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In this paper, we review the techniques employed in the numerical simulations of
free-electron-laser, in the amplifier as well as the oscillator configuration. Special
emphases are given to the numerical problems associated with the particle initial-
ization (particle loading), the treatment of the paraxial wave equation, the inclusion
of oscillating space charge forces in the longitudinal particle motion and the multi-
frequency modelling. This overview does not however include the particle-in-cell
simulations commonly utilized in plasma physics: Due to the large scale between the
wiggler and the radiation wavelength, this type of technique is impratical for short

wavelength free-electron-laser.
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1. Introduction

One of the most noteworthy aspects of free electron laser (FEL) research continues
to be the significant role of numerical simulation. From the development of the pen-
dulum model of the FEL by Colson [1], and the subsequent [2] formulation relating
the FEL equations to acceleration and particle trapping in an RF linac, numerical
studies have been made to estimate gain, saturation amplitudes, efficiency enhance-
ment, and the influence of beam energy spread and emittance. Simulation codes are
widely used to compare experiment with theory and to design future experiments.
They have also been employed to investigate theoretically predicted, but not yet
experimentally observed, phenomena such as optical guiding,.

Almost all experimental groups utilize simulation based on the nonlinear FEL
equations for amplifier and oscillator systems. Depending on the experimental pa-
rameters, the nonlinear models need to be one-, two- or three-dimensional, with free
space or waveguide boundary conditions. Amplifiers are often studied with single
frequency simulations, but oscillators and amplifiers with sideband growth require
multi-frequency simulations. Good agreement has been achieved between experi-
ments and theory from UV to microwave frequencies.

The purpose of this paper is to provide a survey of FEL simulation techniques,
with an emphasis on numerical problems particular to the FEL, e.g. the solution
of the multi-dimensional paraxial wave equation, the inclusion of oscillating space-
charge forces in the longitudinal particle motion, quiet particle loading, and multi-
frequency modelling. A brief derivation of the well known equations for the FEL is
presented in Sec. 2.

The FEL interaction will bunch the electron beam at the wavelength of the pon-
deromotive beat wave between the wiggler and radiation fields [= (1/A, + 1/A,)71,
where A, is the wiggler wavelength, A, is the electromagnetic wavelength and A, ~
Aw/ 2'y|2| where v = 1/(1 - ﬁ)] The simplest FEL codes model amplifiers in which
the beam is assumed to be periodic in the phase variable 1, i.e., the phase of an elec-

tron in the ponderomotive wave. Particles are loaded between ¥ = —n and ¥ = ,

1



corresponding to one representative ponderomotive wavelength of the beam. The
“time” coordinate for the particle motion is usually the axial position z, not the time
t. Thus the temporal structure of the electron beam is ignored in this approximation.

In the most straightforward one-dimensional approximation the wiggle motion
is assumed to be identical for all particles, the transverse focusing of the beam from
gradients in the wiggler and radiation fields, and all external focusing magnets, is
neglected. The electromagnetic field is assumed to be a plane wave. In the tenuous
beam (Compton) approximation, electrons interact with each other only indirectly,
by coupling to the electromagnetic field through the source term in the wave equation.
With only slight modification, however, the electrostatic forces from beam bunching
can also be included. This inclusion of the electrostatic field is often needed for low
electron beam energy and high current (Raman regime).

The utility of one-dimensional theory can be substantially improved by including
the most important two-dimensional effects. Fill factors for the coupling of a finite
radius electron beam to a waveguide mode or a diffracting Gaussian optical wave may
be calculated analytically and included in a one dimensional theory. This reduces the
coupling since some fraction of the wave power generated by the beam propagates
outside the beam and, therefore, does not act back on it. The modification to the
space-charge electrostatic wave resulting from conducting boundaries can also be
handled by an appropriately calculated correction to the beam plasma frequency.
The influence of emittance is modelled by an effective energy spread.

