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Abstract: Stability limits for the ideal internal kink mode are calculated analytically for the
Shafranov current profile using the large aspect ratio expansion. For equilibria with q(a) > 2
and circular cross section, the maximum stable poloidal beta is below 0.1. In the absence of a
conducting wall, an equilibrium with gq(a) < 2 is unstable at arbitrarily small positive poloidal
beta or shear inside the q = 1 surface. The effects of non-circularity are discussed and
quantitative results are given for elliptic cross sections.



1. INTRODUCTION

Recent experimental observations have revealed many unexpected features of the
sawtooth oscillations, in particular in large tokamaks, and have lead to a renewed interest in the
stability properties of the internal kink mode. Even within the simplest theoretical framework,
ideal magnetohydrodynamics (MHD), the stability of the internal kink mode is sensitive to a
large number of parameters: pressure gradients inside the q = 1 surface [1], the current profile
[1-6], shaping of the cross section [6-8] and even wall position [6,7]. Although numerical
stability results are available, analytical results are valuable because they show parametric
dependencies and apply to certain well specified (although, unfortunately, rather specialized)
cases. Furthermore, they eliminate uncertainties concerning numerical accuracy. In the present
letter, we calculate analytically the stability boundaries of the ideal internal kink mode with
toroidal mode number n = 1 for a Shafranov (step-function) current profile, using the large
aspect ratio expansion [1, 7, 8]. When q(a) > 2, the maximum stable poloidal beta for the
Shafranov profile is less than 0.1, which is considerably lower than the often quoted value of
(13/144)1/2 = 0.3, valid for a parabolic current profile in the limit of small q = 1 radius [1].
Furthermore, if g(a) < 2 and there is no conducting wall, the Shafranov equilibria are unstable
at arbitrarily small positive poloidal beta or shear inside the g = 1 surface.

2. FORMULATION
2.1 Large aspect ratio expansion
The potential energy for the n = 1 ideal internal kink mode was calculated in Ref. 1 by
means of the large aspect ratio expansion. It is a quadratic polynomial in Bp, the poloidal beta
at the q = 1 surface:
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Here € =1¢/R, 1 is the minor radius of the q = 1 surface, R the major radius, & the amplitude of
the m = 1 radial displacement (m = poloidal mode number), and
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and the global shear inside the q = 1 surface is represented by
r
= ()3 L dr
s= (G (z-v & @

The quantit(i)es A¢ and A; denote the logarithmic derivatives of the (m = 2, n = 1) component of
the radial displacement just outside and inside the q = 1 surface, respectively. These are
obtained from the solutions of the cylindrical Euler equation for (m=2, n=1) in the two separate
regions q > 1 and q < 1, with appropriate boundary conditions.

2.2 Shafranov equilibrium
The Shafranov profile gives a simple, yet physically meaningful, class of equilibria for

which all quantities appearing in 8W can be evaluated analytically. The current profile is a step
function,

2By r<r

) Rqp 0>

i@ = (5)
0 , r>rp ,

and the safety factor profile has q(r) = q( = constant for r < and q(r) = qo0 (r/r0)2 for r > 1y,
see Fig. 1. The global shear for the Shafranov profile is
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To obtain the solutions of the Euler equation it is convenient to use the flux perturbation
related to the displacement by
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for arbitrary m and n. The cylindrical Euler equation for y reads
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If no resonant surface q = m/n exists between r = 0 and r = r, the logarithmic derivatives for x
are obtained from (7) and (8) as
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Here, b denotes the radius at which the external solution for y(m.n) vanishes, that is, the
resonant surface where q = m/n if such a surface exists in the plasma (i.e., if 1 < m/n < (a/r;)?),
otherwise the conducting wall.

