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Abstract

The present status of the theory of plasma heating by low-fre-

quency waves is reviewed from a unified point of view.
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1. INTRODUCTION

The heating of magnetically confined plasmas to high temperatures
is one of the main problems of controlled themmonuclear fusion
research. A general method for doing this is by means of radio-fre-
quency electromagnetic fields. The principle of the method consists of
converting energy of the oscillating field into thermal energy of the
Plasma particles. The energy conversion can occur via various mecha-

nisms depending on the range of frequencies of the applied field.

One of the particular methods which have been pursued since the
advent of fusion research is that using the frequency range below the
ion cyclotron frequency. In the radio-frequency cammunity it is usual-
ly termed low-frequency wave heating. Its principle characteristics
can be summarized as follows. The mechanisms of energy conversion
involve collisional dissipation due to resistivity, viscosity, etc. as
well as collisionless dissipation due to Cerenkov resonance: transit
time magnetic pumping and Landau damping. The electromagnetic field in
the plasma is excited by external oscillating currents flowing in a
suitable antenna. The wave field may then undergo two main types of

interaction:

1) Its energy is directly dissipated by some of the mechanisms
mentioned above. It results in a global heating of the plasma.
The schemes based on this type of interaction will be referred to

as magnetic pumping schemes.

2)  The wave field is mode converted into a quasi-electrostatic wave



at the spatial Alfvén resonance. This wave is then damped either
in the neighbourhood of the resonance or as it propagates away.
As a result, the plasma heating is fairly localized. The schemes

involving mode conversion will be referred to as Alfvén resonance

heating schemes.

This paper aims at reviewing the present status of the theoreti-
cal work related to magnetic pumping and Alfvén resonance heating.
Although it will attempt to include all the material relevant to heat-
ing of laboratory plasmas the main emphasis will be placed on Alfvén
resonance heating of tokamak plasmas, which is currently being
investigated both theoretically and experimentally. The body of the
paper will be daminated by linear theory since the development of non-
linear theory has not been as dramatic nor have the experiments shown
evidence of significant nonlinear activity. It should be noted that
some of the topics touched on here have been reviewed by Hasegawa and

Uberoi [217] and by Appert and co-workers [137,159].

This review is organized as follows. Section 2 contains a brief
history of the origin and develomment of the theory of low-frequency
wave heating. Since we cannot here discuss or even mention all the
papers which have contributed to this development, we limit ourselves
to references to those studies which have, in our opinion, made
decisive contributions. We apologize if, through oversight or ignor-

ance, we have incorrectly assessed or neglected any other studies.

A general formulation of the central problem of linear theory is

presented in Section 3. The keystone of this formulation is the di-



electric tensor operator which contains essentially all the informa-
tion about the electromagnetic properties of a plasma system. It can
assume various forms depending on camplexities of the physics and geo-
metry involved. In the literature to be reviewed here there have been
a number of different plasma models considered. The basic equations of

the most important and frequently used plasma models are discussed in

Section 4.

Section 5 deals with the modelling of antennae in particular geo-
metries and summarizes the expressions for the electromagnetic fields
excited in the vacuun region surrounding the antennae. The explicit
expressions for the dielectric tensor operator corresponding to the

plasma models and geometries considered are obtained in Section 6.

The properties of the electromagnetic waves in the relevant fre-
quency range are discussed in Section 7. Included in the discussion
are general characteristics of the waves in unbounded plasmas and
spectral characteristics of the oscillations in bounded systems. Spe-

cific schemes of magnetic pumping and Alfvén resonance heating are

reviewed in Sections 8 and 9.

Section 10 is concerned with a relation between heating in the
low-frequency range and that in the ion cyclotron range of
frequencies. The article concludes with Section 11 which contains

general camments and discusses some unresolved theoretical problems.



Finally, the Appendix outlines the derivation of the dielectric
tensor operator of a hot, inhamogeneous, current-carrying plasma

column.

Concluding this section we wish to make the following camment. In
trying to present a coherent account of the subject under review, we
frequently use arguments quite different from those of the original
contributors. Yet we have attempted proper assignment of credit to all

of the authors cited.

2. BRIEF HISTORY OF THE SUBJECT

In less than twenty years, the theory of low-frequency wave heat-
ing has acquired a vast literature. We survey the major contributions
here, assuming (conveniently, but only temporarily) that the reader is

familiar with the pertinent terminology.

2.1 Magnetic Pumping

The theory of plasma heating by low-frequency fields was
independently initiated by Budker [1] in 1951, Spitzer and Witten [2]
in 1953, and Schliiter [3] in 1957. They have shown that an oscillating
electric field perpendicular to a confining magnetostatic field can be
used to heat a plasma via the gyro-relaxation effect: exchange of
energy between perpendicular and parallel degrees of freedam of the
plasma particles due to collisions. Since the oscillating electric

field was to be produced by changing the confining magnetic field in



time, this method of heating has received the name "magnetic
pumping". The theory o‘f gyro-relaxation heating was further developed
in Refs. [5,11,13] which included the effects of ion viscosity,
electron and ion heat conductivities and the generation of sound

waves.,

When particle collision frequencies are much smaller than the
frequency of the oscillating field the gyro-relaxation heating is not
efficient. Another mechanism of energy transfer for this case was con—
sidered by Berger et al. [4] in 1958. They have shown that significant
heating can be obtained when the transit time for the particles across
a pumping section of the plasma is comparable to the period of the
oscillating field. The energy transfer is caused by a force parallel
to the magnetostatic field which arises fram interaction between the
punping field and the magnetic moment of the particle. The scheme
based on this collisionless mechanism was denoted by the term "transit

time heating".

The pumping magnetic field in general excites campressional
motion in the plasma. This motion, in particular variation of the
electron pressure, in turn produces an electric field parallel to the
magnetostatic field. Thus an additional force acts on the plasma
particles. As a result, the particles may gain kinetic energy via the
Landau damping associated with this force. The importance of this
mechanism was pointed out by Stepanov [8] in 1963. On considering
electromagnetic waves travelling along the magnetostatic field he has
shown that the Landau damping considerably enhances the heating rate.

Moreover, he concluded that in the case of a strongly non-isothermal
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plasma the heating becomes especially effective if the phase velocity
of the pumping waves is close to the velocity of the ion acoustic
waves. Further improvement on the modelling of transit time heating by

compressional magnetic perturbations were made in Refs. [9,11,37,98].

All these studies have concentrated on the heating of ions by
magnetic perturbations with frequencies much smaller than the frequen—
cy of the fast magnetoacoustic wave. The possibility of electron heat-
ing by making use of the fast magnetoacoustic wave was for the first
time discussed by Dolgopolov and Stepanov [51] in 1965 and later on by

Canobbio [25] and by Lashmore-Davies and May [27].

In 1971, Koechlin and Samain [19,20] suggested to use a torsional
rather than a compressional magnetic perturbation for the transit time
heating of ions. They have argued that for large-aspect-ratio tokamaks
this scheme is more efficient than the compressional magnetic pumping
while using a lower working frequency. The theory of torsional

magnetic pumping was further developed in Refs. [21,26].

The collisionless heating schemes mentioned so far are all based
on the Cerenkov resonance that involves only the particle velocity
component parallel to the magnetostatic field. A scheme based on the
Cerenkov resonance that involves also perpendicular velocity compo-
nents was proposed by Canobbio [38,39] in 1976. This scheme, called
toroidal drift magnetic pumping, requires the pumping field that
excites torsional perturbations in a toroidal geometry. It was shown
that the heating efficiency of this scheme is higher than that of

torsional magnetic pumping.



- 11 -

In all the papers referred to, the amplitude of the electro-
magnetic field was assumed to be sufficiently small so that the linear
theory was applicable. The use of stronger fields, however, may lead
to a nonlinear distortion of the particle distribution function. It is
then necessary to develop a theory that takes this effect into
account. There are in fact two such theories., The first one, which is
based on the quasilinear approximation, was put forward by Dolgopolov
and Sizonenko [12] in 1967 (see also Ref. [55]). The other, which uses
a single-wave approximation, was advanced by Canobbio [15,21,25] in
the early 1970s. It follows fram both theories that for the same field
amplitude the nonlinear energy absorption is smaller than that cal-

culated from the linear theory.

The efficiency of plasma heating by electromagnetic waves strong-
ly depends on the way in which the energy is transferred from an
antenna to the plasma. As early as 1960 Frank-Kamenetskii [6,7]
pointed out that the energy transfer can be facilitated if an eigen-
mode of electromagnetic oscillations in a bounded plasma system is
excited. Specifically, he swgested to use an eigemmode of the fast
magnetoacoustic wave. Hence this method of plasma heating was denoted
by the term "magnetoacoustic resonance". It should be borne in mind
that this method is rather generic, since it can be used in conjunc-
tion with any dissipative mechanism. The magnetoacoustic resonance
that involves collisional dissipation was studied in a number of
papers by the Fribourg group [10,14,16-18,23] in the late 1960s and
early 1970s and by the Australian group [41-44] in the late 1970s (see
also Ref. [45]). On using a two-fluid plasma model that includes

collisional as well as collisionless damping mechanisms in a pheno-
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menclogical manner, the magnetoacoustic resonance was investigated in
a series of papers by the Brussels group [22,28—31,34-36,47] in the
1970s. Finally, a kinetic theory of magnetoacoustic resonance was put

forward in Refs. [49,50] in 1980.

2.2 Alfvén Resonance Heating

The development of theoretical work related to Alfvén resonance
heating had begun as early as 1965-66 in pioneering papers by Dolgopo-
lov and Stepanov [51,53]. On considering a simple model they have
shown that the collisional or Landau damping of the fast magneto-
acoustic wave in an inhaomogeneous plasma can be strongly enhanced if
the condition for the spatial Alfvén resonance is satisfied. The
resulting absorbed power was estimated to be of the same order of
magnitude as the circulating power. They have thus predicted one of

the most typical characteristics of Alfvén resonance heating.

Alfvén resonance heating as a scheme for heating tokamak plasmas
was first proposed in 1973-74 independently by Tataronis and Grossmann
[60], and Hasegawa and Chen [61,62]. An important result of the latter
authors, obtained using an ideal MHD model in a slab geometry, was the
finding that the absorbed power is strongly enhanced if the surface
mode (the first radial eigenmode of the fast magnetoacoustic wave) is
excited in the plasma (see also Ref. [65]). Later on it was shown by
the same authors [72,73], using a simple kinetic model in a slab geo-
metry, that in a hot plasma the fast magnetoacoustic wave is mode-
converted into the kinetic Alfvén wave in the neighbourhood of the

spatial Alfvén resonance (see also Ref. [66]). The amount of absorbed
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power was found to be the same as that obtained from the MHD calcula-
tions. Moreover, these authors have considered nonlinear heating pro-
cesses due to parametric decay instabilities excited by the converted
kinetic Alfvén wave (see also Ref. [74]). The effects of resistive
dissipation on energy absorption at the spatial Alfvén resonance were
investigated by Kapraff and co-workers [68,76] in 1975. They have
demonstrated that the results found in ideal MHD are unaltered for

plasma resistivities of the order typical of tokamaks.

The first numerical calculations based on the MHD equations in a
cylindrical geometry were carried out in 1976 [75]. The authors con-
firmed the importance of the excitation of the surface mode. A simple
analytical model for resonance absorption of the surface mode in
cylindrical gecmetry was given in Ref. [77] (1978). Mre detailed
numerical computations [84,111] (1980) using an MHD cylindrical code
revealed that the presence of an equilibrium plasma current can drama-
tically improve the coupling to the innermost resonance surfaces. The
phenomenon was later identified [103] (1982) as being due to the

effects of magnetic field curvature.

The first extensive cylindrical kinetic calculations which took
into account the effects of finite ion Larmor radius and parallel
electron dynamics (Landau damping) were carried out in 1982 [107]. The
authors confirmed the importance of an equilibrium plasma cuwrent.
Moreover, their results indicated the excitation of the quasi-

electrostatic surface wave modes near the plasma periphery.

The possibility of using mangetoacoustic cavity modes (higher

radial eigemmodes of the fast magnetoacoustic wave) for plasma heating
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in large tokamaks was discussed for the first time in 1978 [81] within
the context of an MHD model in a slab geometry. On including in the
analysis also the transit time pumping mechanism, the authors have
concluded that this mechanism can compete with Alfvén resonance
absorption for high radial mode numbers. Furthemmore, it was shown
that these modes have typically much higher cavity Q than the surface
mode. The theory of plasma heating by cavity modes was further
advanced in Refs. [82,86,114,119,157] (1979-1985) within the context
of cold plasma models in slab and cylindrical geometries, while Refs.
[94,161,183] (1980-1987) treated this problem using cylindrical

kinetic models.

The first calculations based on the MHD equations in a real
toroidal tokamak geometry were performed in 1980 [87,109]. It was
found that for a circular cross-section the overall coupling is much
the same as that obtained fraom the cylindrical version except for some
additional resonance surfaces which may be excited due to the interac-
tion of different poloidal modes. Some additional deviations appear

for non-circular cross-sections due to elipticity, triangularity, etc.

The existence of global eigermodes of the Alfvén wave in the
cylindrical models was noticed for the first time in 1982 [104,106,
107]. It was shown that their frequencies lie just below the lower
edge of the Alfvén continuum (the lowest frequency for which there is
an Alfvén resonance layer in the plasma) and that they are "generated"
by the curvature of the equilibrium magnetic field lines [106,113] or

by the gyrotropy effects [119].
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Although the finite w/wsj effects, which stem from the inclu-
sion of the Hall term in Ohm's law, had been considered in some pre-
vious treatments (see e.g. Refs. [96,107]), their importance for the
excitation of the surface mode was pointed out for the first time in
1983 [119]. It was shown that these effects strongly modify the coupl-
ing of the modes with m<0, m being the poloidal wavenumber (see also
Ref. [123]). A more detailed picture of the influence of finite fre-
quency effects on the spectrun of a cylindrical cold plasna was
obtained in Refs. [120,126,128,129,141,164] (1983-1986) . Some sub-
sequent studies, which had taken into account the finite frequency
effects on the resonance absorption of the surface mode, were
presented in Refs. [135,136,138,147,153,160,172,181,182] (1984~1987).
In 1985-86 these effects have been included in the toroidal numerical

code LION [145,159,166,180].

Finally, rather general expressions for the dielectric tensor
operator of a hot plasma in slab and cylindrical geametries have been
derived in Refs. [174,178] (1987) and an appropriate local power ab-
sorption formulated in Ref. [173] (1987) . They have been incorporated

into different versions of the numerical code ISMENE [165].

The present state of affairs can be sumnmarized as follows. The
most advanced tools for the theoretical modelling of Alfvén resonance
heating are cylindrical kinetic codes: Australian [139,161,168],
Lausanne  [165,177-179], Sukhumi  [123,154,175,184] and Texas
[107,162,183]. The most developed is the Iausanne code ISMENE: it
takes into account finite frequency effects, Larmor radius terms up to

the second order, the gradients of equilibrium quantities, an equili-
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briumn current, Landau damping, transit time magnetic pumping and
resistivity. It allows one to compute all variable field components,
the perturbed electron density, the total power delivered by an
antenna and the local power deposition profile. On the other hand, the
codes which treat a real toroidal tokamak gecmetry are less advanced.
The most developed is LION [166]: it is based on a cold plasma model
which takes into account finite frequency effects and an equilibrium
current. It can, however, be used only to calculate the total power

delivered by an antenna.

3. FORMULATION OF THE LINEAR PROBLEM; ENERGY CONSERVATION LAW

A magnetized plasma is considered in the presence of small-ampli-
tude electromagnetic oscillations. The plasma is assumed to occupy a
region Vp which is surrounded by a pure vacuum region V,. The
electramagnetic oscillations are excited by currents flowing in an
antenna which is placed in the vacuum region, and the entire system is
surrounded by a perfectly conducting wall. The time variation of the
antenna currents and the electromagnetic fields is assumed to be of
the form exp(-iwt), where w is an imposed frequency. Maxwell's equa-

->

tions for the electric field component, E, of the electromagnetic

oscillations in the plasma can then be written as
-> w \2 & >
VxVxE='("C") s-F , (3.1)
© . . . .
where € is the dielectric tensor operator defined by the relation
© © ) ->

' 11-354, (f I

(3.2)
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>
j being the linear current density induced by the electromagnetic

©
field and I is the unit tensor.

KN
In the vacuum region the electric field camponent, E,;, obeys

the equation

S 2> r~ ->
J .

-
where j; is an imposed antenna current density satisfying the con-

straint

-
\VLS =0 (3.4)
fa="
- ->
The magnetic field components, B and B,, of the oscillations in

both the regions can be obtained fram Faraday's law

- - C -t -
B):Bar} ==ZZ)-VX E;E/v_} (3.5)

Equations (3.1) and (3.3) must be supplemented by appropriate

-y
boundary conditions. Assuming that j + o at the plasma boundary, the

matching conditions at the pl asma-vacuum interface are

- - -
m?x(E-—Eqr)=o, (3.6)

— >
My, X (.B——fB,,,.) =0, (3.7)
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while the boundary condition at the conducting wall is

'S -
— 3.8

- >
Here np and ny denote the outer normal unit vectors at the plasma

boundary and the conducting wall.

To obtain an energy conservation law, By. (3.1) is multipl ied by
-
E* (the camplex conjugate of E) and integrated over the region Vp.

After some rearrangements and using Bqg. (3.5) one finds

-» - . > -
de'é’% (Iglz— E*'?'E)=bfd2‘51’/flf p (3.9)
Ve =
where Z'Pis the bounding surface of the region Vp and
A LS
S=5£ E*%B (3.10)

i

i1s a complex Poynting vector whose real part is the actual time-

-9
averaged Poynting vector S.

