than in tokamak like configurations. Nevertheless, as a
systematic study of the effect of shaping on both current driven and
pressure driven modes has been never done for RFP like
configurations, many questions concerning the effects of shaping on
the operational limits are open.

We have considered four types of plasma shapes:

(a) triangular cross-section;

(b) elliptic cross sections;

(c) D shaped cross sections;

(d) "x-point" like configurations;

In the following sections the results in terms of stability boundaries
for current driven modes and P limits for stability are presented for
these different equilibria.



4.1 Elliptic, triangular and D shaped RFP plasmas
The shape of the boundary is described by the following equations:

r=R,+R_€cos (0 + 8 sin (6))
z=R, e E sin (9)

where r and z are the cartesian coordinates with the origin at the
center of the torus, R,is the major radius, € is the inverse of the
aspect ratio, E and & are the ellipticity and triangularity, respectively.
First, we have examined the current driven stability limits at zero P.
The results for triangular, elliptic, D shaped and the reference
circular case are plotted in Fig.8 in the F-a plane. The aspect ratio is
fixed at R/a=4. The stability region for internal current driven modes
extends on the right of the curves plotted in Fig.8. The curve marked
with triangles corresponds to the boundary for circular and
triangular (8 = 0.4) cross sections. The curve marked with white
circles corresponds to the elliptic deformed plasma shape ( E = 1.6) ,
and that marked with black circles to the D shaped cross section
(E=1.6, 5 =0.4). Note that in Fig.8 we have chosen to represent the
stability boundaries in the F-a plane rather than in the ©,- o plane.
This choice is motivated by the following two points. First, in the
toroidal computations ©,is not an input parameter, as it was in the
cylindrical case. The second consideration is connected to the fact
that for different plasma shapes, the same values of F and ©
correspond to different values of ®, . So in order to compare similar
configurations in terms of the "physical" parameters F and © it is
necessary to represent the stability boundaries in a different way
with respect to the cylindrical case. Moreover this has the advantage
to limit the analysis to a "reasonable" region of the parameter space.
Fig.8 shows that triangularity does not affect the circular stability
boundary: it is neither stabilizing nor destabilizing. This is not the
case for elliptic sections. In fact, for elliptically deformed cross
sections, the stability boundary is shifted at higher a's (for a fixed F
value), i.e. the effect is destabilizing. The same is true for D shaped
Cross sections.

Fig.9 shows the F-© curves computed at o« values corresponding to
marginal stability for the different shapes. The effect of shaping on
the F-© curves is very small. Moreover we note that the stability
boundaries are determined (as in the circular case) by internal
resonant m=1 modes (although now some toroidal coupling with m=0



modes is also present). The resonance surface for these modes is near
the magnetic axis and for the aspect ratio (4) considered here they
have toroidal periodicities in the range 6 <n < 8.

Our main conclusion is that shaping has a small influence on stability
of internal current driven modes, although some destabilization is
observed for elliptic plasma section. In Fig.9 the straight line shows
the effect of pressure ( for <> = 10%) on the stability boundary for a
circular cross-section. As can be seen the change in the current
profile due to pressure is more affecting the stability than shaping
does.

The stability boundary due to "external” current driven modes (Fig.2)
has been also checked to be unaffected by shaping, but it must be
noted that this boundary corresponds to quite unrealistic values of F
(£-2)and O ( 2 3).

In examining the effect of shaping on pressure driven modes, we
have considered triangular cross section.

Similar to the case for the current driven modes we find that
triangularity does not destabilize the pressure driven modes.

A plot of yvs. < B> for two configurations with different but rather
small o values (near the marginal point for B =0 stability) is shown in
Fig.10. Three different observations can be made: first the shaping
has no effect, in fact the curves for the circular and the triangular
case overlap completely; second the stability B limit is due to
localized interchange Mercier's modes (the arrow in the figure) and it
is also independent of shaping; third the <B> threshold for the
destabilization of low n "current driven " like modes increases with o,
but again it is unaffected by shaping.

Fig.9. shows that the stability limit for internal m=1 modes is
represented quite well by the following relation:

@<F+0,,

where ®Op, = 1.5 corresponds to the value of © at which F=0.
This expression can be easily transformed into:

Ho I<2ra ['B¢(a) + ®rev <B¢)]

where I is the total toroidal current, a is the plasma minor radius and
< B¢ > is the average toroidal flux.

In other terms the internal m=1 ideal modes are setting a limit for
the current which can be expressed in a simple way as a function of
externally controlable parameters. We point out that the

10



experimental points, for example for m-B II, lie approximately in the
region between the zero P curve and the stability boundary obtained
with 10% B represented also in Fig.9.

4.2 "X-point" like configurations

This kind of configuration is interesting in the perspective to build an
RFP with a divertor.
The following parametrization describe the "x-point" like boundary:
r =Ry + Ry €1(8) cos (8)
z =Ry € f(0) sin (6)
with f(0) given by:

fe)=1+ o

sinz(———a'a°)+q
2

1+

A

Note that the x-point has been approximated numerically by a
rounded of corner (see Fig.11) due to numerical difficulties in dealing
with a real hyperbolic point, where the flux coordinate system
becomes singular.

First the current driven modes stability has been tested. The "x-
point" was positioned at 0 = 3/4 =, but we find that the current
driven stability boundary was unaffected by the position of the x
point. The stability region with respect to the circular case is not
affected and is again represented in the F-o plane by the curve
marked with triangles of Fig.8. This result has been obtained with
the following choice for the parameters determining the sharpness of
the "x-point": 6 = 1.2, v= 045, A = 0.6, { =3 10-3. This corresponds to a
rather rounded corner.