3. WALL STABILIZATION, CIRCULAR PLASMA

The potential energy is now obtained from (2) and (9) as

1
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represents the effect of the wall. We note that the sign of the coefficients for both f}, and [312) in
OW is determined entirely by the wall separation. When (b/ry) > 21/4, both these coefficients
are negative and consequently pressure is destabilizing. In this case, there can be at most one
positive marginal value of Bp, depending on the sign of 8W at zero pressure. It is easy to
verify for more general profiles, the same conclusion follows if

Ag+3 >0 (11)

and
A=Ae-Ai<0 ,
(12)
G= 3 (A1) +5(A; +3)>0

(where the latter two conditions (12) are normally satisfied). It is clear that (11) must be
violated when the wall is sufficiently close to the q = 1 surface, because A, — - w0 as b —> 7.
However, to violate condition (11) the wall must be very near q = 1, and this is possible only
when q(a) < 2. Specifically, for the Shafranov equilibrium, a tight-fitting wall makes the effect
of pressure stabilizing on the internal kink if, and only if

b 14 -
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Under this condition, there is no stability limit in Bp within the validity of the expansion.
However, whenever b/r; > 21/4, we have A <0, G >0 and A, + 3 > 0, so that pressure is
destabilizing and there is at most one positive marginal value for Bp This, of course, applies to
the normal case of q(a) > 2 where b/r; = V2 for the Shafranov profile.

Equation (9) shows that for equilibria with qg < 1, q(2) < 2 and no wall stabilization
(i.e., b = o0), arbitrarily small positive values of either Bp (pressure) or s (shear) inside the q =
1 surface lead to instability. Therefore, an equilibrium with q(a) < 2 needs stabilization by a
close-fitting wall. The stability condition 8W < 0 can be rewritten as a condition on maximum
wall distance:

s q%) + (1-gy) (2s + 9/8)
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In the limit Bp >>s and s << 1, this condition simplifies to
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whlch reduces to (13) when Bp >>s1/2, When q(a) 22, i.e., b=2 I1, the small s limit gives
[3 < 13s/16. When B, <<'s << 1, the pressure effect is negligible, and Eq. (15) yields s <
(13/24) [(b/r1)4 2]-1, but as this was obtained by an expansion assuming s << 1 the condition
is strictly

s< 23 (%1)4 : (%1)4 «1 . (16)

4. SHAPING EFFECTS

Because of the simple solutions of Eq. (8) for the Shafranov equilibria, it is also
possible to give analytic results for the effects of cross-section shaping on the stability of the
internal kink mode. Here, we apply the results obtained in [7], and treat the non-circularity as
an additive effect, separate from the effects of toroidicity and finite pressure.

The equilibrium (n = 0) flux function is given by

Yo, 0) = X y{0)(r) cos (0 , an
(20

and the deformation of the flux surfaces is, to first order in the non-circularity,
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The potential energy can be written as
72
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where the shaping effects are contained in Pg which is given by

([+2+Ai([+1’1) ) ([+2+A(e[ +1.1)y

— 2
Py = X aj REERREE + [0 . (20)
[>1 e S

The coefficients a, can be expressed as
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where we used the fact that the [# 0 components of the equilibrium satisfy (8) (to lowest order)
withm =/, n = 0. For the Shafranov equilibrium, Eq. (8a) gives, for [> 0,

5[ 1- 99
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Together with the expression for Py in a circular plasma, Egs. (19 - 21) now give the potential
energy for the internal kink mode including shaping effects. As a specific example showing the
relative magnitude of the toroidal and shaping effects, we consider the correction due to
ellipticity, [ = 2, for the Shafranov equilibrium

% 2 (6-3cb+qg) [3 - (b/r))°]

12, 1-4
o [0
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cliipse 1+ q% q(3) + (2-q0) (b/rl)6

which is to be added to €2Pt as given by (10). Equation (22) shows that ellipticity is
destabilizing when

b 316

n >316=1.20 , (23)

as found previously by Edery et al [7]. Thus, ellipticity destabilizes the internal kink mode for
all realistic wall positions and, in particular, when q(a) > 2.
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Finally, the deformation 8,/ r at the q = 1 surface can be expressed in terms of its value
at the plasma boundary. For the Shafranov equilibrium, 8,/ r is proportional to [(£-1)(t/rg)’ +
(ro/r)f]in the regiont > 1, and therefore,

(
S /m  gp P11 4o

Sa)/a 2 (. 1), + qf

(24)