Likewise from Hq. ( 3.3) one obtains

Jw[;‘;—%(@ﬁ- IEf*) -5 B2 ]

(3.11)

¢ ::, -
Zp
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where the boundary condition (3.8) has been used.

On invoking the matching conditions (3.6) and (3.7) one can can—

bine Egs. (3.9) and (3.11); the real and imaginary parts of the
resulting equation then yield

/P
o = (3.12)

4 > T = g
Pt £ = (Wi (5 2

-> * > -
+ O'V?% (13/2_ PZ E‘ 'E)J (3.13)

where V, is a volume occupied by the antenna current density.

Bquation (3.12) expresses a global power balance: the time-
averaged power, P, delivered by the antenna is equal to the energy
flux through the plasma surface which, in turn, is equal to the power

absorbed by the plasma. BEquation (3.13) is a conservation law of the

time-averaged circulating power Pg,

In order to appreciate the efficiency at which the electromagne-
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tic field energy is pumped into the plasma it is convenient to define

a quality factor, Q, by the relation

_k
Q = ‘;E" . (3.14)
Note that this quantity is not a cavity Q.

The problem referred to in the title of this section can now be

posed as follows:

1) Considering a specific plasma model and geometry, determine an

explicit form of the dielectric tensor operator.

2) Imposing a frequency and an antenna current density, find a solu-
tion of Hgs. (3.1) and (3.3) satisfying the boundary cornditions
(3.6) - (3.8).

3) Calculate the power delivered by the antenna, the circulating

power and the quality factor.

It should be noted that in most of the cases of practical
interest the solutions of Ey. (3.1) can only be found by numerical
computations. A powerful procedure for doing this is the
finite-element method applied to the weak (Galerkin) variational
form of Bj. (3.1). This form can be obtained from Ey. (3.9) by the
replacement -E.:*-> 'E‘, where %is an arbitrary test function in a suitable

functional space.
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4. PL E

In order to determine an explicit form of the dielectric tensor operator,
defined in the previous section, one has to establish a linear relation between
the induced current density and the electric field. This can be done using
various plasma models. In this section we shall briefly review the basic
equations and the limitations of the most important and frequently used

models.

4.1. Fluid Models

In general, the equations of these models apply only when certain
requirements are satisfied. Let v, vi{and w, denote the collision frequency,
thermal velocity and cyclotron frequency of a species of the plasma. Let further
L) and Lj be characteristic scale lengths over which plasma dynamical
variables change in the directions perpendicular and parallel to the magnetic
field. The conditions of applicability of fluid models can then be stated in the

form:
1) Collisional regime
mas (WL, , W) <€V, @D

Nl < mar (@,,V). 4.2)

2) Collisionless regime

A A ) (4.3)
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We >/, >V, (4.4)

lw-Lw. | > ’U;/L,,) 4.5)

where 1 is an integer.

4.1.1 Magnetohydrodynamics (MHD)

This model applies if, in addition to the conditions (4.1) - (4.5), one has

CA KL ¢ ) (4.6)

w <K Wy ) 4.7)

where cp is the Alfvén velocity and wg; is the ion cyclotron frequency. The
condition (4.6) allows one to consider the plasma as a single fluid and to neglect
the displacement current in Maxwell's equations.
- -
Let pg, P> Bp and j, represent the equilibrium values of the mass density,
pressure, magnetic field and current density. The linearized equations of MHD

can then be written in the form

‘» e I
j’ 15+-—~(3x]3 + 7. x’.B) 4.8)
- —p
E+-é{-— x B (4.9)
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QP+VV/P + Y P V- =

(4.10)

-
where V is the plasma velocity and yis the adiabacity index. The equilibrium

quantities obey the equations

17 =
Vp, =5 xfB,) (4.11)
- -
L3€ 4.12
VxB,= < %) (4.12)
-
v.B, = 0, (4.13)
Note that Eq. (4.9) implies
-
E-B, = 0. (4.14)

Consequently, one equation must be omitted from the system of equations (3.1);
-
specifically, it is the component parallel to By. This equation only serves as a
- > -
means of determining the quantity j ¢ B, once the components of E
-

perpendicular to B, are known. The point is that this quantity, in turn, cannot

be obtained from Eqs. (4.8) - (4.10).

-
In the MHD literature one usually introduces the plasma displacement &
that ~>
so tha = 9 f
= —-— (4.15)
2t

Equation (4.10) and Eq. (4.9) combined with Faraday's law can thus be

integrated with respect to time. Substitution of the resulting expressions for p



> > -»>
_and B lnng ES), where j is eliminated in favour of B using Ampere's law,

. . q
yields a single equation for & [213]:

2 2f A V(;prrer)
e e FRNE, + £ Gox [ (§E)]

(4.16)

Once a solution of this equation is found, the electric field is simply
-
determined from Egs. (4.9) and (4.15). If a harmonic time-dependence of & is

considered, this procedure is, of course, equivalent to solving Eq. (3.1).

41.2 Cold plasma with an equilibrium current

If the plasma pressure is sufficiently small so that

/f’o X ’Bf / 9T P (4.17)

the corresponding term in Eq. (4.11) may be neglected. Under these
circumstances the plasma equilibrium can be regarded as force-free. Equation
(4.10) then implies that the pressure perturbation is negligible as well. Hence

the linearized equation of motion in the model in question reads

AW 42 2D
o ~L =7 (] B L)
; LI (3x_.’8,+3 ) ) (418)

Moreover, if the inequality (4.7) is replaced by a less stringent one
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W& Wy,
(4.19)

where o1 j is the lower-hybrid frequency, Eq. (4.9) is to be replaced by Ohm's

law that includes the Hall term
—ﬁ - - - -

V B ecf (g'x’.B +9'xfB

where e is the electron charge and m; is the ion mass.

(4.20)

-> -
Since in a force-free equilibrium j, is parallel to B;, the Ohm's law

enforces Eq. (4.14) even in this model. Assuming a harmonic time-dependence

of all dynamical variables one can combine Eqs. (4.18) and (4.20) to obtain

where w¢j = eBy / (mj ¢). Once a particular geometry is specified, it is
straightforward from Eq. (4.21) to deduce an explicit form of the dielectric

tensor operator pertinent to the present model.

4.1.3 Two fluids

This is the most general fluid model in the sense that the limitations of the
two preceeding sections, the inequalities (4.6), (4.17) and (4.19), may be relaxed.

Nevertheless, in the context of the present review it is sufficient to consider the
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case for which the inequality (4.17) holds. The plasma linear dynamics is then

described by the equations of motion for ions and electrons

’3 V, ( E 4 V § o, (4.22)
= . += V. X ) =0 *
/Af qg ¢’ o7/ 2 7 )

-
where mj, g, and Vj are the mass, charge and velocity of species j. The

equilibrium velocities of both species are assumed to vanish.

If a harmonic time-dependence of the dynamical variables is considered,
-—p
Egs. (4.22) can easily be solved for Vj. The linear current density can then be

calculated from

/

> -
4=m, Z' q; [g (4.23)
d

where ng, is the equilibrium density of species. Substituting the solutions of Egs.
(4.22) in Eq, (4.23) yields
- * - N
. ? . /’ A
9=m°Z - z@,,x wExe, +w, E
d

. 2 (4
/mamcoa J

3 _» "#—%
+ £ ¢, Ee, (4.24)
w )

- -
where ¢)| = By/B,, and aj = qjBo/(mjc).

An expression for the dielectric tensor, corresponding to this model,

follows from Eq. (4.24) in a trivial manner.
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4.14 Energy conservation law; Resistivity, viscosity

All the models reviewed so far are ideal since they do not include any
dissipative effects. Of course, in order to calculate the energy absorption of the
electromagnetic fields in the plasma one needs to take dissipation into account.
In the fluid models the energy absorption can be caused by various collisional
dissipative mechanisms. In this section we shall briefly discuss the two-fluid

model that includes two such mechanisms: resistivity and ion viscosity.

Although the resistivity and viscosity of a plasma in a magnetic field are,
in general, tensor quantities (see, for example, Ref. [211]) we shall confine

ourselves to the case when they are approximated by scalar coefficients. The
linearized equations of motion for ions and electrons can thus be written in the

form

>
,a A - 4—* —%) - F
my =@(E+E'\4,X R+ <) (4.25)

2 (4.26)

Here
R=c. 4.27)

is the friction force due to electron-ion collisions, ¢ being the electrical

conductivity, while

L

F,_. v- (W)  um
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is the friction force density due to ion-ion collisions, M being the ion viscosity

<>
coefficient. The rate-of-strain tensor W is defined by

. | \ \/. —-)
\/\{’“5 = Ve , en _ 20 v (4.29)
2a X, 3 aa V ’

It should be noted that the dissipative mechanisms described here can be
1nc1uded in any of the models dlscussed previously. Thus, for example, if the
term R/e is added to the right-hand side of Eq. (4.9) one obtains the model which

is usually referred to as the resistive MHD.

In order to derive an expression for the energy absorption of the
electromagnetic fields in the plasma one must construct an energy
conservation law corresponding to Eqs. (4.25) and (4.26). For this purpose Eq.
(4.25) is multiplied by no_V-)i, and Eq. (4.25) by no—\';e. Adding the resulting

equations yields

4 Q 2 2y T2 437 72
-Em,;b—t-(nn,;v,;+m¢ve)=3‘6—-é-?'3+K;‘F/ (4.30)

where the definition (4.23) has been used. Since a harmonic time-dependence of
the linear quantities is considered, one is, of course, interested only in the time
average of Eq. (4.30). Taking this average and substituting the expressions

(4.27) and (4.28) for_R.) and‘F?, Eq. (4.30) can be cast into the form
A T2 _ A (T2_4 « A*)
> Re 4°E = o5 gl -—é-vo(rvl’ReW-\&

“ o>y,
%“M(W'W ). 4.31)
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In obtaining the last term on the right-hand side of Eq. (4.31) we have invoked
<>
the property that tr (W) =0

Equation (4.31) expresses a local power balance: the time-averaged power
due to the work done by the electric field on the plasma in a volume element is
partly dissipated via resistivity and viscosity, and partly transferred through
the surface of this element by the energy flux due to viscosity. For further
consideration it is convenient to define the local power absorption densities due

to resistivity and viscosity as

2

_1 2
AGE (rlﬁl (4.32)

and

=¥

Er( )= %”(WW*) . (4.33)

Integrating Eq. (4.31) over the volume occupied by the plasma and assuming

e
that j — 0 at the plasma boundary one obtains a global power balance

ng g I E EXTF - dv(amra,(?))/
V
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where the definition (3.2) has been used. This equation is to be compared with

(4.34)

» >
Eq. (3.12). It should be noted that the quantities Py(x) and Py(x) are positive-

definite since the coefficients ¢ and n are positive.



4.2. Collisionless Kinetic Models

In general , the conditions of applicability of these models are given by the

inequalities

A >DY, , (4.35)

afy > max (L)L), (4.36)

For the sake of convenience, in Sections 4.2.1 to 4.2.3 we shall consider

e T T T S A

En=E, B,=B+B, ju=4*} “.87)

©

as arbitrary nonlinear quantities.

4.21 Drift-kinetic equation

This equation holds if, in addition to the conditions (4.35) and (4.36), the

following inequalities are satisfied

W<« W, (4.38)

My f, « L, , (4.39)
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- -
clE, /1B, « A . (4.40)

-
Under these circumstances the guiding centre, at a position X, of a

single particle of a species with charge q and mass m obeys the equations (see,

for example, Ref. [210])

L > D (4.41)
rayhx (RO)A, |
A

. v ?:Bw) 4.42
at ~ 7B, \'" VB, + 0 VB, + =3%), .-
oAl = /U'Q_ iy w7 ,
.a.z- = _ﬂ_q::_ Em/o/&/ + -i—V-/h + /U;/v;‘ (/gb'V)/%—') (4.43)
where
—y c = -
. — _:B_:U M/X/%/ (4.44)

One can now introduce a distribution function fy (;(), v1, vy, t) in the phase
space 33, v1, v so that f; dI" represents the mean number of particles of the
species in question for which the guiding centres lie in a volume element dI' =
2nv dv dvydX. In the collisionless approximation this distribution function

must satisfy the Liouville equation



(4.45)

which expresses the conservation of the number of guiding centres.

Further, by simple differentiation it is easy to show from Eqs. (4.41) - (4.44)

that
AL AN IR
. + — = -
V-1, mam(@at)‘“m & =9
(4.46)
Hence Eq. (4.45) can be rewritten in the form
X o 2 f .
oy dof Sk oS,
At f ot W, At WT?,.' =0 (4.47)

which states that f; is constant along a guiding centre trajectory in the phase

space. Equation (4.47) is called the drift-kinetic equation.

Let us note that this equation as it stands cannot serve as a starting point

for determining the dielectric tensor operator. The reason is that the knowledge
of a distribution function f; is not sufficient for calculating the current

—
components perpendicular to Bp. The equation is usually used only to

determine the power absorbed by the corresponding species in the cases where
- >
the electromagnetic field components E, and B, can be regarded as known.

Then, multiplying Eq. (4.47) by m (v, 2 + v;2)/2 and integrating over the whole

phase space of the species one obtains



/0' 2B,
fd[‘ (0, ) fdl”f ’;"BM o i

which can be used to calculate the total absorbed power once fy is determined in
JIEN -
terms of E,, and By, from Eq. (4.47).

4.2.2 Vlasov equation

This is the most general equation for describing the dynamics of
. . el . . L. . .
collisionless plasmas. On denoting by f (x, v, t) the particle distribution function

of a species with charge q and mass m, the Vlasov equation can be stated in the

form
= = A2 B\ _
:Sz-+/v’-V +—-—(Em+c4)"‘-Bw Y = 0. (4.49)

If a solution of this equation is obtained the plasma current density is

calculated from

- SZq,deF/t?f

(4.50)

where the symbol g: denotes the sum over all the plasma species.

Equations (4.49) and (4.50) provide the starting point for determining the

dielectric tensor operator of a hot collisionless plasma.



4.2.3 Energy conservation law; local power absorption

In this section we shall be concerned with the problem of calculating the
power that is locally absorbed by a plasma species in the case where the plasma

dynamics is governed by the Vlasov equation. This problem has been addressed

in Refs. [155, 173, 178]. Here we shall follow the argumentation given in Ref.
[173].

The mean energy density of the particles that are in a volume element

->»
<;:),x+d;> at a time t is given by the quantity

2
my L 2 4.51)
fz falnr

In order to ascertain how this quantity varies with time we shall
construct an energy balance equation corresponding to Eq. (4.49). For this
purpose we multiply (4.49) by mv2/2 and integrate over the velocities. After

simple manipulations this yields

2 -
B g g [ffa - [mRefdy . as

From this equation one can see that the mean energy of the particles in
the volume element considered varies with time owing to two effects: the work
done by the electric field on these particles (the first term on the right-hand
side), and the flux of energy of those particles that stream into or out of the
volume element. Thus, if we want to relate a time derivative of quantity (4.51) to

the local power absorption we must evaluate it in a frame of reference where



the particle streaming is absent. This can be achieved if we transform equation
(4.52) into suitable Lagrangian coordinates.
> >
Let x' and v' represent the position and velocity of a particle at the time t'
as it moves along an unperturbed trajectory (in the absence of the
electromagnetic field) with the "initial” conditions -1? and -\-r) at the time t.

> >
Choosing x' and v' as the new variables we transform equation (4.52) into

f %ﬂ( %{')» =, |E (de) w0 fd i)

) (4.53)
X; N
->
where the relations v2 = v'2 and d;r‘ = dv' have been used.

We now assume the amplitude of the electromagnetic field to be small.

-
We may then expand the distribution function in powers of E:

f=‘fo+£+§z+.“ , 4.59)

Here fj describes an equilibrium and fj is a solution of the corresponding
linear problem. Since a harmonic time-dependence of the field is considered,

the lowest order non-vanishing (quasilinear) contribution to the time average of

equation (4.53) is given by
~n 2 -

= |ma 21 >_ |2 ""f v (455
P2 |52 (32 27 =9 |EGH)T {55, ).

/



To make a practical use of equation (4.55) we must perform a time
average. Before doing so, however, let us note that the lowest frequency involved
in the quantity f; is |0 - w¢l. For a class of resonant particles we have |0 - o¢| ~
vi/Ay, where v is a typical particle velocity component parallel to the
magnetostatic field and A} is a characteristic length of the variation of the
electromagnetic field in the same direction. Thus, in general, if we perform a
time average over the scale |o - ¢ -1, for consistency we have to perform also a
space average over the scale A, since a resonant particle of the above-
mentioned class traverses this distance during the time |0 - w¢f-1. Therefore,

without loss of generality we can set

EGt) =Re { E(Z)exp[l(%,,x,,-wt)]}

(4.56)

and the same for f1. Substituting these into Eq. (4.55) and averaging over xj and

t we finally obtain a general expression for the local power absorption density

as

We now assume that the Larmor radius of the species is much smaller
than the characteristic inhomogeneity lengths of macroscopic quantities:
density, temperature and magnetostatic field. To the lowest order, i.e.,
neglecting the explicit gradients of these quantities, the equilibrium
distribution function fy may then be approximated by a local Maxwellian, fy,
with a temperature T and density ng. Moreover, to the same order, the particle

trajectories may be evaluated assuming a locally uniform magnetostatic field.
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-
Thus, choosing the Cartesian coordinate system with the z-axis along Bg we

can write

" -
;‘: =X + gﬁ[(%d—wd\)z +(Cosal-coae()2.,]
' /

- (4.58)
— 1 Wi 4 . A > (4.59)
= A (end ¢,+w¢¢7)+/a; ¢, ,

(4.60)

. 1
d = 0 (t) o =) oty O

To proceed further, we introduce a Fourier transform

EfED- R D (D).