The details of more complicated multi-dimensional numerical simulations de-
pend, of course, on the parameter regime of the system under study. For centimeter
and millimeter wave experiments the beam often propagates in an overmoded waveg-
uide, and can couple to many waveguide modes. In such cases, the conducting wall
boundaries must be included in the analysis. This can be done either through a
mode decomposition or by solving the wave equation with appropriate boundary
conditions. At short wavelength (< 100u), the paraxial wave equation in free space

must be solved with a two- or three-dimensional simulation. Transverse electron
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orbits with betatron oscillations from the wiggler, external quadrupoles, and guide
fields are readily studied by a separation of scales in which the fast wiggle oscillations
are averaged over. Amplifier models are examined in Section 3.

When the temporal structure of a beam is important, or multi-frequency effects
are investigated, the beam can no longer be assumed periodic in 1 with period 2.
The temporal structure of electron beams in an FEL depend on the accelerator that is
used. RF linacs produce many short pulses of a few picoseconds each, while induction
linacs produce pulses tens of nanoseconds long. The ponderomotive spatial scale is
much shorter, in all but the longest wavelength experiments, than both the wiggler
wavelength or the electron pulse length. More than one ponderomotive wavelength
of the beam must be filled with particles, but it is impractical to fill each successive
ponderomotive wavelength for an optical or infrared laser with a range of pulse lengths
from picoseconds to nanoseconds. In addition, the wave amplitude varies in both z
and ¢, and a partial differential equation must be solved.

The ability to use simulations to accurately predict frequency spectra in oscil-
lators as a function of system parameters and optical and accelerator noise, cavity
tuning and optical insertion devices (such as etalons) is of importance in the design
of the next generation of FEL facilities [3]. The techniques associated with multi-
frequency simulations are discussed in Section 4.

This paper does not treat one area of FEL simulations: those based on particle
in cell plasma codes. Electromagnetic plasma codes have been examined in numerous
texts and, because of the large separation of scales between the wiggler and optical
wavelengths, are not practical for a short wavelength FEL. Our emphasis on numerical
technique has allowed for little discussion of multiple waveguide mode modelling,

which has been treated elsewhere [4,5].



2. Nonlinear Model of FEL

In this section, we derive the system of equations governing the motion of the indivi-
dual electrons and the self-consistent evolution for the electromagnetic fields in a FEL.
The particle equations of motion are obtained from a Hamiltonian formulation. The
equations for the electromagnetic fields are derived from the Maxwell equations with
the slowly varying amplitude and phase approximation. The electrostatic interaction
between the electrons is then included by calculating the longitudinal electrostatic

field of the bunched electrons and including this field in the energy evolution equation.

2.1. Single particle motion

For simplicity, we consider in this work only a circularly polarized magnetostatic
wiggler. The resulting equations for other types of wigglers are formally very similar
to those employed in this paper and can be found, for example in [1] for the linearly
polarized magnetostatic wiggler and in [6] for the electromagnetic wiggler.

The circularly polarized wiggler and the induced electromagnetic field of the
same polarization are characterized by the transverse vector potential 4| = (Ag, Ay),

which can be written as :

Az +14y = Te—c-(az +iay) = _f'_z_fawe"ik‘“z + D0 g eilkaz—wittsa) (2.1)
e

where ay = aw(z,y,2) and k, = 27/), are the wiggler field amplitude and wave
number, while a, = a,(z,y, 2,t), ¢s = é5(2,y, 2,t), ks and w, are the transverse elec-
tromagnetic field’s real amplitude, phase, wave number and frequency respectively.
The complex amplitude a,e'%: is assumed to be a slowly varying function of the

longitudinal coordinate z and the time ¢ (eikonal approximation):

9 .
< ks, l—ln ase“/"l < ws. (2.2)

pal .
ip,
'Bz In age ot

In the single frequency approximation, the quantities a,, ¢, are independent of ¢.
Assuming that the electrostatic interactions between the electrons can be ne-

glected, the equations of motion for a single electron are completely determined,
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given the transverse potentials defined in (2.1). The Hamiltonian describing the
motion of the particle through the wiggler can then be expressed in the following

dimensionless form:

h(z,pe, Y, Py, t, —7|2) = —\/72 —1—p2—pl—al—a+2peas +pyay). (2.3)