Concerning the B limits for stability it is well known for the tokamak
[14] that the position of the x-point affects the B limits and that the
best results are obtained when the x-point is inside the torus, in the
region of good curvature. Therefore in Fig.12 the B limits for the

stability of Mercier modes, are plotted against the position of the "x-
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point”". Although the effect is not extremely strong, there is a clear
indication that when the "x-point" is inside the torus, the P limits are
higher, in complete analogy with tokamaks. Note also that in the
range 3/4 ® £ 0 <5/4 n, the limits are the same as the circular case
represented by the arrow in the figure.

Conclusions and discussion

In this work we have studied the stability of RFPs against ideal
current and pressure driven modes for axisymmetric configurations
with shaped cross sections.

Our main conclusions 1is that both toroidicity and shaping have small
influence on ideal current driven modes boundaries and P limits for
stability. Cross-sections with triangular deformation and also "x-
point" like configurations, neither improve nor deteriorate the
stability, while ellipticity is destabilizing. Thus, our results
concerning x-point show that from the ideal MHD point of view RFPs
with divertors should work. However some important topics as the
effect of shaping on magnetic braiding cannot be addressed by the
simple model of linear ideal MHD.

The ideal B limits obtained for realistic configurations (F and © in the
experimental domain) are of the order of 10 + 15 %, which is in the
same range as experimental results. The theoretical B limits are not
influenced by shaping. However in the case of "x-point" like
configurations, it is necessary to locate the "x-point" inside the torus
to recover the circular B limits .

The result that shaping has no influence on stability of current
driven modes and ideal B limits has been obtained for a given class of
equilibria. However it is clear that if shaping would either modify
the class of achievable equilibrium states or would shift the
operation points in the F-® plane, both current driven and P limits
would probably change. Thus the question of the usefulness of
shaping for RFP like plasma confinement can be conclusively
answered only by performing real experiments! Some already
existing experimental results [15,16] are not contradictory with the
conclusions of the present theoretical investigation, in fact these
shaped RFP plasmas show similar performances as circular RFPs.
Another interesting result of this paper is that the stability of
internal m=1 ideal modes set a very simple constraint on the current.
This limit can be expressed in terms of externally tunable
parameters. Moreover from a comparison with experimental data, we
have found that RFPs seem to operate near this limit.

12



A question which has been not addressed in the present work is the
problem of stability in presence of finite plasma resistivity. On the
basis of cylindrical computations it is known that the operational
limits set by the current driven modes are slightly affected by
resistivity when the wall position is just on the plasma surface [3],
but that it has a strong destabilizing effect when the wall is moved
away from the plasma [2,12]. Therefore it could be important to
investigate the effect of resistivity on current driven modes in
presence of toroidicity and/or shaping for a free-boundary plasma
model. We leave this subject for future studies.

Instead as concerns the pressure driven modes there is a basic
difficulty in defining P limits in presence of resistivity, in fact when
q<l, resistive interchange modes are unstable even at very low
pressure. On the other hand these modes are so localized, especially
at high plasma conductivity, that they are probably affecting the P
only in an indirect way through complicate transport mechanisms.
Therefore the analysis has been restricted to ideal modes, which are
generally agreed to play a fundamental role in setting the B limits
also for tokamaks [17].
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Figure Captions

Fig.1 F vs. © curves at different a's. Lines correspond to cylindrical
states and triangles show the toroidal states with R/a=4.

Fig.2 ©,vs. o diagram showing the stability boundaries.

Fig.3a yvs. a plot for n=8 internal mode. Circles refer to R/a=4 and
crosses to R/a=10. (©,is fixed to 2).

Fig.3b yvs. ®,plot for an n=4 external mode. Circles correspond to
R/a=4 and crosses to R/a=10 (o is fixed to 4).

Fig.4 Radial component of velocity (circles) and magnetic field
(crosses) eigenfunctions for an m=1, n=8 internal mode ( ®,=2, a=2.1).
The functions are normalized to their own maximum value. The
arrow indicates the resonance radius.

Fig.5 <B> limit for stability of Mercier's modes at different @, for
a=4. Circles refer to R/fa=4 and crosses to R/a=10.

Fig.6 yvs. <B> for two different values of o (R/a=4).

Fig.7 Radial component of velocity (a) and magnetic field (b)
eigenfunctions. The equilibrium corresponds to o=6, ®,= 1.45 and
<p>=30%. The mode has n=15. The different harmonics are normalized
to the maximum of the m=1 mode.

Fig.8 F vs. a stability boundaries. The stable region is on the right of
the different curves. Triangles refer to circular and triangular shaped
cross sections ( 8 =0.4), full circles to D shaped sections (§ =0.4, E=1.6)
and open circles to elliptic plasma shape ( E=1.6). R/a is fixed to 4.

Fig.9 F vs. © states corresponding to the marginal stability curves of
Fig.8. Continous line represents the boundary for initial equilibria
with <B> = 10%.

Fig.10 vy vs. <B> for two different values of o near the stability
boundary for circular (circles) and triangular (crosses) sections. The
mode is the internal n=7. The arrow indicates the Mercier limit.
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Fig.11 "x-point” like cross section.

Fig.12 <B> limit due to interchange modes vs. the poloidal angle 0.
The arrow indicates the circular limit. (a is fixed to 4).
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