The solution of the linear problem is then easily obtained in the form

&(z,—&):¢XP[&§&2~(J~W]§ew(w‘d)Al(Elql@) | @62
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(¥ F30-s0ip L)+ E B4 F L6

(4.63)

iy )] + 2 E L0 |

>
where § =k |v /w0, Jg and J'g are the Bessel function and its derivative, and
tgy= ky/ky. In order to satisfy causality the frequency w is assumed to have a

small, positive, imaginary part.

Upon substituting the expressions (4.58) - (4.63) in Eq. (4.57), carrying out

the time average and making some rearrangements one obtains

E(Z) = %—%gﬁacng cg(w—cql—,&*nr%)

N S\ .ale,;z.}i ea’ Y(£-p) 31» (f ) {@[E, (E)(m?f@, () (4.64)

- p 3y () + E,(Q)(w';&l(i)ﬂ‘/im}”;(f))‘]
2

+rv%E}HZ.)J,(§)}




As one can see from this equation the local power absorption density, for a
species close to a local thermodynamical equilibrium, is a positive-definite

quantity.

It should be noted that for a weakly-damped travelling wave with a wave

-> > > 2
vector kj g, i.e., for E (k) ~ 8 (k| - ko), Eq. (4.64) reduces to

2. S -
P=2 E EE
L oft /
(4.65)
L 2 d
where €2 is the anti-Hermitian part of the local dielectric tensor for species in

question (see, for example, Ref. [208]).

In many situations of a practical interest the Larmor radius of the
species, p, appears to be much smaller than a characteristic length, A, of the
variation of the electromagnetic field. In such cases one can expand the Bessel
functions in Eq. (4.64), to any desired order, to obtain more explicit expressions.
In what follows we confine ourselves to accuracy up to (p/A;)2 and only retain
the terms corresponding to the Cerenkov interaction ( 2 = 0) since it is this one

which is relevant to the subject under review.

Upon expanding the Bessel functions to the required order we invert the
resulting expressions from the Fourier space to real space and perform the

remaining velocity integrations. This finally yields



2 1/2
Py 97 X 0\
‘e (Xl) B 2”"’”?2"% @XF[-(X%’DL ]

X [gz(l(VxE)z‘2+ ,(ng)z "%%E%r)

2V
(4.66)
2 2
* %ﬂc (‘ :’afEf'/*I%%l*'?P“(E:AiEz))
where
/U;z= %——Z—Z ) 572= mq;: , (4.67)

In equation (4.66) the terms proportional to E, describe the Landau
damping while the remaining terms describe the transit time magnetic

pumping.

Let us now return to the energy balance equation (4.52). Substituting the
expansion (4.54) for f in this equation, taking the time average and summing

over all species we obtain, in the quasilinear approximation,

-

gf ﬂ_%_fl!_z_%_> <'.E> -2 da'r’”—’é-"-’za’kﬁgz

)
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where the definition (4.50) has been used. Further, we integrate Eq. (4.68) over
the volume occupied by the plasma assuming that fa —» 0 at the plasma

boundary. This yields a global energy balance in the form

> M/U'z ’3&2 _ f _? >
(w2 oo 22k - WG
V. v (4.69)
P p
On invoking the property dV = dg, Eq. (4.69) can be written as
>, >
fdv SPK) = j.d\/-‘% Im EZE-E
I giL (4.70)

g Vr

where the definition (3.2) has been used. This equation is to be compared with

Eq. (3.12).



This section deals with the modelling of anténnae and the solutions of
Maxwell's equations, Egs. (3.3) and (3.5), in the vacuum region surrounding
the plasma. In accordance with most of the literature under review the
antenna is assumed to be a layer of imposed currents satisfying the constraint
(3.4). This assumption implies that the resistive losses in the antenna and an
electrostatic coupling between the antenna and the fields are neglected.
Examples of the vacuum field calculations that take into account more realistic
antenna configurations, electrostatic fields, self-eonsistent current distribution
within antenna elements, Faraday's shields and recesses in metallic walls can

be found in Refs. [172, 182, 190, 196, 197, 203].

In order to unburden the notation we dispense with the subscript "v"
from the electromagnetic field variables throughout this section. Three

different geometries are considered: slab, cylindrical and toroidal.

5.1  Cylindrical (Slab) Geometry

As the modelling of antennae and the expressions for electromagnetic
fields in these geometries are rather similar we present them in a parallel

way.



. . 2 > > LoD .
On adopting cylindrical (er, eg, ;) and Cartesian (ey, ey, e;) coordinate
systems, the antenna current density and electromagnetic fields are Fourier-
decomposed into modes exp [i(m6 + kzz)] and exp [i(kyy + k;2)] respectively. A

single-mode antenna current density is then assumed to be of the form

-y

:7:» = (:Jo -Q: + JZ ZE)S(’(-Q\ + a.f('ﬂ @(/rafra -e’: , (5.1a)

2

Ta = (U,,Z,+ J; Z@)S(X-XJ“'J‘; O(x-x,) Z , (5.1b)

% (Y)y=-y, ;{:‘-’-(—;—:}-’- :]9 + ,&2 ]2) , (5.2a)

éf =-4 (*7 1/ + &, J,) J (5.2b)

where 3 and O are the Dirac and Heaviside functions. The term proportional to
d-function in Eq. (5.1) represents an infinitely-thin current-carrying sheet
located at r = ry (x = x5) with surface currents Jg (Jy) and J; while the term
proportional to ®-function represents a volume current flowing in idealized
radial feeders located between the antenna and wall (Figs. 1 and 2, feeders are
not shown). The surface currents can be treated as a discontinuity of the
oscillating magnetic field whereas the feeder current must be included into

Maxwell's equations.



For a single mode it can be shown from Eqgs. (3.3) and (3.5) that if E, and
- -
By are known, the remaining components of E and B are determined. They are

A leim WL, dE]
E»v"fx"[C(/V' Bi+‘5ﬁ?“*)-”’&%m2 ) (53
=4 (144 3 « w dB,
o hFE BT, o
=L ik 4B wom )
B~z (ke T2 + £2E), o
_ AL m Wil ) cw dE
Ba = xZ[’%}(#Bz'ﬁ e Jor '4,-5--;1 , (5.6)
where
2 2
®= k- (F) . 6.7)

The boundary conditions at the antenna are given by

a2 2 4R D
¢, x B(r) I_ = = J, (5.8)
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> -
¢, x E(r,) l_+ =0, (5.9)

-

where L denotes the jump across the boundary. The corresponding equations
in the slab geometry are obtained from Egs. (5.3) - (5.9) by the replacements r —
X, 0 = y and m/r - ky.

The component B, satisfies the inhomogeneous equation

Ad od 2, m = Am WL .
d«z 2 . #jz’ .
| (5&3 —’&x):B; ._.ng T e (5.10b)
where 2 2 2 (5.11)
/%x =%\’ + A )

while the component E, satisfies the homogeneous equation (5.10). On
introducing the notation f(rj) = f; for j = p, a, w (plasma, antenna, wall), we

define the following set of fundamental solutions of the homogeneous equation

(5.10):

F(’V') j:o'\r el "fw) with Fw_ = O) FM" = //, (5.12)



Gw) for re <'T|"/Y°~> with G =0 , Ga’,: 1, (5.13)
Her) for wecn, vy with H, =1 H,=0, G

where the prime denotes differentiation with respect to r. Let further K(r) be a

particular solution of the inhomogeneous equation (5.10) satisfying

K,=K, =0, (5.15)

The same definitions are used in the case of the slab geometry with r — x.

The set of functions defined above can be obtained either analytically or by
a numerical integration of Eq. (5.10). The analytical expressions are listed

below:

For) =4, [,,.,(x v T (r) =T () K, (W)] (5.16a)

F'(x)-};— Snh [/ﬁ, (x-X )] (5.16b)

X

Giw)=1, [I(M(K'K)Im(x*) -1, )k, (tr) (5.172)
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G =+ sink [he -] | 5170

»

Hed =4, [T, e K, o) - KL (0,) T wr)]  Ga0w

H(x) = cosh [&x (x-xw)] , (5.18b)

A
K@w)=am -l’—é-‘- fdv‘ [Im(xv)l(m(m‘) - l(m(zmIm(wf‘)]é}w))(s.ma)
Mm"

/b& T | T
K(x) = j?gf: Qé_ 2 {coshl_/le,‘ (x-xm)] - 1}) (5.19b)

where I, and K;, are modified Bessel functions.

We are now in a position to construct the solutions for E, and B, in terms
N

of the tangential components of E evaluated at the plasma-vacuum interface,
which are as yet unknown constants. Invoking the boundary conditions (3.8),

(5.8) and (5.9) the desired solutions can be written in the form

¢, For) , o4,

E,w)= N
CF)+i 22T, G(r) , <t
(5.20)



(5.21)
C, Hr) + Kx) ) SN,
B,()=
CHN + C Gty , r<n, .
A ety o |
C2=—‘_-{-‘- %(’&t? E%('q,) e E Gy 1,))
4 g
4. W NTENTL b .
+Ha, Ka’+‘z-J6)(G:l' Hco_ H/r) - Ka, 6'1, :{) ¢
4 ~
Cﬁ%*g;(&f%ﬁ Ny | .20
)
C, = K, - _ﬁi'(Kw"'ﬂéz']e)- (5.25)

The constants E; (rp) and Eg (rp)will be determined later by means of the
boundary conditions (3.6) and (3.7) when the solutions of Maxwell's equations

in the plasma region will be considered. For this purpose we shall also need the
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tangential components of B evaluated at the plasma-vacuum interface. They

are easily obtained from Eqs. (5.6) and (5.20) - (5.25) as

)= ey (45 Eu € E,)

+ Rap [/'/‘lL (K, + l'g—': 3s)-H, Ka',]} y (5.26)

Ao [ty m¥ juiF
By i, vy m%[(h—,:-(&t;;)—(-‘é’-)é)&(/r

where Rqap = ra/rp. In the slab geometry, the expressions corresponding to Egs.

(5.20)-(5.27) are obtained by setting Rap = 1 and the replacementsr - x,0 - y
-

and m/rp — ky in Egs. (5.20) - (5.27). In the region x < 0, one has to set J = 0 and

X — =X,

Having determined the vacuum electromagnetic fields one can calculate

the complex power delivered by the antenna, Eqgs. (3.12) and (3.13). One obtains

’P ’P'A,P J(/Y I.; oo A:JO(C2H;+K;)-%32C4€

oo e Qo) Ee

(5.28a)

7
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A AR

where L; and Ly are the dimensions of the system in the z and y directions.

Let us note that for a pure helical antenna without feeders, i.e. with je(r)
or jr equal to zero, or for an antenna with J; = 0 one can define the total current

in the antenna to be

Tf(2k,)

L] 2
= Z i
I JO S‘d% er ("&z ) /& JG )
2 (5.29)
- f(2ky)
and introduce the antenna impedance Z by the relation
~

Z= 2P (5.30)

Concluding this section we should like to mention that the expressions

presented here, which have been incorporated in the most recent version of the

numerical code ISMENE [171], reduce to those previously obtained in various



limiting cases: slab geometry [62, 65, 81, 165], cylindrical geometry — pure
helical antenna [75, 93, 96, 107, 112, 121, 123, 128, 135], cylindrical geometry —
antenna with feeders [36, 111, 142, 162, 166]. Moreover, notice that we have only
considered single-mode travelling wave antennae. The Fourier decomposition
of current density in more realistic antennae (finite length, standing wave) can

be found in Refs. [36, 104, 142, 157, 162].

5.2 Toroidal Geometry
This geometry has been considered in Refs. [109, 166].

For the description of the antenna configuration, a toroidal coordinate
system (p, 6, ¢ ) is used, where p denotes the distance from the magnetic axis, 0

is the poloidal angle and ¢ is the toroidal angle (Fig. 3). The antenna is

modelled by a current-carrying sheet with a current density

2
= $@Vaxvb, 5.5

where
a=f-f (6)=0 (5.32)

defines an antenna surface X, and b is a current potential. For a single-mode

helical antenna, the potential is assumed to be
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b=-b, exp [;C(MG*'/’ZSD)]/ | (5.33)

where b, is a constant related to the total antenna current by

I= 265, (5.34)

¢

>
In the references cited, only the plasma models with E ¢ B, = 0 in the

plasma are treated. For such models the boundary conditions (3.6) at the

plasma-vacuum interface can be replaced by

- =+
M, =0 ,
(3 /- (5.35)

It is then sufficient to determine only the magnetic field component of the
vacuum electromagnetic oscillations. Moreover, the treatment is confined to

the case of negligible displacement current.
The relevant equations, which follow from Eqgs. (3.3) and (3.5), are thus

-’
Vx :ﬁ =0, (5.36)

.
V:B=0,
(5.37)



with the boundary conditions at the antenna

_ W2
x B /_ = 22/, xvb, (5.38)

- =>4
m, B / =0 (5.39)

-
where ng is the outer normal unit vector at the antenna surface. The boundary

condition at the wall, which follows from Eq. (3.8), is

-» -
w'B =0 (5.40)

L

S = S =
The aim is to establish a relation between np ¢ B and ny x B at the plasma-
vacuum interface. This allows one to match the vacuum solutions onto the
solutions of Maxwell's equations in the plasma region via the boundary

conditions (3.7) and (5.35). To this end, the magnetic potential is introduced by

B=v $ . (5.41)

Equation (5.36) is thus satisfied identically and Eq. (5.37) implies



A f =0, (5.42)

while the boundary conditions (5.38) - (5.40) written in terms of the potential are

+ ~/
f(}:)/. = f“ci‘. b(x—l)/ (5.43)
/Z'Vf(’}:)lf =0, (5.44)
= >
mw.vg;(xw) = 0, (5.45)

Equation (5.42) is solved by means of the Green's function technique. The

desired relation is then obtained in the form

- - -
f("?) = QH’ /YLT-V_%‘(;‘;,) + }; ("1,) ) (5.46)
where

-1 A -1
Q?F = MT? [E,rr + (2T —wa)l)m, ENT’]) (5.47)

M’rl" = jD,H,-.?f + (21" -D W):D;:Mr :D’“”P (5.48)

and
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‘-1 A\~4 A >
ﬁ(;;p)=I‘1ﬂ,[(lb1,m,—2]_‘)201“r wj])ww+21'_])+ i by, 9

A
Here, I is the unit operator, and the integral operators Dy, and Eyuv, where p,v

=D, a, w, are defined by

Dduvf(xv)-’— J‘dZ[;f(x‘) :F(X )]m °V'G(X X') (5.50)
2y
> (5.51)
Ep $@)= 55 |42 G5, X) v (),
Z',
where
G()?;',) = ____.:{._—-—- (5.52)
' [?_ ?l .
The complex power emitted by the antenna is shown to be
= dw (g Ry B
e / (5.53)
>
where
- - -1 BN
Bl = To [( Uy Opp) ey -7 8153 ﬂ,iz Pl e

and
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~ Df _9T + (97 )
p + (2_7.'- -
| , (5.55)
]rw E'rou + (2-2 "31. )D-i
v aa E;la/ p) ®
1+ (21~ Dp) 2. |
m1’a«) a:— Ea, .
6.57)

Expressi
ssions (5
46) -
(6.57) are evaluat
ed num
ericall
y.
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In this geometry the equilibrium magnetic field is assumed to be

-
uniform, B, = B, 22, B, = const, while the plasma equilibrium quantities in
general vary in the x direction. For the description of the plasma dynamics the

following two models are considered:

Two fluids

We confine ourselves to the case for which the inequalities (4.6) and (4.19)

hold. On combining Eqgs. (3.2) and (4.24), and neglecting terms of O (m¢/m;) we

can then write the dielectric tensor in the form

AN
bx =&y =& F (E;) z GRY

° _ -(,2.
SXY ”""fyx =A,£; =4 0. 54 ) (6.2)
2
W
o —r Pe
t,, = & = . (6.3)

where



2 Ut
2= 2 W2 o WXe'm
A kEmem, ) P T ’ (6.4)

The remaining components of the tensor are equal to zero.

Expressions (6.1) - (6.3) can easily be generalized for the case when the
resistive term, Eq. (4.27), is included in Eq. (4.22). One finds that the

expressions corresponding to Eqs. (6.1) - (6.3) are obtained by the replacements

Yec W

8

-4 Wee W
¢ - Vor WY o 2/
iz arm

ce Wl Wy (6.5)
) W
w
C (¥
- [ = (6.6)
b2 <CA\(1.. ze_zio,)z_(_@. )2 ‘
cewc., Wee
2
Wee
£E.— b 6.7)

370 T wlw+d) )

where vei is the electron-ion collision frequency, which is related to the
electrical conductivity by
2
e My

= = (6.8)

Mo Yoo ‘

The local power absorption density due to resistivity can be calculated using

either Eq. (4.32) or Eq. (4.65), which are equivalent in view of Eq. (4.31).



An expression for the dielectric tensor that would include the effects of
ion viscosity has not been obtained as yet. Nevertheless, one can calculate the
local power absorption density due to viscosity in an approximate way. On
obtaining E from Maxwell's equations in the absence of viscosity terms, one can
determine the ion velocity, .{7’1, from Eq. (4.22) and then evaluate the power
absorption using the expression (4.33). This procedure, of course, makes sense

only if the absorption is weak.

It is worth noting that the dielectric tensor of the present model is not an

operator. It can therefore easily be transformed into other geometries.
Hot collision] 1

In order to establish a relation between the induced current density and
the electric field one has to solve the linearized Eq. (4.49). On performing the

Fourier decomposition this equation simplifies to

thd
N -
= -Z[E’+ .i‘ﬂTX(VxE)]o 3..‘&’. ,
m AW Y 6.9)

where Eq. (3.5) has been used.



The equilibrium distribution function obeys

A, > af.
Ny Y +wcm'xe;-.,_a_;r_.; =0, (6.10)
which is satisfied if
n,
{ = F(m;,/v;))(=x+ -(B‘f)) 6.11)

F being an arbitrary function.