Here, the canonical momenta (normalized to mc) p,, p, and the negative of the
relativistic Lorentz factor 4, play the role of the momenta conjugate to the coordinates
z, y, and ct respectively, with the space coordinate z being the independent variable
(2], instead of the time ¢. In this case, the Hamiltonian k defined in (2.3) equals —p.,

where p, is the longitudinal momentum in units of mc. The Hamiltonian equations

are then:
dp,  Oh dFfy _ Oh  d(~y) Ok  d(ct) Ok (2.4)
dz ~ OFL dz  9F. dz  8(ct) dz  O(—vy)’ ‘

where the ‘L’ symbol designates the z, y transverse components. By taking an
appropriate average of the Hamiltonian h over the wiggler period A, the last term in
parenthesis in (2.3) can be eliminated. Retaining only the first term in the expansion

in 1/ yields:

1+ | + |ao)

o (2.5)

h(2; Pz, Y, Py, ct, —7]2) = —v +

From the expression for the vector potential given in (2.1),
@, ° = a% + a® — 2a,a, cos(8 + ¢,). (2.6)

Here we have introduced the particle “phase” 6, defined by
0(z) = (ky + ks )z — w,t(2). (2.7)

In the case where only one wave frequency is present, the 6 can replace the particle

“coordinate” t(z). From equations (2.4), the averaged motion of an electron in the
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combined wiggler and electromagnetic fields is determined by the following first order

equations:
dpy 1 8lay|?
Pl v =t (2.8.0)
dry  pi
== 7’ (2.8.5)
d Ws .
EZ‘ = ";/z AywQg Sln(g + ¢8)7 (ZSC)
ﬁ:k _oi{1+lpl|2+afu+a§—2awa3cos(0+¢>s) (2.8.d)
dz Yoe 2+2 ’ e
Cl(Ct) P 1+ |p.LI2 + afu + a% — 2ay0a, COS(9 + ¢s) i (2.8.6)
dz 22

In the single frequency approximation, no t-dependence can be found on the
right-hand side of the equations of motion, and thus the last equation (2.8.e) can
be ignored. For time dependent or multiple frequency problems, the z-derivative is

replaced by the convective derivative:

i_2 10 -
in the Eqgs.(2.8.a-d), with 1/4, given by the RHS of (2.8.e).

In the one-dimensional approximation, all the electrons are assumed to be on
ideal orbits with p} = 0. The influence of transverse beam temperature (emittance)
is studied through an appropriately chosen energy spread. In this case, only the
longitudinal equations (2.8.c-d) need to be considered, which results in the usual
one-dimensional FEL equations [2]. The transverse equations (2.8.a,b) describe the
betatron motion in the non-uniform wiggler and can be generalized to take into
account any additional focusing field [7].

Until now, we have neglected the electrostatic interactions between the elec-
trons; but in a low frequency FEL electrostatic effects are important (Raman regime

operation). The above model may be extended to include space-charge effects by in-

serting a longitudinal electrostatic field into the v equation (2.8.c), and omitting the
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transverse electrostatic field as well as the transverse variations of the bunched elec-
tron beam density [8,9,10,11]. With these simplifications of the space-charge force,

equation (2.8.c) is replaced by

d Wy . eF
—d—Z- = —;E Ay sin(0 + ¢5) — mc;’ (2.10)

and the other equations of motion are unchanged. The self-consistent evolution of the
transverse electromagnetic fields a,e*®*, together with the longitudinal electrostatic

field E,, will be considered in the next subsection.

2.2. Field equations

The evolution of the transverse electromagnetic field and the longitudinal electrostatic
field introduced above can be determined from the Maxwell equations, expressed in

the Lorentz gauge:

. 10%) - -
Ve - ;-igt—z A= —,U()J, (211&)
1 62 P
2 —
(v- 12 )a--2, 1)

The transverse current can be constructed by adding the contributions from the
N, simulation particles, each carrying a charge —q¢;:

Np

Tovity == g P B g, v jae - ), (2.12)
<3

=1
where 7 ; = 71;(z) and t; = t;(z) denote the trajectory of the particle j. The
transverse velocities §;;, By; can be related explicitly to the transverse canonical

momenta pz;, py; by
’Y]ﬂz] + Z"}’]ﬂy] — __awe-—lsz + asez(kaz—luhtj‘i'd’a) +p"lfj + Zpy]- (2.13)

The transverse complex field amplitude, as specified in (2.1), is determined by

the transverse part of (2.11.a). Assuming the eikonal approximation (2.2), one can
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write

[V§_+2ik, (88 1—)1—%)] age? = eZO (J +iJy)e” i(ks 2=wst)
9

6ZO ﬂr]+216y] 2/ - ——i(k,z—w,t)
= —3 Z ,@z] —— 2 §5(F — r1;)6(t — tj)e , (2.14)

where v, is the wave group velocity and Z, = poc is the impedance of free space.