5. QUANTITATIVE RESULTS

Figure 2 shows the limits in poloidal beta for the Shafranov equilibrium with different
ellipticities as functions of qo. The limits have been calculated as the solutions of the quadratic
equation 3W(B,,) = 0 with W given by Egs. (10), (19) and (22). The figure applies to the case
of g(a) = 3, so that, in evaluating A, we have taken b = q=2 = V2 11 for the m = 2 side-band
andb=rg_3= V3 r; for m = 3. These beta limits decrease only slightly for the elliptic cross
section when 2 < q(a) < 3 and wall stabilization is disregarded (obtained by setting b = e for
the m = 3 perturbation). The curves in Fig. 1 are labelled by the ratio of ellipticity to inverse
aspect ratio at the q = 1 surface

8y(rp) / 3|

é=Z% . 25)

Figure 2 shows that the limit in poloidal beta is below 0.1 for a circular Shafranov
equilibrium. This is significantly smaller than the often quoted result (13/144)1/2 = 0.3 for a
parabolic current profile with a small q = 1 radius [1], and it is clear that the stability of the
internal kink mode is sensitively dependent on the current profile. It may be noted that the beta
limits obtained here are in the same range as those found by de Blank and Schep for equilibrium
profiles with high shear at the q = 1 surface (see Fig. 7 of Ref. 5).

Figure 2 also shows that the destabilizing effect of ellipticity is significant when & is in
the range of unity. However, the destabilizing effect is reduced when 1 - qq is small, i.e., for
low global shear. (Note, however, that the Shafranov profile with qq < 1 always gives high
local shear at q = 1.) We emphasize that the ratio of ellipticity to inverse aspect ratio is
generally not small in modern tokamaks. For instance, for typical JET parameters, 8,(a)/a =
0.25 and q(a) = 3, Eq. (24) gives 8,(r;)/r; = 0.15. Thus, with a/R = 1/3, we have /R = 0.18
and € = 0.78. According to Fig. 2, therefore, ellipticity gives an appreciable reduction of the Bp
limit for JET geometry. Naturally for JET, triangularity has a stabilizing affect, which can be
estimated for the Shafranov current profile by formulas (19 - 21).

We have verified that the results shown in Fig. 2 are in good agreement with numerical
solutions from the MARS stability code [6] of the full-MHD eigenvalue problem at an aspect
ratio of R/a = 4. Finally, we remark that as the Shafranov profile is rather special, and
moreover gives significant differences with the parabolic profile, it is important to consider
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more general, and more realistic, current profiles. For more smooth profiles and circular cross
section, numerical computations [9] show limits in Bp that are typically between 0.1 and 0.3.
With respect to the effect of ellipticity, we note that for smooth profiles, the local shear at the q
= 1 surface tends to be low when qg is close to unity. Computations retaining the full
geometrical effects [9] show that for weak shear in the q = 1 region, ellipticity can be strongly
destabilizing. The destabilizing effect of ellipticity at low shear can be seen, e.g., from the
Mercier criterion for an elliptic cross section [10] which contains terms proportional to ef'/rq’2
(i.e., of order ezeBpol). Terms of this order are not accounted for in expression (20).

In summary, we find that the ideal MHD limit in [3p can be considerably lower than the
often quoted value of 0.3. This brings the ideal MHD limit closer to the values typically
observed in tokamaks at the time of sawtooth crashes and indicates that the sawteeth may, in
many cases, be triggered by instabilities close to the ideal MHD stability threshold. For a
Shafranov profile with qp < 0.9, the Bp limit is considerably reduced by ellipticity of the same
order as in JET.
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FIGURE 1  Safety factor profile q(r) for Shafranov equilibrium.
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FIGURE 2 Stability limits for the ideal internal kink mode in terms of poloidal beta at the
q = 1 surface as functions of central q. A Shafranov current profile with q(a) >3, large
aspect ratio and elliptical shaping is assumed. The curves refer to different normalized
ellipticities at the q = 1 surface € = 0,0.3, 0.6 and 0.9 (see Eq. (25)) .