On introducing the following two small parameters

>

2E| §
85"’/’3)(/[?—’—”/&7‘)/ (6.12)

$

Vo
rm} :F/—E—- (6.13)

X[

equation (6.9) can be solved by a perturbation method. The solution valid up to

ry

82¢ and 82, has been obtained in Ref. [174]. Knowing f in terms of E one can

calculate the induced current density from the linear part of Eq. (4.50). To this

end, one needs to specify the distribution function F. In the reference cited this

function has been assumed to be a Maxwellian with n, and T being arbitrary

functions of X. On carrying out the velocity integrations in Eq. (4.50) and

recalling the definition (3.2) one then obtains a final expression for the

dielectric tensor operator.



For the sake of brevity we shall use the notation

= W, A
Z = 4 ( W= £ e ) (6.14)
£ A w, Z | y

W - ,&»*]/v;’
_ T Z ©615)
Z@ B —/Y-YL_— L )

where

Z ) =x ex/o(-xz)[2 f:x/o( e’ - L 1/2] 616)

is the plasma dispersion function as defined in Ref. [212] and ®p is the plasma
frequency of the species in question. In the présent review we shall write the
expression for the dielectric operator ignoring all terms of O (32;) and only
retaining the terms of O (8p) corresponding to the Cerenkov interaction. We

thus have

d Fd 459+ 2 ©6.17)
m*ﬁ;&*;&@ ¥

where

0 0 o5 618)

with



(6.19)

o 0 B2 ~Byz O

Ry = Z+Z,-22,),

Sl

4., ~ ~
sz = zwwc/&% [(w‘wc)z4 - (W+w,) Zi] )

[(w w)Z +(w+mZ 2&.]

Bre= zww Jz
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|

'X;t;) = = (21-21)/

% = 1 (,:;nrt)z CRLE )

It should be noted that in writing Eqs. (6.18) - (6.20) the symbol denoting the

sum over the plasma species has been omitted in order to simplify notation.

As can be seen from Egs. (6.17) - (6.20) the dielectric tensor operator is of a
Hermitian form, i.e. exhibits certain symmetry properties. On the other hand,

it does not satisfy the Onsager reciprocity relation, since yix (-B,) + Yki Bo). The



reason for this symmetry breaking is the fact that the unperturbed state of the
system in question, described by the distribution function F, is not a state of a

thermodynamical equilibrium, but only a steady state.

For an evaluation of the local power absorption by a plasma species via

the Cerenkov interaction, which would be consistent with Egs. (6.17) - (6.20), the

expression (4.66) must be generalized to include terms of O (3p). This can easily

be done by using the expression for f] obtained in Ref. [174]. On substituting this
in Eq. (4.57) we find that Eq. (4.66) is to be replaced by

1

_ . ‘ - o ?
’E(X) gjt‘llzl&a, fﬂ%-¢&7ExI+/:_il _,tk’tx—&i“a;’})cgzl)

Gt ) eaniy) o

a—

© ke org |0 _©\
oy [E, | < ‘/l-j’f- QXF[—' ()e‘a"’e>

4

According to Eq. (3.9) the local power balance in the plasma is given by

.OZL&‘?: +§%Jm(-€*~?-f)=0. 6.22)

Equations (6.17) - (6.21) allow one to cast this balance into a more explicit and
interpretable form. On dispensing with the dissipative parts of the plasma

dispersion functions that correspond to cyclotron resonances — which are of no



interest for the frequency range considered — and making some re-

arrangements one obtains

a%(-(gx+57,)+ g?(x) - 0) 6.23)

(6.24)

is the energy flux density due to coherent finite-Larmor-radius motion of the

plasma particles in the electric field or, briefly, the kinetic flux.

6.2 Cylindrical Geometry

In this geometry all equilibrium quantities are assumed to vary in the r

direction. The equilibrium magnetic field is given by

-

B, =B, () _é:, + B, (v) Zz (6.25)

J

which is the most general form compatible with Eq. (4.13). Using Eq. (6.25) we
define the quantities bg and b, such that

—y
- B -> -

= 2o = (6.26)
¢ B, be Co + bz ¢, )



e I
and introduce a local magnetic coordinate system (e, €], €)) where

. I

¢ =¢xe, . 6.27)

=

For the description of the plasma dynamics we consider the following two

models:
lagsmg wi n ili

We project Eq. (4.21) on the magnetic coordinate system and eliminate j,

- N >
in favour of B,, and B in favour of E via Egs. (4.12) and (3.5). On Fourier-
decomposing the resulting expression and combining it with Eq. (3.2) we find,

after some manipulation, the dielectric tensor in the form

(6.28)
2 bz L b
£ =& -(% 2zd [ Be\ bs o b
1L 1 w) ¥ ow('1r b) 7‘&;(7 -B'z-))
where
/@z" = b, % + b, 422% ) 6.29)

and the quantities £ and &2 are given by Eqgs. (6.1) and (6.2).



Expressions equivalent to Eq. (6.28) have been obtained in Refs. [56, 135,
151] and for the case Ibgl << 1 in Refs. [119, 126]. In the limit w/w. — 0, Eq.

(6.28) reduces to the dielectric tensor of force-free MHD [106].

Hot collisionless 1]

From Egs. (6.17) - (6.20) it is in general not possible to infer the form of the
dielectric tensor operator pertinent to the cylindrical geometry. It has been
therefore necessary to repeat the derivation in analogy to that of Ref. [174]. The
essential features of the derivation are outlined in the Appendix. The results
have briefly been reported in Ref. [178]. A limiting form of the operator for the
cylindrical geometry has been derived (in a heuristic fashion) from the slab

model in Ref. [107].

We restrict ourselves to the same accuracy as in Eqs. (6.17) - (6.20).
Moreover, we assume [bgl << 1 and retain only terms of O (Ibgl). We can then

write
PR o © PES
Ad,qd ,qd  4d, 3
E frdvlrda?’t(z’dv"'fr'aﬁf@ ¥

i ol
where, in the magnetic coordinates, the tensors «, B, B* and y have the same

(6.30)

structure and symmetry properties as in the slab geometry. Their components

are given by
°(Aw = e(xx ) O(Ar.l. = °(xy ) O(J.J. = dYY) °luu = dzg) (6.31)

(5""1 B A:Xe-’- (4’0‘ —JYY)} (34-11 = Bx? ) B.Lll = ﬁy,}/ 6.32)

and
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where k; in the arguments of the plasma dispersion functions is to be replaced

by kj, and

/é.L = -—//:l/—— bi - /&% be . (6.34)

The analogues of Egs. (6.21), (6.23) and (6.24) for the geometry in question

read

Ru)= 8’73’/2{ (IHW'VE -ik, EI I” 4 E -ihE,
2
2wwc )+ XQ”(A)C [dEuI ZP (:;dd/r OLEII) (6.35)

_p? 2 dlE d /%_L 2 Z
/&.LIEII + oL’Vf ﬂ]-ﬁ__z"Eul 'i' ‘—L——w

_ . t
werp[ (25) ]

E




%%“(&*‘ r,,)+ ;?(ﬂ, (6.36)

+2 R, Re (E,,-E,,*) - oy, f{; IE,,I2]. (6.37)

It is important to note that Maxwell's equations (3.1) in conjunction with

Eq. (6.30) must be supplemented by appropriate regularity conditions at r = 0.

They can be written as

E=E =% oy, for Im#1 O

and

E, +imE, = %(E’V+'{ME.L)= E//= O)CF” Im{= 1,639

Using these conditions it is straightforward to show that S, =St =0atr=0.

Concluding this section we should like to mention that various limiting

cases of Egs. (6.30) - (6.33) have previously been cbtained in Refs. [9, 37, 51, 93,
96, 107, 112, 160, 161, 183].
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6.3 idal I

In this geometry we only consider systems with axisymmetric equilibria

Whose dynamlcs are described by the cold plasma model with an equilibrium

current [166]. The equilibrium magnetic field in such systems is of the form

.'B;=V$0xv§1/ +B.Rvp, | (6.40)

where y is the poloidal flux function, Bt is the toroidal field and R is the
distance from the symmetry axis. The equilibrium plasma density is assumed

to be an arbitrary function of .

S >
Using Eq. (6.40) we introduce a local magnetic coordinate system (ey , ey,
-
e|) where
-—
- v (ﬂ A - B,
o — ¢, =€, ,x @ C = — . (6.41)
c, vy ) AT TH R Ty, 3B,

S

On projecting Eq. (4.21) on the magnetic coordinate system and eliminating j,
> > S

in favour of By, and B in favour of E via Eqs. (4.12) and (3.5) we obtain, after

some transformations, the dielectric tensor operator in the form

Eyy = &

gy = L£2+4‘L[(V,,»%ﬁ%:7)—%])
£y =4 & +40L[ ~ (Vu Wl)]}

>
) 811 =E4+d“'¢.l-.(vle.))

(6.42)



71

where s N
2 -

c\* B,-VxB, - C .

._.) V=1¢V

/(s )

B / (6.43)
and the quantities €1 and €2 are given by Eqs. (6.1) and (6.2).

Let us note that for force-free equilibria Eqgs. (4.12) and (4.13) imply

v, /L =0. (6.44)

On using this property and Eq. (4.13) one can easily show that the operator
(6.42) is Hermitian.
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7.  LOW-FREQUENCY WAVES

In this section we shall review the properties of electromagnetic waves in

the frequency range ® < w¢. We first introduce some basic concepts and the

classification of different types of waves in unbounded plasmas. We then
proceed to discuss spectral characteristics of electromagnetic oscillations in

bounded systems.
7.1 nboun mogen Plasm

For the description of waves in these plasmas we adopt the slab geometry and

employ the expressions for the dielectric tensor presented in Section 6.1.
7.1.1 Dispersion relations; Dampings

For homogeneous plasmas Maxwell's equations (3.1) are differential

equations with constant coefficients. We may therefore seek their solutions in
- -

the form of plane waves, i.e. proportional to exp (ik-x) where k is the wave

vector. Equations (3.1) then reduce to the algebraic equations

[£1-Rk- &E]E-o,
(7.1)

-)
which have a nontrivial solution if, for a given k, ® satisfies the dispersion

equation

fD(,Z,w) = det [/&29-/}:% - (%)2?} 0. (7.2)
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o
Since € in general contains dissipative terms the solutions of the

dispersion equation are complex. The imaginary part of a solution can be

readily found if it is small compared with the real part; this is possible if the

dissipative terms are small. Setting ® = 0k - iYx one easily obtains

-4
Q?CLD(]:,(O*)

/b&)/& /

Xk = Jdm D(}Z,‘%)

(7.3)

where oy satisfies

Re J)(Je: Wy ) = O, 7.4)

The quantities wk and vy are usually referred to as the dispersion relation and

the damping rate. In what follows we shall only discuss the waves for which

Eqgs. (73) and (7.4) apply.

We begin by considering the waves in a cold plasma whose dynamics are
described by the dielectric tensor of the two-fluid model, Egs. (6.1) - (6.3). As one

can see from these expressions, legl >> g1, €2 for w<w.i. Equation (7.2) may thus

be approximated by

N+ e (=W +e,[H-e)- € ]=0,

(7.5)

where
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-G ), Rk

)

We now take various limits of Eq. (7.5).

In the MHD limit (/o — 0, mg — 0) we have g2 — 0, €3 — o, and Eq.(7.5)

simplifies to

(V- N =€) = o

7.7
Nullifying the left bracket yields the dispersion relation of the Alfvén wave (also
called the shear or torsional Alfvén wave)
2 ) (7.8)

while nullifying the other bracket yields the dispersion relation of the fast

magnetoacoustic wave (also called the compressional Alfvén wave)
2 292
= 7.
W, =C Rk . 7.9)
The Alfvén wave has the property that B, = 0.

Assuming ®/m¢; # 0 and me — 0, which corresponds to the model of

Section 4.1.2 in the absence of the equilibrium current, we have

(sz" 84)(M2+ N:" 5'4 )" E; = (), (7.10)
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The solutions of this equation can be written in the form [214]

2\E 4 2 2{ /%’z y Xo 2
W, | =5C > 2
(JA) sGk 1 77 W

+ [(1 4 ./_/%_ ; (%)2)2-4 :’sz]%} : @11)

These are finite-w/w.; generalizations of the dispersion relations of the fast

magnetoacoustic wave (plus sign) and the Alfvén wave (minus sign). As ®

approaches o they may be approximately separated into

/%2
| 2 .
Q)/Z =CA2/& (1"' 73) (7.12)

and
i [1- (e )]

One can see that Eq. (7.12) is not greatly different from Eq. (7.9). Thus the fast

(7.13)

magnetoacoustic wave is not much affected by the finite w/w.; values. On the

other hand, Eq. (7.13) differs considerably from Eq. (7.8). The wave associated

with this dispersion relation is therefore called the ion cyclotron wave [208]. As

Eq. (7.13) shows, this wave can propagate only if &) < @¢;.

Taking m, # 0 and w/w¢; — 0, Eq. (7.5) may be approximately factorized as
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(e 072 ) (07 - £,) = o.

(714)

We observe that the second bracket is the same as that in Eq. (7.7). Hence the

finite me has no influence on the dispersion relation of the fast

magnetoacoustic wave. Nullifying the first bracket yields

2
2
2 G /féz
“r = kc:
1+ -(:-)5:' (7.15)

pe

which is the finite-m, modification of the dispersion relation of the Alfvén
wave. The associated wave was discussed for the first time in Refs. [69, 86]
where it was termed "electrostatic surface wave" and "cold plasma surface

wave". We prefer to call it the quasi-electrostatic surface wave since it has the

-
property that only B, =0 and not B = 0.

Let us now consider the effects of collisional dissipation on the waves
discussed above. For the sake of simplicity we confine ourselves to the case
0/0¢i << 1. The damping due to resistivity can be determined from Eq. (7.14) if
we replace the quantities €1 and €3 according to Eqgs. (6.5) and (6.7). For ® << v

~one then finds that the damping rates of the Alfvén wave and the fast

magnetoacoustic wave are the same and given by {206, 211]

Vel C?' /&2 CQ/£2

ec

B -z (< -8

X‘Xe 2 Wl / Wpe L (7.16)



For ® >> v the damping rate of the quasi-electrostatic surface wave is

easily shown to be

X - Vec 1 - .
k2 1+ "-i:e, 717)
A, c*

We shall not review the derivation of the damping due to viscosity, as it is

beyond the framework of the present paper. It can be found in Refs. [206, 211].

For v;; << W¢j, where vjj is ion-ion collision frequency, it has been shown [211]

that the damping rate of the Alfvén wave is given by

3 2
Y= 75% % (

A

2 2
R, + l'/p"z ), (118)

while that of the fast magnetoacoustic wave is

2
oA e
Xk 412 Yo A (7.19)

For vj; >> w¢j, which is the case when Eq. (4.28) applies, it has been shown [206]

that the damping rates of both waves are the same and given by

2
A4 M 2
'&"4 })':'/é (7.20)

We note that in this case the viscosity coefficient 13 approximately [211]
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7 = >.. (7.21)

Let us finally treat the waves in a hot collisionless plasma whose
dynamics is described by the dielectric tensor given by Eqgs. (6.17) - (6.20). We
only consider the case w/m¢ << 1 and assume kvij << ® << k;vie. On choosing a
coordinate system in which ky = 0, the relevant components of the dielectric

tensor may then be obtained from Egs. (6.17) - (6.20) in the form
2 2
C 3 2
- (CA) (1- ¢ /é"ﬁ )/

b= (£ it e Aol

(7.22)

2
. wr‘: /&A ~Th w )

g\{z=’/bwww /& 1"'/\.[/ I/&Ite

¢ 2 wztlz 2 ~4/” w
2z~ /ﬁ /v_, I'& l/l)‘fe
2 Yte 2

Nl’:-N

In writing Eq. (7.22) we have only retained the dissipative terms due to the
Cerenkov interaction of the waves with the electrons, the ion contributions

being exponetially small. It is easily seen that le;;| >> legy | ,feyy | ,Ieyzl. The

dispersion equation (7.2) may therefore be written approximately as

2
2 2 &
(N:—fxxi- %M\Z)(M+”%_£y7_ ..._7_2.)= 0. (7.23)

Ca2
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It is straightforward to show that the real part of the second bracket in
Eq. (7.23) is the same as that for the cold plasma (cf. Eq. (7.7)). Thus the
dispersion relation of the fast magnetoacoustic wave is unaltered by the

thermal motion of particles provided vij << ca. The imaginary part yields the
wave damping rate [212, 214]

2

/m-e /‘y-t¢ /&A )
X:k lr s Ta BIE w (7.24)

Settlng to zero the first bracket in Eq. (7.23) one obtains the dispersion

relatlon and damping rate of the kinetic Alfvén wave [72, 73]

2 2 2 2 *
C‘)«& = C::/éz [4"'/%/\ S)é (% * %)]) (7.25)

12 (me\i2 fo
=4 0 _”Llﬁ ) CA
Xf}! - 2(_5-) /Wl,;) wz /’&%I CS' (7.26)
(I

where c¢g = (Te/m;)1/2, It is worth mentioning that this wave has the property

that Bz = 0.

For a plasma with T¢ >> Tj, the first bracket yields another solution of Eq.

(7.23), corresponding to the ion acoustic wave. Its dispersion relation and

damping rate are given by [73]

2 n2
W2 ¢ A,
4 4 + /&A Cz )
Wes

(7.27)
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A ole { 4+ 2G5
Weo (7.28)

We note that the expressions (7.27) and (7.28) may be obtained using the

SN
electrostatic approximation, i.e. assuming B = 0.