In the single frequency steady state 9/9t = 0, the equation (2.14) can be averaged

over the wave period 27/w,. Using (2.13) to eliminate the transverse velocities 3,

By yields:
G : eZol [/ aype= a et
V2 2 ks— 3 id, = — w —_ P A .
[ L BZ]ae me? [< 7B > < V8- >]’ (2.13)

where the particle phase 6 has already been defined in (2.7), and the brackets denote

a sum over the N, particles, which each carry a partial current I/N, = w,q;/2n,

defined as follows: N
1 - — -
()= N D 8 (FL = 7). (2.16)
p j=1

The betatron oscillation terms p,, p, in (2.13) have not contributed to (2.15),
which is consistent with the averaging we performed to obtain the particle Hamilto-
nian in (2.5). Often the last term in the right-hand side of (2.15) is dropped, because
a; < ay, and B, = 1 is used for large . The field equation (2.15) is then reduced to
the more familiar expression found in the literature [12,2,7].

The longitudinal wave equation for the electrostatic field E,=-0A,/0t—0®/0z
can be readily obtained by combining the longitudinal part of (2.11.a) together with
the equation (2.11.b) to yield:

1 8? 1[8p, 18J,
<V2 _"EF)E [az 2 ] (2.17)

The electrostatic field results from the charge bunching in the ¢ = 6 + ¢, space

as described in (2.8.d) and, therefore, can be assumed to be nearly periodic in this

variable [8]. Thus, it can be expanded as a Fourier series:

E,(z,y,2,1) = Z El(x,y’z)e”w' (2.18)

l=—00
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Note that E_; = E} since E, is real, so the expansion can be written as:

E.(z,y,2,t) = ZE[(SI}, y,2)e'™ + c.c., (2.19)

1=1

where we have not treated the (nonresonant) D.C. space-charge component E;. By
taking the Fourier transform of (2.17), and assuming that Ej is slowly varying in z,
one can obtain:

o2 _ 12(ky 42- ks)2] B = U ky + ks) [pz B &Jl] , (2.20)

- €0 c

where B = ws/c(ky + k) = 3., 72 = (1 - B2)~! ~ 42, and p;, J; are the Fourier
components of the density and the longitudinal current density respectively. Using
the same representation for J, as that for J,, J, defined in (2.12), and eliminating
the charge density p; with the help of the continuity equation (with the assumption

that the transverse gradients of the space charge density p are small), the final form

of the wave equation for E, becomes:

2ol

[Vi-#i] Br=—im=ri (™), with w= Wk + k)
p

Tp
An approximate solution of (2.21) can be found by assuming that the electron

(2.21)

beam is axisymmetric and uniform [11]. This yields:
2Z0I N, (sinly) coslep — (cos Ih) sin
=22l fz( ) cos lip — (cos lih) tﬁ,
kw + ks 4 l

where f; is a space charge filling factor which depends on the beam radius ry as:

(2.22)

fi=1— iy Ki(sirp), (2.23)

where K; is the modified Bessel function of order one. With waveguide boundaries
the factor f; may have to be further modified to include reductions in the electrostatic
field strength arising from nearby conducting walls.

Note that from the approximate solution (2.22) (E,) = 0; thus it is clear from

(2.8.c) and (2.15) that the sum of the electromagnetic power

2\ 2
Po = (ﬂ) i// k2a? dedy, (2.24)
€ Zo

and the electron beam power

me?

Py = —I{y~1) (2.25)

should be a constant of motion.