71.2 Equation of energy transfer; Group velocity: Wave energy

Owing to dissipative effects the energy associated with the waves
diminishes in time and is absorbed by the plasma particles. If the energy
absorption is weak the dynamics of this process may be described by means of

an equation of energy transfer. Such an equation can be obtained starting from

the general form of Poynting's theorem

5> 5 0
Y 83‘C<E+:B)+v I(EX'B) +a"E = 0. (7.29)

On setting

Eine=Re {5 (xt) exp [é(z-??- wxef)]}

(7.30)

and assuming



-
lfaES
2t

1 {%E R R
YT £ | «1, @.31)

where eth and gqp2 are the Hermitian and anti-Hermitian parts of the

dielectric tensor, Eq. (7.29) may be reduced to [208, 212]

AW W W 0¥
S
Here W is the wave energy density and T is the wave energy flux density; these

are given by the expressions

_ fb(wjlf‘m) E E(g

) (7.33)
W AW 16T

> S

T=5- We ?)im EQE":Cﬁ ’ (7.34)

In writing Eqs. (7.32) - (7.34) we have dispensed with the subscript "s"

Equation (7.32) may be further simplified if one introduces the group
S

JES
velocity vg = dok/dk and the damping rate, Eq. (7.3) for the waves. On making
use of Eq. (7.1) it can then be shown that

o (7.35)
T a{éW 7.35

and
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w& a %
51;5“‘3&‘ E, = 239? W. (7.36)

The equation of energy transfer can thus be written in the form

,3—2- VW + 2& W = (7.37)

In a steady state this equation is an analogue of Egs. (6.23) and/or (6.36).



7.2 Boun 1d Homogen Plasm

We shall now treat the electromagnetic oscillations of a cold cylindrical
plasma whose dynamics are described by the dielectric tensor of the two-fluid

model, Egs. (6.1) - (6.3). We confine ourselves to the case of free oscillations, i.e.
-
we set ja = 0. Various cases of forced oscillations have been investigated in Refs.

[10, 22, 30, 34 - 36, 208].

For a homogeneous plasma the most convenient way to write Maxwell's

_equations (3.1) is to eliminate E; and Eg in favour of E, and B, via Eq. (3.5). On

Fourier-decomposing the resulting equations one finds [209]
2 2
¢ 2 L2 ,
{gﬂ, [ (w) A.L - Nz ]‘f' E’ - EQ}BE +4’”!- 22 83 Ei' = 0) (7.38)

[54(%)2A;+ 83(24-1\/:)]55 -iN, €,B, = 0, (7.39)

where
4d d m?
A= o dv T g7 . (7.40)

If E, and B, are known, E, and Eg are given by the relations
2
w 2 2 2 L"_L.. ’ ]
—C- [(Nz-'g,i )— Ez ]E,r = (Ni!'- 61)(’?' :Bi'-A‘Nl’ Ez.)

+ £, (S, E, -B,) |

(7.41)



%’[( N:-fi)z' t ]Eg - (N, - 54)(%'”%52 “:B;)

- & ( %B* t M E;) . (7.42)

Assuming E, and B; to be proportional to Jm, (k,r) [6], Eqs. (7.38) and
(7.39) reduce to algebraic equations which have a nontrivial solution if N,2 =
(krc/0)2 satisfies Eq. (7.5). Since the latter is a quadratic equation in k,2 the
general solution of Egs. (7.38) and (7.39), regular at r = 0, may be written in the

form

(7.43)

2
£o= 2% dulh,r),
3=1

B S o[

/V% Ez 7=1

2

A,/,a- +& (I\/2 E)]J (xfé,y ), (7.44)

where aj are constants to be determined by the boundary conditions. In what
follows we shall distinguish the two configurations : ry = ry (frequently called

the completely filled plasma waveguide) and r, # ry (the partially filled plasma

waveguide).

When rp =ry the boundary condltlon (3.8) applies. Combining Eqs. (7.42) -

(7.44) and (3.8) one obtains the dispersion equation [209]

Ton (e 1) Jon (ke 75
1 T '&*1'YP) '} JM(&n'r}) --£f (Mrz Mm)" )

(7.45)

where
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D@ = (NE—E,,) [54 /V'fg + & (A/?‘fi)]*' /V? f: .

(7.46)

The dispersion equation considerably simplifies in the limit €3 — 0. Equations
(7.38) and (7.39) then uncouple and the oscillations can be divided into two
types: in one B, = 0, and in the other E; = 0. For the former Eq. (3.8) implies

jm ( ,&”y" ) = 0, (7.47)

while for the latter it follows from Eqs. (3.8) and (7.42.) that

I k1) = o. (7.48)

Equations (7.47) and (7.48) give rise in each case to an infinite set of discrete
values for ky. The frequency spectra of the oscillations are then obtained by
substituting the corresponding discrete values of k; for k, in Eqgs. (7.15) and
(7.9) respectively. In the general case, when €3 # 0, the B, = 0 and E, = 0
oscillations are coupled and to obtain their frequency spectra one has to solve

Eq. (7.45) together with Eq. (7.5).

For the partially filled waveguide the general dispersion equation is very
complicated [209]. We shall therefore consider only the most important limiting
case €3 - . We then have E, = 0 and may choose B, = Jp, (k,r) where k,;2 =k,2
is given by Eq. (7.10). Expressing Eg in terms of B, via Eq. (7.42) the solution in
the plasma region can be matched to that in the vacuum region, Eq. (5.26),
using the boundary conditions (3.6) and (3.7). O:ie thus obtains the dispersion
equation [96, 128, 129, 209]



mu?.v'f) ; m Ez é;_
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where (cf. Eq. (5.18a))

ﬂe_ _ In.n (’g’a'rw)l(ml('&a‘ﬁA “IA‘,,(/&;V",)K,,L (/&%fw)
H1’ I»:.. ('%%Vm),(m(’&erp)- IM(&;‘@)K,:,,, (’&;Vw) - (7.50)

We have dropped the displacement current in Eq. (7.50). If k,2 < 0 the function
Jdm in Eq. (7.49) is to be replaced by I, (Ikplrp). For ryy — e (the plasma

cylinder surrounded by vacuum) Eq. (7.50) reduces to [206]

e Ko (ko)

H,» K,m, (X% ’V'r) . (7.51)

Equation (7.49) has been analysed in Refs. [126, 128, 129] (see also Ref.
[164] ) and for the case ry — o, m = 0 in Ref. [2( 8]. Analogues of Eq. (7.49) for
the slab geometry have been investigated in Refs. [120, 130]. In the discussion
below we shall closely follow Ref. [129].

It is easy to solve Eq. (7.49) numerically. A numerical solution is shown
in Fig. 4 for the case wpirp/c = 2 and ry/rp = 1.5 which are typical values of a

small tokamak. The eigenfrequencies are shown for m = +1 and m = -1 as a

function of k.

Analytical solutions of Eq. (7.49) can be obtained for m = 0 in the limit

k,rp << 1. The expression (7.50) then simplifies to
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and Eq. (7.49) may be approximately satisfied either by k, >> k; or by k; ~ k.

In the first case one finds (cf. Eqs. (7.9) and (7.12))

2 .2 p2
W= C, '%« , (7.53)

where the discrete values of k; are given by

I (k%)= 0. (7.59)

These are the frequencies of the radial eigenmodes of the fast magnetoacoustic
wave (F). For Im| = 1 and wpirp/c = 2 the first zero of Eq. (7.54), k,rp = 3.83,
yields w/w¢; = 1.91. In Fig. 4 this mode is denoted with Fo as the second radial
eigenmode of the fast wave. As long as k,rp <1 this mode and all the higher
ones are practically identical for m = = 1. And the same is true for the modes

with Iml> 2.

The first radial eigenmodes of the fast wave F; are obtained in the limit
ky ~ k;. Making the approximation J'm/dm = Iml/(krp) and assuming

w/oei << 1, Eq. (7.49) yields

W=, ( 1+ séyn(m)z—:%:; ) , (7.55)

where
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(7.56)

Equations (7.52) and (7.56) hold even for ry, = o as can be seen from Eq. (7.51).
Taking this limit and w/w.; — 0 in Eqgs. (7.55) and (7.56) one finds

W = @’ c, /&} ] (1.57)

This is the surface eigenmode frequency as given by MHD theory [217]. In the
MHD limit the two modes for m % 0 behave identically and like an eigenmode of
the fast wave. It seems therefore natural to identify the first radial eigenmode

of the fast magnetoacoustic wave F; with the surface eigenmode S.

In Fig. 4 only the mode F;, m = —1 has been labelled with S for the
following reason. For small k, the wave fields of F; are global functions as
opposed to those of the surface mode in slab geometry where they are confined
to the neighbourhood of the plasma-vacuum interface. It is only for k,rp2 1 that
the mode F; , m = -1 has surface-mode character as can be seen from Fig. 5.
The mode F; , m =1 has global wave fields for all values of k,. The surface-
mode character of F; , m = -1 in cylindrical geometry is clearly related to the
fact that it merges with the Alfvén resonance & — N,2 = 0, denoted by A..
(at kyrp = 1.5 in the case of Fig. 4). The value of k, where S and A, merge

depends on ry, as we shall see in Fig. 6.

Let us, however, first finish the discussion of Fig. 4 by describing the
global eigenmodes of the Alfvén wave (cf. Eq. (7.11) with the minus sign). As
can be seen from Fig. 4 there is no physical interest to obtain analytical

solutions for small k, because the whole class is extremely densely packed; in



the MHD limit the solutions are even infinitely degenerate. For k,rp > 1.5 the
eigenfrequencies of the lowest radial modes (only Aj, m = +1 are shown; all the
higher modes, Ag, s > 1, lie between A; and A..) are distinctly detached from
the accumulation point A.. . In the case shown the largest distances have been
found around k;rp = 3.5. The relative distances (We — W)/ are 7.2 %, 3.2 % and
1.7 % for the modes s =1,2,3, m=-1 and 3.6 %,1.8 %, 1.1 % for m = 1. It is
interesting to note, that the set of Ag, m = 1 seems to contain one mode more
than m =1, namely the mode A; . All the other modes can, in fact, be put into a
close one-to-one correspondence, Agy1 (m = -1) = Ag (m = 1), with respect to
frequency and radial wavenumber k, (not shown). At small k, the surface
mode S has been identified as an eigenmode of the fast wave; at high k, it now
appears as a part of the Alfvén wave. This is, however, from a purist's point of
view, somewhat misleading. Strictly speaking, the mode lies always above A
and should, therefore, not be identified with any eigenmode of the Alfvén wave.

The behaviour of the surface mode as a function of k, and of the radius of
the conducting wall, ry, has been investigated in detail. The most striking
result is shown in the upper part of Fig. 6. The radial wavelength k; changes
from real to imaginary as k, grows. This fact explains the change (Fig. 5) from
a global waveform at k,rp = 0.4 to the surface waveform at k,rp = 1.5: at k,rp =
0.4 the eigenfunction for B, is given by Jj (\/Tlgr/rp) whereas at k,rp, =1.5 B, is
given by an exponentially growing Iy (1k;Ir). We note the strong effect of the
conducting wall. The smaller the vacuum gap the higher are the axial phase
velocities w/k; at small values of k, (see lower part of Fig. 6). This fact is well
described by Eq. (7.56) which for k,rp < 0.4 approximates the exact result within
10 %. From Eq. (7.56) we conclude that the phase velocities of the mode F;,
m =1 show the same tendency to increase, when the wall is approached to the

plasma, as those of the surface mode.



7.3 Bounded Cold Inhomogeneous Plasmas

We shall now discuss the spectral characteristics of electromagnetic
oscillations in bounded inhomogeneous systems whose dynamics are described
by the dielectric tensor of the cold plasma model with an equilibrium current,

Egs. (6.28) and/or (6.42).

7.3.1 Discrete and continuous spectra
lindrical

For an inhomogeneous cylindrical plasma the most elegant way to write

Maxwell's equations (3.1) is to eliminate E; in favour of By via Eq. (3.5). To this

end, we Fourier-decompose Eqs. (3.1) and (38.5) and project them on the

magnetic coordinate system. The elimination of E, then yields [64, 106, 119]

A

>~

d ’ 2 :
a}yE.c. = G/&LEJ. + %Q(A'XQ.L):BII ) 59

A % = ZCB(Gz" N)E, - GA3, (7.59)

where

w2 A 2 |
A- (—C:> 4 - (wfw)? " A / e

2 wiwg
G“-‘(‘é;) 1—(“}%)2 -—,%-"ba/e?u . (7.61)
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If E, is known, E; is given by the relation

(A‘&i)E« gg(&%y_ G)EJ. (7.62)

A

In writing Eqs. (7.58) - (7.62) we have confined ourselves to the most important

limiting case |bg| << 1. The corresponding equations for an arbitrary bg can be

found in Ref. [151], and their analysis for a specific case with w/w.; = 0 in Ref.

[150].

Equations (7.58) and (7.59) considerably simplify in the case bg = &/@¢; = m

= 0. It is then advantageous to eliminate B in favour of E; and one obtains [52]

did ) 7.63
(d,,-,ya",;."'*'A EJ_"O) (769

while Eq. (7.62) reduces to

A E =0 (7.64)
¥ .

‘ Equation (7.63) describes the axisymmetric modes of the fast magnetoacoustic

wave. Their frequency spectrum for a parabolic density profile has been

obtained in Ref. [52]. It was shown that the sfectrum is not much different

from that for the case of a homogeneous density [208].

Equation (7.64), which is uncoupled from Eq. (7.63), describes the

axisymmetric modes of the Alfvén wave. Assuming that A = 0 has a simple

ZEero af r =7;s the solution of Eq. (7.64) can be written in the form [54]




5, - 5 5‘( r-n5), (7.65)

where E; is an arbitrary constant. The associated frequency is given by [52]

2 2
W= C, () &, . (7.66)

Since one can construct a singular solution of this type for each value of ® in

the range

; 2 2
mum c: ) £ (W/k,) £ max C,(r) (7.67)

one sees that Eq. (7.64) possesses a continuous spectrum of eigenvalues given in

Eq. (7.67). The associated eigenfunctions, Eq. (7.65), are singular, of course.

Another case, when Eqs. (7.58) and (7.59) simplify, is m = k, = 0. Again,
the elimination of By yields

d 4d w\?
[a— ¥t (CA) ]El =0, (7.68)
and
E =-4 .& E . (7.69)

These equations describe the purely radial eigenmodes of the fast

magnetoacoustic wave. Their analysis, for various cases, can be found in the

work on magnetoacoustic resonance [18, 41, 43, 45].

In their completeness Eqs. (7.58) and (7.59) can only be analysed

numerically. The results of such an analysis will be presented in Section 7.3.2.



Here we shall discuss some general properties of these equations and consider

a special case for which their solution can be obtained analytically.

If A # 0 for the parameters of interest, Egs. (7.58) and (7.59) still possess

discrete spectra associated with the eigenmodes of the fast magnetoacoustic

wave and the global eigenmodes of the Alfvén wave [54, 57, 63, 67, 106, 113, 122,
129, 132, 141, 183]. These spectra, as we shall see shortly, are not much
different from those presented in Section 7.2. | "

Let us now assume that A = 0 has a simple zero at r = rg. The solution of

Egs. (7.58) and (7.59) can then be written as [54, 57, 63, 96, 103, 217]

CEm + GR() , #>%,
B, =

GGRw + GRWw)  , r<rg,
(7.70)

where Cq, Cg, C3 are arbitrary constants. The functions F; and Fg are the

regular and singular fundamentals, respectively, with the properties

(7.
f>1, R flral, for von. o

An expression similar to Eq. (7.70) is also true for E;. In the case when G = 0

the fundamentals have the properties

2
F; - (/(-_,G)z) [.; - const + (r-7) /%I'?-"EI, (7.72)

while the fundamentals corresponding to E; retain the properties (7.71). The

fact that the constants C; and C3 are independent across the singularity



preclude any one-to-one relation between ® and the wavenumber. Thus, the

frequency associated with the singular solution (7.70) is given by

2
NAY XA
2 2
1 + <"Az (rs),&“ (VS)/ Wee g (7.73)

2 2
W=, k)=

which follows from Egq. (7.60). Since one can construct a singular eigenfunction

of type (7.70) for each value of  in the range

2
Min W, () £ W' & max W (r)
(7.74)

one sees that Eqgs. (7.58) and (7.59) possess a continuous spectrum of

eigenvalues given in Eq. (7.74). The associated modes are called the singular

eigenmodes of the Alfvén wave [54, 217].

Finally, we consider the case of a uniform density and uniform axial
current, i.e. ng = const. and bg/r = const. An approximate solution of Eqgs. (7.58)
and (7.59) can then be obtained in terms of Bessel functions. On repeating the

same procedure as that leading to Eq. (7.49) one obtains the dispersion equation

\ ”V\ t 2- 2
m.( " r |° ] (1.75)
where
2 2
A= AC + 2y 22 (- %) , (7.76)



Assuming ky ~ k| << 1/rp, and /0 << 1, Eqgs. (7.75) and (7.76) yield the

dispersion relation of the surface eigenmode modified by the presence of a

uniform axial current [135, 141]

, .77

where oy is given by Eq. (7.56) with the replacement k, — ky.
Toroidal geometry

The analogues of Eqgs. (7.58) and (7.59) for the geometry in question may

be written in the form [70, 71, 105, 110, 115, 143, 169, 188, 191]

.'.?ﬂvv I;BV:IE - ,'AV"%E B + V¥V, ‘E;;, , (7.78)
g, 2 =~ [on, 2 0 2 (o e]E
"'{;:(%")252 *[‘Z' (Vxél) (‘]lvw i (7.79)
and
AEW = F?F/V .’_iﬂ[z&)# 2. (vx2)) .,:(...)zng *@3‘, 2 aso

where



-
V([/ = "’.V ) V.L - QJ_'V . (7.81)

A
The surface operator A is given by

P OB (W 4 + (@) (1.82)
A=z o =W iyl (0)54 ‘

For a given equilibrium, one can formally solve Ey in terms of E; and B;
from Eq. (7.80) by inverting the operator ?& Substituting the result in Egs. (7.78)
and (7.79) yields then equations for E; and Bj. Admissible regular solutions
must be periodic in both 6 and ¢ directions (see Section 5.2), and satisfy the
boundary conditions (3.6) and (38.7). If the inverse of g exists for all the
magnetic surfaces y = const., Eqs. (7.78) and (7.79) possess discrete spectra

associated with the eigenmodes of the fast magnetoacoustic wave and the global

eigenmodes of the Alfvén wave [169].

The above procedure fails if the inverse of K does not exist for a given w at
a certain y = y; surface. Then Eqgs. (7.78) and (7.79) have radial singularity and
non-square-integrable solutions with spatial singularity at y = yg are possible
[70, 71]. If, at some set of y, nontrivial single-valued periodic solutions in 6 and

¢ can be found for the equation

A
A EY = o) ' (7.83)

then the corresponding set of eigenvalues @ forms the continuous spectrum

associated with the singular eigenmodes of the Alfvén wave.

In most of the literature under review, Eq. (7.83) has been investigated in

the limit w/@w¢; = 0 : numerical solutions have been obtained in Refs. [77, 134,



169], approximate analytical solutions in Refs. [105, 115, 169, 188] and a WKB
solution in Ref. [170]. The case of finite w/w.; has been considered in Refs. [143,
191, 198]. An analogue of Eq. (7.83) for non-axisymmetric systems has been
discussed in Refs. [88, 116, 127, 163]. Below we shall briefly review the results
obtained in Refs. [105, 115, 169] and [143, 198].

Consider a large-aspect-ratio circular tokamak and employ the toroidal
coordinate system (see Section 5.2). In the limit p/R¢ << 1, the flux surfaces
become concentric circles, and one can use the following conventional model

for the equilibrium field:

-
(02 1) 2
30 ( 0, Zﬂo) 1 ) 4 .p}’MG/'Ro (7.84)

where Rg is the major radius of the magnetic axis and qg is the safety factor.

Equation (7.83) then reduces to

[ (4+—me)V,, +( )(44.__%9 :]E =0, (7.85)

where

Q),Q

V=% (%3

{ 2)
R 1t geno/R, 3P /- (7.86)

Since ¢ is an ignorable angle one may set

Ew _ @mlpg:ﬁw e«me

. (7.87)



Substituting this in Eq. (7.85) yields coupled equations for the functions f,. The

aim is now to obtain, using a perturbation method, the eigenvalues of these

equations valid up to p/Ry.

In the lowest order one finds

2
w? = (%) ( -'% +m )2_ (7.88)

This eigenvalue is at least two-fold degenerate since the modes (m,n) and
(-m, -n) are both linearly independent solutions for the same eigenvalue.

Additional degeneracy will occur between modes (m, n) and (m', n) whenever

(—-—- +m) (—-—+m,) (7.89)

This condition can be satisfied exactly only on rational surfaces and

approximately on the neighbouring surfaces.

It can be shown that in the first order, the effect of toroidicity is to couple
degenerate, or nearly degenerate, modes with poloidal wavenumbers differing
by one. Thus, considering the coupling between two modes m and m-1 which

satisfy Eq. (7.89) on a particular rational surface, q,, one obtains

, 2 2
W= (%\(-’% +m) (412.%0), (7.90)



As can be seen from this expression the effect of toroidicity is to create a gap in
the continuous spectra around the surface qr. It has been shown in Ref, [169]
(see also Ref. [200]) that such a gap, for a particular equilibrium, gives rise to
the toroidicity-induced global eigenmodes of the Alfvén wave. The associated

frequencies, which lie inside the gap, form a discrete spectrum.

In the case of finite w/w.j, explicit solutions of Eq. (7.83) have been
obtained in the WKB approximation [143, 198]. The corresponding relationship

for the eigenvalues may be written in the form

mimy =1 %mPIUB &, 7/" F]‘B”'d},, (7.91)

where J is the Jacobian of an orthogonal coordinate system v, %, .

Equation (7.91) may only be valid for €1 > 0, i.e. at the magnetic surfaces
that do not intersect the line ® = w¢;. Numerical computations [193] carried out
using the code LION indicate that all the surfaces intersecting the line ® = wg;

are singular surfaces.

7.3.2 Collective modes; Alfvén resonance damping

In the foregoing section, ® has been considered a real number. As a
consequence, Eqgs. (7.58) and (7.59) are singular at the Alfvén spatial resonance,
Eq. (7.73). An alternative approach is to regularize this singularity by adding a
small, positive, imaginary part to ®. This procedure, which guarantees
causality, is similar to that used in regularizing the linearized Vlasov
equation. As a result, the eigenvalue problem associated with Eqgs. (7.58) and

(7.59) becomes complex. The eigenvalues, which form a discrete set,
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correspond to a set of oscillating, damped eigenmodes. It should be
emphasized, however, that these modes are no longer the eigenmodes of the
original spectral problem, discussed in the previous section, but the collective
modes of the time-asymptotic plasma response to either an initial perturbation,
in an initial-value problem [60, 80, 111], or to an external perturbation (an
imposed antenna current), in a steady-state forced-oscillation problem (see e.g.
Refs. [61, 62, 65, 75, 84, 87] ). The relation between the two approaches and the
corresponding mathematical subtleties are discussed in Ref. [217] and in the

references cited therein (see also Refs. [87, 111]).

From the practical point of view there are two procedures for analysing
the complex-eigenvalue problem. One is to construct a dispersion equation
(analytically or numerically) of type (7.75) and solve for its complex zeros [60,
82, 96, 120, 138]). Another involves the calculation of the power delivered by an
antenna as a function of the applied frequency [75, 111, 113, 119, 129]. Any peak
that appears indicates the existence of a collective mode or a global eigenmode
of the original spectral problem. Below we shall illustrate both these

procedures.

Following Ref. [138] let us consider ‘a case when the frequency and
damping rate of a collective mode can be determined analytically using the first

procedure. Take the limit by = w/w.; = 0 and the following profile of the plasma

density
M,= const o€V,
Myl = - (7.92)
| m, =¥ N LNEX,
e a

Assuming k; (rp — re) =8 << kyrp << 1, Egs. (7.58) and (7.59) then reduce to
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A w m ,
A-;%;yEi = ‘,-r—ZBII , (7.93)
dBll AC
= . (7.94)
ar w A E

In the region of the constant density the solution of these equations is again
expressed in terms of Bessel functions. In the region of the inhomogeneous
density the solution is obtained as a series in the small parameter 5. On
matching these solutions to each other and te that in the vacuum region
(assuming ry — ) one finds, with the accuracy up to O(8), the dispersion

equation

/V'P .
A(m—Xez, = |ml f%—rt[}‘* Aw) _ A('V)]
%3

Awr) (7.95)

An approximate solution of Eq. (7.95) yields the frequency and damping rate of

the collective surface eigenmode

2 2 v

Y=ok, '{;— %—’Wr’mlw"" ' (7.96)
As can be seen from Eq. (7.95) the damping arises from the presence of the
Alfvén spatial resonance. It may therefore be called the Alfvén resonance
damping. The physical interpretation of this damping can be best understood
in a steady-state forced problem. It represents a rate at which the energy is
accumulated around the resonance layer [83, 87, 111]. To an external observer

it appears as an energy absorption.



102

Let us now turn our attention to the second procedure. Its formulation
will be presented in Section 9. Here we shall only discuss the results obtained
numerically in Ref. [129]. The first case shown is (Fig. 7) that of a parabolic
density profile, ng (r) = ng [1 - 0.99 (r/rp)2], with no axial current. The other
parameters are the same as those used for Fig. 4. As a consequence of the
inhomogeneous density we now have a continuous spectrum of the Alfvén wave
(in the original spectral problem), in addition to discrete spectra. In Fig.7, the
lower and upper bounds of the continuum, wa (r = 0) and wa (r = rp), are shown
with broken lines. Only the most important collective and/or global modes (F;,
m = 1; S and Aj, m = -1) are represented. The frequencies of F; and S are
somewhat higher than in Fig. 4, which is consistent with the fact that the

average density for the parabolic profile is lower by a factor of two compared

with the constant density profile. These modes F; and S therefore appear to be
related to the eigenmodes F; and S which have been discussed in Fig. 4.
However, for those values of k; where they lie inside the continuum they have a
complex frequency; the imaginary part is not shown in Fig. 7. We conclude
from this figure that the modes F; and S ignore, as far as the real part of
frequency is concerned, the difference between a collective mode and a global

eigenmode.

This conclusion remains more or less true even in the much more
complicated case of a current-carrying plasma cylinder (Fig. 8). In addition to
the parabolic density profile we have now included a peaked current profile ~
[1 - (r/rp) 214 which results in bg = 0.06 {1 - [1 - (z/rp)2 15} rp2/r2. For an aspect
ratio of 3.3 this field yields a safety factor of 1 on the axis and 5 at the plasma
edge. The current makes the Alfvén continuum non-monotonous in r. We show

therefore the lower bound min wa(r) of the continuum in addition to wa (r = 0)
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and wA (r = rp). Due to the current the solutions depend on the sign of k,. We
remark that the current merely shifts the two branches of the surface mode S
by a small amount (cf. Eq. (7.77)). The small shift in k; is approximately equal
to that observed for wa(r = rp). Apart from this small shift the dispersion
relations of F; (not shown) and S seem to be unaffected by the current. In Figs.
7 and 8 they coincide up to values of k,ry, of the order of one. The deviation at
higher values is accompanied by the appearance of an imaginary part of ® (not

shown) of the order of the real part.

The global eigenmodes of the Alfvén wave are distinctly separated from
the continuum in the whole range of negative k, values, but have completely
disappeared from the positive range of k,. In the negative range of k; it looks as
if the continuum, under the influence of the current, has withdrawn from the

global Alfvén modes, whereas in the positive range of k, the continuum has

moved downwards hiding these modes.

The most striking new feature, however, is the existence of unstable
eigenmodes. The graph has been obtained by plotting the imaginary part of ® of
the unstable eigenmodes; their real frequency is practically zero as one would
expect from MHD. The absolute value of the growth rates and the marginal
stability points are not correctly given in Fig. 8 because the approximation used
in the derivation of Eqs. (7.58) and (7.59), namely first order in by, is
insufficient. The results are nevertheless easily interpretable. The mode Aj is
known in MHD as the external kink mode. In Fig. 8 its growth rate turns out to
be roughly twice the correct MHD result. The range of instability is a bit too
large in Fig. 8. Ideal MHD theory gives 0 < kzrpé .3. The modes A, s > 2, are

called internal kink modes.



104

74 Bounded Hot Plasmas

It has been noted in Section 7.1.1 that in low-beta plasmas (cf. Eq. (4.17))
the dispersion relation of the fast magnetoacoustic wave is unaltered by the
thermal motion of particles. The spectral characteristics of this wave in hot
plasmas remain therefore essentially the same as in cold plasmas. On the
other hand, the Alfvén wave is dramatically modified by hot-plasma effects: it
becomes the kinetic Alfvén wave. It is therefore of importance to ascertain the

properties of this wave in bounded systems.

The problem of the spectral characteristics of the kinetic Alfvén wave has
been addressed for cylindrical plasmas uéing various approximations for
treating the ions: cold-ion model [123, 132, 144], the effects of finite Larmor
radius to the second order [139, 161, 175] and to all orders [156]. Here we shall
briefly review some of the results obtained in Ref. [156].

Consider a weakly-inhomogeneous, cylindrical plasma whose dynamics

are described by the dielectric tensor operator given by Eqgs. (6.30) - (6.33). Since

B|| of the kinetic Alfvén wave is negligible cne may use a two-potential

approximation to represent the wave electric field [73]. Thus we set

£ = (%%' ) ""4‘4# ) ik, %) ) (7.97)

where ¢1 and ¢ are the potentials. To derive the appropriate wave equations for

the potentials we note that Eq. (3.1) implies
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V.£.E = 0. (7.98)

On substituting the representation (7.97) in Eq. (7.98) and the parallel

component of Eq. (3.1), and making some rearrangements, one obtains [156]

T/T: 2 (7.99)
?S (1-2)[1 - (W) ] fi A*¢4 )

{%)' -,4"[1 (“’«U*A f ['F - ';? —(%)mz] 4;55 =0,

(7.100)

where Z = Z (w/l ky I vi¢) and the operator A is given by Eq. (7.40). In deriving
Egs. (7.99) and (7.100) we have also used the fact that © >> | k| vi;j for low-beta
plasmas. The generalizations of these equations that take into account ion
Larmor radius terms to all orders and more general profiles of the equilibrium

quantities can be found in Ref. [156].

Inthelimit Ty — 0, Te — 0, me — 0 Eq. (7.99) yields ¢2 = 0 while Eq. (7.100)

reduces to

[ W~ w:m] A_t¢4 =0, (7.101)

which is a singular equation describing the Alfvén continuum. Thus, as can be
seen from Eq. (7.100), the effects of finite ion Larmor radius to the second order

and/or parallel electron dynamics remove the Alfvén continuum and replace it
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by a discrete spectrum of the kinetic Alfvén wave. Such a spectrum can easily

be found in the two following cases.

Consider a completely filled plasma waveguide. The boundary condition

(3.8) and Eq. (7.97) imply

<}54 = 9152 =0 at A= " (7.102)

Assuming uniform equilibrium profiles, Eqs. (7.99) and (7.100) can be solved in

terms of Bessel functions. The discrete spectrum is then given by

2

2_ CA2 " 2 2f T, 3
© 1+ oy fw ) [1.’-/@*5:(7: i 4‘+3(CA'%!:/“¢)2)];

(7.103)

where the discrete values of the radial wavenumber k, are solutions of the

equation

Jdu k1) =0, (7.104)

which follows from Eq. (7.102). In deriving Eq. (7.103) we have assumed

® << |kl vie and neglected the Landau damping.

Another simple case is that of weakly-nonuniform equilibrium profiles. A
WKB analysis of Eq. (7.100) then yields the following relationship for the

eigenvalues
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M

f;x (Q/CA'&")Q. + (w/wd)a'- 1
o 5 rc/r,: +%(wﬁk&u)z[" - (lo/,?‘,)d)z]-i

where 1 is a large, positive integer.

Te
AT, (7.105)

It has been shown in Ref. [156] that the inclusion of ion Larmor radius
terms to all orders does not destroy the second-order discrete spectrum,
presented here, provided kj # 0. Moreover, the second-order spectrum has been

found to be a good approximation to the full spectrum even for quite high values

of the radial wave number.
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8. MAGNETIC PUMPING

In this section we shall review the heating rates for various schemes in
which the energy of an excited electromagnetic field is directly absorbed by
plasma species. Since in such schemes the energy absorption is expected to be
rather global the heating rates may be estimated by assuming the equilibrium

plasma to be uniform and currentless.

8.1 Gyro-Relaxation

In this scheme the energy of electromagnetic field is pumped into the
energy of perpendicular plasma motion. The resulting anisotropy is then
relaxed via ion-ion collisions, which leads to the ion heating. The heating rate
for this process has been investigated using different models: single particle [1,
2, 3, 4], fluid [11, 13, 26] and the drift-kinetic Boltzmann equation [5, 48]. The

results obtained may be summarized by the following approximate formula

2y, 2
___d'],:-' = 0.1 (02 % = I; 5 8.1)
dt W™ + Y * B,/ - .

where B)| has been assumed to be a constant independent of spatial coordinates

(low-frequency cutoff field). It is straightforward to see from Eq. (8.1) that the

heating rate over the oscillation period is maximized at ® = vj;.

It should be noted that the fluid limit of Eq. (8.1) can be obtained by
assuming that the electromagnetic energy is transported into the plasma via
the excitation of the fast magnetoacoustic wave which is damped owing to the

ion viscosity. Indeed, invoking the energy conservation, Eq. (7.37) implies
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n ot (8.2)
where W, according to Eq. (7.33), may be expressed as
2
2 k
wW=_L|p| & 8.3)

and 1y is given by Eq. (7.19). Using Eq (7.9) we can rewrite Eq. (7.19) as

2 2
Y, =04 2 (“’)2’&‘
h Vo \Gal g* (8.4)

Subsituting Eqgs. (8.3) and (8.4) into Eq. (8.2) then yields

(8.5)

which is just the fluid limit of Eq. (8.1).

8.2 Transit Time Pumping

This heating method is based on the collisionless damping of
electromagnetic fields due to the Cerenkov resonance. The field energy can be
transported into the plasma in different ways depending on the excitation

frequency, which is considered to be much smaller than ®.;, and the type of

pumping.
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8.21 Compressional pumping

In this scheme the energy of electromagnetic field is pumped into the
energy of some kind of compressional plasma motion. The interaction of such
perturbations with the resonant particles may be adequately described
employing the slab or cylindrical geometry. The pertinent heating rates can
thus be obtained from Eqgs. (6.21) or (6.35). In what follows we shall make use of
Eq. (6.35) and distinguish three cases:

a) For o ~ kyvi; the energy is absorbed by the ions. Using Eq. (3.5) we can

rewrite Eq. (6.35) approximately as

2 2
? ’I ?. w,,,, -6\_)_
ATy M’L QXF[ ’ﬁu"rﬂ]

2
‘:Bul + ’3” - (L) iwn‘;l“ E“l . (8.6)

With E| = 0 the expression (8.6) is equivalent to that derived in Refs. [4, 5].
The effect of E| # 0 has been considered in Refs. [8, 9, 11, 37]. To derive an
explicit expression for P;j in this case one must relate E) to By. This can
easily be done by substituting Eqs. (6.30) - (6.33) into Eq. (7.98) and again
using Eq. (3.5). With the relevant accuracy one finds

:B AW /&"(u«“ Z
"6 2uwa M7+ 4-Z g 8.7

E, =

where Z =Z (-nﬁ ). Inserting Eq. (8.7) in Eq. (8.6) and making some

rearrangements one obtains
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[ (1+m/m)" ] ©8)
x| 1+ /v, +4=-Z |* .

The order of magnitude estimate for the heating rate is then given by

T maT (£))

dt B, (8.9)

where B is the amplitude of the oscillating magnetic field in the vacuum.
Comparing Eq. (8.9) with Eq. (8.1) we may conclude that the transit time
pumping is at least one order of magnitude more efficient than the gyro-

relaxation.

For Te >> T; and ® ~ kjcs the pumping field excites the ion-accoustic wave

which is damped by the electron Landau damping. Since the direct

contribution of B|| - terms to Eq. (6.35) turns out to be negligible one has

{1 0w, 2
’% =1f@'1/z I/&”PZ: /E,,/ .

(8.10)

Using the same procedure as that leading to Eq. (8.7) E; is now expressed

in terms of B)| as

6o () Al (=

Cwg \Me/ - (8.11)

Substitution of Eq. (8.11) into Eq. (8.10) then yields [8, 27, 37]
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. 1/9, 2
= W m B,
k (ziz)’ﬂ(me) o T / ?E.'/ .

In comparison with Eq. (8.9) this result represents an enhancement in the

absorbed power by a factor of the order (To/T;) (m;/me)1/2.

(8.12)

c) The pumping field excites the fast magnetoacoustic wave whose energy is

absorbed by the electrons. Assuming vie >> ca one finds

A, ¢t

=-1+B n-s
E, =-43, CwWe (8.13)

Inserting Eq. (8.13) in Eq. (6.35) thus yields [25, 51]
v/
,375/2' w” m. T /:Bu/z

e o'e 1= . 8.14
2 !fzul nyfe :BO ( )

If w is close to an eigenfrequency of the plasma column (magnetoacoustic

resonance) B) may be estimated using Eq. (7.24) to be

CA

M CA
Me e (8.15)

B,~3

Combining Egs. (8.14) and (8.15) one obtains the order of magnitude

estimate [27, 51]

[y ~N 2
=~ R (8.16)

N

CA
R ~w %,

o
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We note that the heating rate given by Eq. (8.16) is by a factor of the order
(Bo2n(Te)32 larger than that given by Eq. (8.12).

8.2.2 Torsional and toroidal-drift pumping

In this scheme, which is specific to toroidal syStems, the pumping field
excites torsional plasma perturbations that can interact not only with the
parallel particle motion but also with toroidal particle drift in the
inhomogeneous magnetostatic field. To obtain the pertinent heating rates it is

convenient to make use of the drift-kinetic equation, Eq. (4.47).

We adopt a cylindrical coordinate system (e_ﬁ, e—;, e_z)) in a toroidal

configuration with z as the symmetry axis. The magnetostatic field is assumed

to be of the form

- »Po >
Bo =371 —ﬁ_ a? ) (8.17)
while the unperturbed distribution function of a plasma species is taken to be a

uniform Maxwellian. The solution of the linearized Eq. (4.47) is then obtained

as

f =A Y E‘P'wl + Ez( J.z/2+47:;2)/?w,,
T e R4 (V207 Re 818

where the perturbations have been decomposed into modes exp [ i(ng + k;z)]
and By has been set to zero. Substituting expression (8.18) into Eq. (4.48) and
carrying out the time average yields the power absorption density
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P Fl ¥ (8.19)
{ Ey 4 + *’ch(‘f"“w’ )/ '

which is an analogue of Eq. (4.64).

a)

The following two cases may now be distinguished:

For o ~%Vti (torsional pumping [19 - 21]) the last term in the argument of

the Dirac function may be neglected and Eq. (8.19) implies

1o 2 2
B ) g

wR L’R 2
—_—F 4
m Y B ( * IR ) l (8.20)

The component E¢ can be expressed in terms of E, using the equation of

charge quasineutrality. Since the electrons may be considered adiabatic

[11] this equation takes the form

: (8.21)

eme s m don
e

Inserting expression (8.18) in Eq. (8.21) one obtains
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E 4 o
E = m r _ [ 1 Ro ¢ ]
f Ru T+ 41-Z (Z )m"' Q‘sz y (8.22)

where Z =Z (0R/Inlvi;). Combining Egs. (8.20) and (8.22) then yields

(8.23)

where E; has been eliminated in favour of By using Eq. (3.5). If Bl and
IBR| are of the same order, the heating rates given by Eqgs. (8.8) and (8.23)

are of the same order as well. However, on performing an optimization it

b)

has been shown [19] that the torsional pumping can be by a factor Ry/rp

more efficient than the compressional pumping.

For n = 0 and @ ~ k;viipi/R (toroidal-drift pumping [38, 39]) Eq. (8.21)
implies E¢ = 0, and Eq. (8.19) yields

2
P b m T xS peZm/-;;-/

o wwo;R)””
T 1A,

(8.24)
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where E; has been eliminated in favour of £€g using Egs. (4.9) and (4.15).
Noting that |Eg/R| ~ B /By it is easy to show that this heating rate can be a
few times larger than that given by Eq. (8.23).
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9. ALFVEN RESONANCE HEATING

In this section we shall review the heating schemes for which the
frequency of an excited electromagnetic field lies within the continuous
spectrum of the Alfvén wave or just below its minimum (see Eqs. (7.73) and
(7.74)). Since in such schemes the inhomogeneity of an equilibrium plasma and
the presence of an equilibrium current play an essential role it is in general
difficult to treat the entire linear problem, formulated in Section 3, by analytical
means. As already mentioned in that section a starting point for a numerical
treatment is the weak variational form of Eq. (8.1). The two most important
cases of such form, considered in the literature under review, may be

expressed as follows:

a) Cylindrical geometry - Hot colhslonless plasma (Eq 6.30))

~ ~ >
x L “ dE £ dE
f«d[("ﬁvf)*“ JdE | £ FrE £.4E
‘g"‘ :’ ?("’ dE a-l-E) /
-V, = . d._-[- ‘- r
d =4, (9.1)
2rs > * C :{ - I
_ e + 4 =
[EX )]4, =t 4 W (EXB),VV NeA 4o )

r

where Bin the last term is given by Egs. (5.26) and (5.27), and r, — 0.

3

b) Toroidal geometry - Cold plasma with an equilibrium current

Joo gt we8)-£:2 245 fdzg_g v,

0

1o (9.2)
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where € is given by Eq. (6.42) and ® by Eq. (5.46).

For numerical purposes Egs. (9.1) and (9.2) are approximated by the finite-
element method. The details of the procedure can be found in Refs. [165, 166,
178].

Once the solutions of Egs. (9.1) and (9.2) are obtained the power absorption
can be calculated using Eqs. (5.28a) and (5.53).

9.1 Resonance Absorption

It has been noted in Section 7.3.2 that if an excited wave field meets the
condition for the Alfvén spatial resonance its energy is absorbed around the
resonance layer owing to the Alfvén resonance damping. Provided that certain
other conditions are met (they will be discussed in Section 9.2) this property of
the cold plasma (or MHD) model can be used to calculate the total absorbed
power without specifying a dissipation mechanism. One thus obtains what is
referred to as the resonance absorption. The following two cases may be

distinguished.

9.1.1 Surface modes

In this scheme the electromagnetic energy is transported into the plasma
via the excitation of the first radial, m # 0 modes of the fast magnetoacoustic
wave. The work on the resonance absorption of such modes may be divided into

the following categories depending on the methods and plasma models used:
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analytical — MHD [61, 62, 65, 77, 89, 98], cold plasma [96, 135, 136, 147, 153],
numerical — MHD [75, 83, 84, 87, 103, 109, 111], cold plasma [56, 119, 126,
130, 145, 171, 172].

The essential features of the analytical estimates can be illustrated on a
simple representative example for which the results may be obtained in a
closed and explicit form. Consider again the case described in Section 7.3.2,
Eqgs. (7.92) - (7.94). In the region re <r < rp, the solution of Eqs. (7.93) and (7.94)
(matched to the solution of these equations in the region of the constant density)

may be written in the form

W gn_l + |m ) 9.3)
E=hm & ¥ (A @ . A(v‘)
B B (v ) | (9.4)

According to Eq. (3.12) the total absorbed power is given by
(a4
‘P.___ - (9.5)

Substitution of Eqgs. (9.3) and (9.4) into Eq. (95) then yields

2

2
P- J}L;wm’(%q)(%) 13,,(*,\// W >/£;CA .
(9.6)

Comparing Eq. (9.6) with Eq. (8.9) we may conclude that the resonance

absorption is by a factor of the order B,2/n,T; more efficient than the transit



time pumping. Moreover, Eq. (9.6) indicates that the absorbed power is of the

same order of magnitude as the circulating power.

In order to make expression (9.6) explicit one has to relate By (rp) to an
antenna current. This can easily be done by substituting Egs. (9.3) and (9.4) into

Eq. (6.26). Considering a pure helical antenna and assuming ry — o one finds

2 g%+ ,2 ~
B, () = .‘ﬁ:_fefic_i( ﬁ_)'m' b

D 4y c “6) 9.7)
where
Y s ) C
D= w1—2,$;C:+,{Jlel (%-4)( - '& ) ;CA . (9.8

As can be seen from Eq. (9.8) the amplitude of B (rp) is strongly enhanced if ®

coincides with the frequency of the surface eigenmode, Eq. (7.96). Combining
Egs. (9.6) - (9.8) then yields

2
P= 2 wl, [’r m'I]
;.-'"‘e (7‘”9 < 1’ 9.9)

where Eq. (5.29) has been used. In general, Eq. (9.7) indicates that the absorbed

power decreases as the distance between the antenna and plasma increases. A
further reduction of the power is brought about by the presence of a wall
(rw # =) owing to the excitation of image currents. Using Eq. (5.26) it can easily

be shown that the power is reduced by the factor

2|m| 2

1- M /r)

- 2|m|
. (,fl.’/,,w) m (9.10)
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Let us now turn our attention to the numerical work. We begin by
reviewing the results obtained using an MHD cylindrical code [84]. The
characteristics of the system considered are chosen as follows: ny(r) = n, [1 -
0.99 (r/rp)2], j: = Ez) jo €Bo (0)[1 - (r/rp)2] /47 rp, pure helical antenna with m =
landI=rpcB,(0)/4n,ra=12rpand ry = 1.5 rp. The quantities ny, Bo(0) and
rp are scaled out, and the free parameters jo» @, ® and k, are varied within
certain ranges. The results are presented in terms of P/PN, where PN =

L,rpc, (0) B,2(0) / 4x.

A typical result is shown in Fig. 9 for the case j, = 0.6 and a = 2. Plotted in
this figure are the absorbed power (solid lines) and quality factor, Eq. (3.14),
(dashed lines) versus k; for the three fixed positions of the resonance surface:
rg = 0.3 rp, rs = 0.5 rp and 15 = 0.8 rp It is easily seen that for each surface the
absorbed power has a maximum, M(rg) , at a definite value of k,. At the same
time, the corresponding quality factor is reasonably small, which implies a
good coupling. Moreover the plot indicates that for given characteristics of the
system (except for ® and k;) there exists an optimal resonance surface
associated with a maximal absorbed powef, max M(rg). In order to find the
position of this surface, M (ry) is plotted versus rg as shown in Fig. 10. One sees
that for the case considered the optimal surface is located at rg ~ 0.4 rp. The
corresponding value of k;, is found to be k,rp = 2.5. It has been shown that when
this optimum occurs @ coincides approximately with the frequency of the

surface eigenmode.

The dependence of the optimal absorbed poWer on the characteristics of the
plasma equilibrium has been investigated. Figure 10 shows the quantity M(rg)

versus rg for different values of j, in the case where a = 2. One notices that for a



fixed current profile, the position of the optimal resonance surface is shifted
towards the plasma axis when the current increases. At the same time the
optimal absorbed power is enhanced. The dependence of the quantity M(rg)
upon the current profile, the total current being fixed, is demonstrated in Fig.
11. It is seen that the optimal resonance surface is shifted towards the plasma
axis when the current profile is steeper. For a very peaked current the energy

absorption appears to be equally good for all inner surfaces.

The effects of toroidal geometry on the above picture of resonance
absorption have been investigated in Refs. [87, 109]. It is shown that for a
circular cross-section the overall coupling is much the same as that obtained
from the cylindrical model except for some additional resonance surfaces
which may be excited due to the interaction of different poloidal modes (cf.
Section 7.3.1). However, non-circular cross-sectionskmay introduce additional,
larger deviations. As an example, ellipticity is discussed in detail using the

Solov'ev equilibrium which, in the coordinate system of Section 8.2.2, is

described by

% [ R2® 4 (pro: 2]
Y S’; RX L(1+€)? * ?(P-P‘) ) 9.11)

where y; is the flux at the plasma surface which is inversely proportional to qq,
the safety factor on the axis, p, is a length characterizing the plasma minor
radius and ¢ is a dimensionless parameter which measures the ellipticity of
the cross-section. To separate elliptical and purely toroidal effects, a lar/ge-
aspect-ratio torus is considered, pp/ R, = 0.0055, with q, = 0.02 and a (m = 1,
n = 100) excitation. In Fig.12, the flux-surface-averaged y-component of the

Poynting vector is plotted versus the radial coordinate, s = (y/Ayg) /2, for



different values of €. This graph shows evidence of an edge absorption problem.
One sees that for a modest ellipticity of € = 0.25, 7% of the energy is deposited in
- the immediate neighbourhood of the plasma edge. For an ellipticity of the order
of 0.5, which is approximately that of JET, 25% of the energy is deposited near
the edge. For even higher ellipticities, more than 50% of the energy goes to the

plasma edge.

The importance of the finite w/w,; effects on the resonance absorption of
the surface modes has been demonstrated in Ref. [119] using the cold plasma
model with an equilibrium current in the cylindrical geometry. An illustrative
example is shown in Fig. 13 for the case j, = 0.6, & = 2, m = — 1 and korp =-2.5,
the characteristics of the system considered being the same as in the MHD
limit (see above). Plotted in this figure is the absorbed power versus the position
of the resonance surface for different values of w/w¢. One observes that a
dramatic modification of the MHD picture occurs already for rather small
values of w/mw¢. A distinct maximum at w/w¢ = 0.075 corresponds to the

resonance with the surface eigenmode.

9.1.2 Cavity modes

In this scheme the electromagnetic energy is transported into the plasma
via the excitation of higher radial, m # 0 modes and all m = 0 modes (there is no
surface mode for m = 0) of the fast magnetoacoustic wave. On using simplified
models, analytical estimates of the resonance ahsorption of such modes have
been obtained in Refs. [81, 82, 86, 114, 157]. Numerical computations based on
more realistic models have been carried out in Refs. [119, 157]. Below we
present some representative examples obtained in Ref. [119] using the cold

plasma model with an equilibrium current in the cylindrical geometry.



The characteristics of the system considered are again the same as in the
foregoing section. In order to assess the main differences between the
resonance absorption of cavity modes and that of surface modes, the
resonances of absorbed power corresponding to the excitation of the first and
second radial eigenmodes are followed in the wk,-space. Figure 14 shows the
absorbed power (a), the resonance width (b) and the position of resonance
surface (c¢) versus k, for the case j—;, =06, a0 =2 m=1and w/wc; = 0. The
resonance width Aw is defined as the full width at half power and the quantity
w/A® can be interpreted as the cavity Q. One may note the following typical
features. The power deposited by the cavity mode appears to be much higher
than that deposited by the surface mode. On the other hand, the resonance
width of the second mode is much narrower than that of the first one, implying
a high cavity Q (hence the term cavity mode). The most important issue,
however, are the positions of resonance surface. The power of the cavity mode

is deposited near the plasma edge.

The finite w/w¢; effects on the resonance absorption of cavity modes are
illustrated in Fig. 15. The parameters used are the same as in Fig. 14 except
that w/wci = 0.3. Plotted in this figure are also the same quantities as in Fig. 14
but only for the second radial eigenmode. Comparing Figs. 14 and 15 one may
conclude that the w/w,; effects tend to reduce the absorbed power and to broaden
the resonance width. The position of resonance surface appears not to be

affected significantly.



To obtain a physical picture of the resonance absorption and to treat more
general cases for which the cold plasma approximation breaks down, one has
to use more realistic plasma models that include dissipation mechanisms.
Such models also allow one to calculate the absorption of global eigenmodes of

the Alfvén wave and, in general, the radial profiles of power deposition.

If the plasma considered is hot enough such that o < kj vie, an appropriate
model to be used is the one described by the dielectric tensor operator given by
Egs. (6.30)-(6.33). For relatively colder plasmas with o >> kj vie , it is sufficient to
adopt the two-fluid model that includes collisional dissipation (for example Egs.

(6.5)-(6.7)) [53, 138].

Let us first elucidate the physical mechanism of the resonance absorption
in hot plasmas. This problem has been addressed analytically in Refs. [51, 66,
72, 73, 92, 96, 148, 160]. Here we shall follow the argum”entation given in Ref.
[73].

Consider the region near the resonance layer where the electromagnetic
field may approximately be described by Eq. (7.100) in the slab geometry.
Generalizing this equation for the case of arbitrary profiles of the equilibrium

quantities we obtain

* [ d* w ¥ Tdé,
zrz?[ MA\ ?ot'x% atx[ 151 ]EI""O' o

In writing Eq. (9.12) we have assumed o << w¢j, ky << d/dx and neglected the

Landau damping.
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To proceed further we expand the equilibrium quantities in Taylor series
about the resonance point x = xg, where w2 = k;2 ¢, 2(x¢), and retain only the
leading-order terms. Introducing the notation Ll =d lg n//dx, p 2 - pi2
(Te/Ti+3/4) and & = (x - x5)/p 3 L1/3 we reduce Eq. (9.12) to a simple form

O(QE,( L 2/3
() B

where E,is an integration constant representing the source field associated

with the fast magnetoacoustic wave.

The general solution of Eq. (9.13) can be expressed in terms of the Airy
functions. Here, however, we are only interested in the asymptotic solution for
€] >> 1. To determine it we must specify appropriate boundary conditions. If
the resonance layer is far enough from the plasma centre and/or the damping
is sufficiently strong so that the wave propagating towards high-density side is
absorbed before reaching the centre, the pertinent boundary condition for £ > 0
is to accept only the outgoing wave. For £ < 0 the boundary condition is simply

that the field be finite at £ —--, The asymptotic solution can then be written as

Feft 5 g™ 2] o

E, =
(_é_)%_%  f<o.

9.14)



The term containing the exponential function represents the kinetic Alfvén
wave while the remaining terms represent the field of the fast magnetoacoustic

wave.

Thus, in hot plasmas the resonance absorption is a manifestation of the
mode conversion of the fast magnetoacoustic wave into the kinetic Alfvén wave
which is then absorbed by the electrons via the Landau damping. Since the
solution for § < 0 in Eq. (9.14) is identical to that obtained under the cold plasma
approximation, the total absorbed power remains unchanged from the previous
resonance-absorption calculations. If, however, the kinetic Alfvén wave
reaches the plasma centre, the above picture breaks down and the absorption

must be calculated using the hot plasma model.

An argumentation similar to that just described can also be put forward
for the case when @ >> k| vie at the resonance layer. In this case the fast
magnetoacoustic wave is found to be mode-converted into the quasi-electrostatic
surface wave, Eq. (7.15), which propagates towards the low-density side. If this
wave does not reach the plasma edge, once again the total é.bsorbed power is the

same as that obtained from the cold plasma calculations.

In general, the quantitative description of Alfvén resonance heating
schemes by means of the hot plasma mode! can only be accomplished
numerically. The results of such treatments, using various approximations to
Egs.(6.30)-(6.33), have been reported in Refs. [85, 90, 92, 94, 104, 107, 112, 121, 123,
139, 154, 161, 162, 168, 175, 177, 181-184, 201, 202, 204).Below we present some
representative examples obtained using the numerical code ISMENE

[178],which is based on Eqs.(6.30)-(6.33) in their completeness (see also Eq. (9.1)).



Let us first consider the frequency range of surface modes which is typical
for plasmas of a medium size tokamak (TCA [179] ). The characteristics of the
system used for the computations are chosen as follows: deuterium plasma,
Ro=65cm, rp=18cm, k; =-0.08 cm~, m=-1, 0 = 1.9 x 107 sec”}, n, (r) = n,
[1-0.98 (r/rp) 21 %7, Te i = Teo,io [ 1 - 0.84 (x/rp) 2] 2 with Te, = 800 eV and T, =
500 eV, Boz = 15 kG, joz (r) = joz [1 — (r/rp) 212 with an amplitude joz such that the
total current is 120 kA. As a result of these parameters the safety factor has the
values q (0) = 1 and q (rp) = 3.

Shown in Fig. 16 is the total absorbed power versus the density on the axis.
One can distinguish essentially four different excitation regimes denoted by
GEAW, KAW, CONT and SQEW. The waveforms, Im E,, and the profiles of
power deposition, Eq. (6.35), corresponding to these regimes, are plotted versus

radius in Fig, 17.

At the lowest density, n, = 2.61 x 1013 cm™ 3, the plasma responds with a
high quality resonance owing to the excitation of the fundamental global
eigenmode of the Alfvén wave (GEAW). Having its frequency below the
minimum of the Alfvén continuum, this mode can correctly be situated even
with the cold plasma model (see Section 7.3.2). However, as mentioned earlier,
the power absorbed at this resonance can only be obtained from the hot plasma

model. We note that the corresponding power deposition profile is rather broad,

Fig. 17(b).

The next peak denoted by KAW (kinetic Alfvén wave) is situated within the
Alfvén continuum and cannot be found there with the cold plasma model. This
resonance is due to the excitation of a standing kinetic Alfvén wave which is

established between the mode-conversion layer and the plasma centre, Fig.
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17(a). In this regime the absorption profile is also rather broad as can be seen

from Fig. 17(b).

At higher densities, indicated by CONT (continuum) in Figs. 16 and 17,
the mode-converted kinetic Alfvén wave does not reach the plasma centre and
therefore cannot establish a standing wave. Under these conditions, as
discussed earlier, the total absorbed power can be calculated using the cold
plasma model. To obtain the corresponding power deposition profile, however,
one has to use the hot plasma model. Notice that in this case the absorption is

somewhat localized near the conversion layer, Fig. 17(b).

Finally, at high densities the total absorbed power exhibits a peak denoted
by SQEW (surface quasi-electrostatic wave). In this regime, the conversion
layer is situated near the plasma edge, where ® >> kj vte, so that the fast
magnetoacoustic wave is mode-converted into the surface quasi-electrostatic
wave, which establishes a standing wave between the conversion layer and the
plasma edge. Once again the power absorbed at this resonance can only be
obtained from the hot plasma model. The corresponding absorption profile is

very narrow and situated close to the plasma edge.

In large tokamaks, Alfvén resonance heating may also be accomplished
by using the frequency range of cavity modes that lies below the ion cyclotron
frequency. The overall picture of this scheme within the context of the hot
plasma model is similar to that of the frequency range of surface modes. There
may be, however, one noteworthy exception if the applied frequency coincides
with the eigenfrequency of a cavity mode. It has been noted in Section 9.1.2 that
in this case the Alfvén resonance layer (the mode-conversion layer in the

present context) is situated near the plasma edge. It can then occur that the
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power absorbed near the resonance layer via the mode conversion is smaller
than that absorbed directly via the magnetic pumping in the plasma interior
(cf. Eq. (8.16)). An example of such a case is presented in Fig. 18 for the
following PLT characteristics: hydrogen plasma, R, = 130 cm, rp= 40 cm, k; =
-77%102 0=1.6x108sec1, no=1014cm 3, Tey = Ty, = 2 keV, By, = 40 kG,
the remaining parameters being the same as those for TCA. Shown in Fig. 18
are: (a) the real parts of the wave electric field components and (b) the power
deposition profile and the total energy flux, S, + St, versus radius. The kinetic
flux, Sq, is calculated using Eq. (6.24). Figure 18 (b) clearly demonstrates a

predominance of the magnetic pumping over the mode conversion.
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The frequency range considered for the use of Alfvén resonance heating
schemes in present-day devices does not lie far below the ion cyclotron
frequency. It could therefore be expected that these schemes have certain
features in common with those in the ion cyclotron range of frequencies. In
this section we shall very briefly comment on the relation between these two

kinds of heating schemes.

In most of the scenarios of both kinds the electromagnetic energy is
transported from the antenna into the plasma via the excitation of the fast
magnetoacoustic wave. As far as the electrons are concerned this wave may

undergo two types of interaction:

1) Its energy is directly dissipated through the Cerenkov resonance.

2) The wave is mode-converted into a quasi-electrostatic wave whose

energy is then absorbed via the Landau damping.

The first type of interaction is the same in both kinds of heating schemes.
As for the second type, however, there is a slight difference: while in the low-
frequency range the fast magnetoacoustic wave is mode-converted into the
kinetic Alfvén wave, in the ion cyclotron range of frequencies this wave is

mode-converted into an ion Bernstein wave.

Regarding the ions there is a considerable difference between the two

kinds of schemes. In the Alfvén resonance heating the electromagnetic field
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does not interact with the ions at all (except possibly via collisions). On the other
hand, in the ion cyclotron range of frequencies the interaction of the wave field

with the ions is mostly rather strong. One can distinguish two generic cases:

1) The first or higher harmonic heating in a single-ion-species plasma.
In this regime the energy of the fast magnetoacoustic wave is absorbed through
the first or higher harmonic cyclotron damping. The coupling to the Bernstein

wave is weak, but nonetheless has an important influence on the absorption.

2) The minority fundamental heating in a multiple-ion-species plasma.
In this regime the fast magnetoacoustic wave is mode-converted into the
Bernstein wave at the ion-ion hybrid resonance (an analogue of the Alfvén
resonance) which, if the minority ions are sufficiently dilute, occurs near the
fundamental cyclotron layer of the minority ions. This wave is then absorbed

through the fundamental cyclotron damping.

It is worth pointing out that, in the slab geometry, the description of
heating in the ion cyclotron range of frequencies can be accomplished using the

hot plasma model presented in this review.



11. CONCLUSIONS

The present state of affairs in the linear theory of magnetic pumping and

Alfvén resonance heating has been assessed.

One of the main conclusions is that the Alfvén resonance heating schemes
are in general superior to the magnetic pumping schemes. In the former, the
absorbed power may attain the magnitude comparable to that of the circulating
power while in the latter it is typically much less. An exception is the case in
which the applied frequency is close to the frequency of an eigenmode of the fast
magnetoacoustic wave. The power absorbed by the electrons via Cerenkov

resonance can then be comparable for both types of schemes.

Further, it appears that an accurate description of plasma heating by low-
frequency waves can only be accomplished by numerical computations. The
most advanced tools in this respect are cylindrical codes based on the hot
plasma model. On the other hand, the codes which treat a tokamak in toroidal
geometry are less advanced: the physics involved is at most that of the cold

plasma model. Thus, what is missing at present is a toroidal kinetic code.

As far as nonlinear theory is concerned, only a few aspects have been
addressed up to now: modifications of linear damping rates due to finite wave
amplitudes have been estimated in Refs. [12, 55, 216] using the quasilinear
approximation and in Refs. [15, 21, 25, 100, 124] using a single-wave
approximation; parametric instabilities have been treated in Refs. [73, 74, 95,
97]. Thus, one may state that a comprehensive picture of nonlinear effects is

not available as yet.



The results of experiments that have been performed so far may be very
briefly summarized as follows. In regard to the antenna impedance (its overall
value and the positions of peaks corresponding to the excitation of eigenmodes)
there is a good agreement between theory and experiment (see, for example,
Refs. [145, 179]). In the plasma, the mode conversion of the fast
magnetoacoustic wave into the kinetic Alfvén wave has been seen
experimentally [194, 195], but there has been no demonstration of significant

heating as yet.
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In this Appendix we outline the derivation of the operator presented in

Section 6.2, Egs. (6.20) - (6.33).

The starting point is the linearized Vlasov equation, Eq. (4.49):

lwv)f q’ B,'-?;_fé .?i(a /_i;xg) af (A1)
o m

-
where By is given by Eq. (6.25) and the equilibrium distribution function

satisfies

-99:]5

vl + LRE. D0 e

We adopt the magnetic coordinate system, Eqgs. (6.26) and (6.27), and set

-

= /U’(e cosd + @, sl ) + /v,,’ . (4-3)

Moreover, we assume lbgl << 1 and confine ourselves in the subsequent
analysis to the first order approximation in Ibg!. Equation (A.2) is thus

transformed into

_ Siwdk 9 a)__ 2)(_‘_’_ (A.4)
<co50( ’Mr ’V'Tb% W, 3 0,
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with ¢ being constant. The solution of Eq. (A.4) valid up to first order in &, (cf.
Eq. (6.13)), which is the approximation we wish to consider, is given by

f F+ sond ;’F y (A.5)

where F is an arbitrary function of v, vj and r. For our purposes it is sufficient

to consider only

7
F=F(%r), o's [mf+ (45-,%)2]/)2 (4.6

where u is a drift velocity related to the equilibrium current.

Likewise, performing the Fourier decomposition Eq. (A.1) is transformed

into

5% +ilo k) o [ind (13-4 ) -t 5]

> - >
-AN= % 1 ?J0
....A= 'k[E'l‘"""an (VXE)]' —
m Al
(A.7)
S
where B has been eliminated via Faraday's law and the quantities k| and k;

are defined by Eqgs. (6.26) and (6.34). The aim is now to obtain , using a
perturbation method, the solution of Eq. (A.7) valid up to dp and 82¢ (cf. Eq.

(6.12)).

Since f; must be periodic in o we can write it as a Fourier series
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and the same is true for A. Inserting the expression (A.5) into the right-hand
side of Eq. (A.7) we can separate order by order and perform the Fourier series
decomposition. Before doing this, however, it is convenient to transform Eq.

(A.7) into a frame of reference moving with the velocity u. We then have

A;;’=,,-z;::%ﬂ{%[e,,(aﬂus.wi(s.q-awz(Am

where 89 =3y g is Kronecker's delta. In writing the expressions (A.9) - (A.11)

we have omitted contributions that are not needed in subsequent calculations.

Finally, substituting the expression (A.8) into Eq. (A.7) and separating

different orders we obtain a recursion relation
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where
"QL = CO"/&, (4);1"/‘@)—/2‘0& y (A.13)

and

-+

L; = 5;', +/£ + "’(’7 L) . (A.14)

For j= 0, the recursion relation simplifies to

f @ A, (A.15)

and after a little algebra
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Having found fj to the desired order we can calculate the induced current

density. According to Eq. (4.50) we have

> s (o (of)e +i(f-f)e
- s o [ (G4 L)
(A.18)

+2(¢+M)£Z,},

Once the current is known the dielectric tensor operator can be determined

from the relation (3.2).

In order to perform the velocity integration in Eq. (A.18) we need to
specify the equilibrium distribution function F(v',r). For our purposes we
assume this function to be a Maxwellian with ng and T being arbitrary
functions of r. We now combine Eqgs. (A.9) - (A.11) with Eqgs. (A.15) - (A.17). On
substituting the resulting expressions into Eq. (A.18) we can easily evaluate the
integrals over v,. In fact, only a few v -moments of the Maxwellian are
involved. The integration over v| , however, is more complicated. We have first
to decompose various products of the denominators Q-1y in terms of irreducible
fractions. When this is achieved all the integrals in question can be represented

by the plasma dispersion function and its derivatives.
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For the ion species we set u = 0 and for the electrons we neglect u
compared with v¢ and w/kj everywhere except for the last term in Eq. (A.10).
Moreover, from the terms of O (3,) we only retain those corresponding to the
Cerenkov interaction. After considerable manipulations, we thus arrive at the

expressions given by Egs. (6.30) - (6.33).
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Plasma-antenna-wall configuration in the cylindrical geometry.
Slab configuration.
Toroidal configuration.

The frequency spectrum of a plasma cylinder as a function of the
axial wavenumber k,. For the two azimuthal wavenumbers m = + 1,
the lowest radial modes of the fast magnetoacoustic wave are
designated as F; and Fg, those of the Alfvén wave as A1. The broken
line A represents the accumulation point of the eigenfrequencies of

the Alfvén wave. The symbol S stands for "surface eigenmode".

The wave field of the surface eigenmode in a plasma cylinder as a
function of radius. The three figures for different axial wavenumber
k; illustrate the metamorphosis of the global mode Fi,m = -1 (at

k,rp = 0.4) into a surface-confined mode S (at k,rp = 1.5).

The radial wavenumber squared and the frequency of the surface
mode as a function of the axial wavenumber k, for different wall
positions ry. The accumulation point of the eigenfrequencies of the

Alfvén wave, A, , is shown with a broken line.

The frequency spectrum, x = w/®¢, of a currentless plasma cylinder
with parabolic density profile as a function of the axial wavenumber

k,. The upper and lower bounds of the Alfvén continuum are shown



Fig. 8

Fig. 10

Fig. 11

Fig. 12

161

with broken lines, xA(r = rp) and xA (r = 0) respectively. Only the most

important modes, F1, S and A; are shown.

The frequency spectrum, x = w/w., of a current-carrying plasma
cylinder with a parabolic density profile as a function of the axial
wavenumber k,. The Alfvén continuum is characterized by the
values of x4 in the center r = 0 and at the plasma edge, r = rp. In the
region ~ 0.8 < k,rp < 0.3, xA(r) is not monotonous in r and has a
minimum which is also shown, The stable global eigenmodes of the
Alfvén wave are connected with the unstable kink (A1) and the
internal kink (Ag, Az) modes. The surface mode (S) is only slightly
affected by the current.

Absorbed power (solid lines) and quality factor (dashed lines) versus
k, for different positions of the resonance surface. The parameters

used are: jo=0.6 and o0 = 2.

Maximal absorbed power, M(rg), versus the position of resonance

surface for different equilibrium currents of the same profile (o = 2).

Maximal absorbed power, M(rg), versus the position of resonance

surface for different profiles of the same equilibrium current.

Flux-surface-averaged y-component of the Poynting vector versus
radial coordinate, s, in large-aspect-ratio tori (pp/Ro = 0.0055) of
different ellipticity, €. All the components for ¢ > 0.5 exhibit steep

gradients near the plasma edge. For the sake of clarity, the
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Fig. 14

Fig. 15

Fig. 16

Fig. 17

Fig. 18
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components for € = 0.5, 1.0 and 1.25 have not been plotted in the

vicinity of the plasma edge.

Absorbed power versus the position of resonance surface for different
values of w/wej. The parameters used are: jo = 0.6, 0 =2, m =— 1 and

kzrp = 2.5.

Absorbed power (a), resonance width (b) and the position of resonance

surface (c) versus k; for the case j, = 0.6, o = 2, m = 1 and w/o; = 0.

Absorbed power (a), resonance width (b) and the position of resonance
surface (c) versus k, for the second radial eigenmode. The

parameters used are the same as in Fig, 14 except that w/w¢; = 0.3.
Total absorbed power versus central density for TCA.

Imaginary parts of the radial component of the wave electric field (a)
and the power deposition profiles (b) versus radius for different

regimes defined in Fig. 16.

Real parts of the wave electric components (a) and, the power

deposition profile and the total energy flux (b) versus radius for PLT.
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