3. Single Frequency Simulations

The single frequency approximation in FEL simulations is, aside from its only mod-
est requirement on computer resources, very important in the designs of FEL ex-
periments. With this type of simulation code, extensive parametric analysis of FEL
performances can be done, even with two-dimensional models [13,14]. It also provides
a tool with which theoretical predictions can be checked, as has been done for the
optical guiding phenomena [15,16].

For the single frequency model, the electromagnetic field amplitude a, and phase

¢s do not depend on time ¢, and the FEL equations can be rewritten as:

_ . L
%2_%%, %: %, (3.1.0)

T =2 euesing+ )20 3 plintilonp - Lol (g
%g k- % 1+ |pu|’ +al, ;j:waa cos(d + ¢s), (3.1.¢)

[22'1%—3% + Vi] a.e'? = —e,fzf <awi—w>. (3.1.d)

In these equations, we assume that ¢, < a,. To be complete, the above set of
equations should be supplemented by both (a) the initial values of the particle phase
space variables (1, v,71, 7)) at the wiggler entrance z = 0, (b) the initial electro-
magnetic field profile a, exp(i¢,), and (c) the field boundary values in the transverse
coordinates 7 .

In the following, we will review successively the different methods for initializing
the particle 6-dimensional distribution, the discretization of the transverse Laplacian
operator V2 , and the schemes to advance the particle variables and the electromag-

netic field along the longitudinal coordinate z.

3.1. Particle loading

The most straightforward implementation of the initial particle distribution function
F(4,~,7L,P1)1is the use of a random number generator. For example, a uniform one-
dimensional electron distribution F(1,+), is implemented with the following simple

Fortran code segment:
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DO 100 IP=1,NPART
PSI(IP) = PI * (2.%RANF()-1.)
GAMMA(IP) = GAMMAO + DELGAM*(2.*RANF()-1.)
100 CONTINUE

where NPART is the number of simulation particles and, RANF is the random num-
ber generator Fortran function (which may have a system dependent name). This
method of particle loading has the obvious advantage of being very simple and work-
ing quite well in a low gain FEL as well as in the near-saturation regime (where
the non-linear effects are very important), even with a modest number of simulation
electrons (NPART < 4000). It fails, however, when one tries to simulate the exponen-
tial growth in a high gain FEL fed with a very low initial (input) electromagnetic
power. The reason for this failure is the relatively high noise level introduced by
the random sampling of the initial particle phase space variables. In order to re-
duce these unwanted fluctuations introduced in the system, an excessive number of
sampled particles might be required.

Another method of loading, which reduces the noise level, yet minimizes the

correlations between the different sampled variables, uses the Hammersley’s sequence,

[17] defined as follows:

{(j—1/2)/N,‘I’2(j),@3(j),@5(j),...,Cbr(j),...}, J=1,...,N. (3°2)
In (3.2), ®,(7) is the radical inversion function in the base of a prime number r:
O.(J)=aor ' +ar 2+, j=ag+art+--- (3.3)

This yields, for example, the set [1/3, 2/3,1/9,1/3 +1/9,...] when r = 3. This
type of loader has been used to obtain quiet starts for particle-in-cell (PIC) plasma
simulations [18].

An implementation of this in Fortran would consist of the following code segment,

which calculates a set of NPART uniform values Y(J) in the interval [0,1]:
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DO 100 J=1,NPART

XS = 0.
XSI = 1.0
J2 =173
110 XSI = XSI/NBASE
J1 = J2/NBASE
XS = XS + (J2-NBASE*J1)*XSI
J2 = J1

IF( J2.GT.0 ) GOTO 110
100 Y(J) = XS

where NBASE is a prime number which corresponds to the base r of the radical inver-
sion function @, defined above.

The differences between these two methods of loading particles are illustrated in
Fig.la and Fig.1b. In the former, the 4096 values z;, y; are drawn from a random
number generator, while in the latter, z; = (j — 1/2)/N, y; = ®2(j) with N = 4096.
It is obvious that the distribution of , y shown in Fig.1b is more uniform than that
represented in Fig.la, where localized bunching can be observed.

A quiet start method of particle loading was proposed in [15]. In this loader,
only a small number (typically four) of particle phases ¢ equally spaced in [—, 7]
are filled with identical particle distributions in the remaining variables (7,7, 7] );
these distributions are sampled, using one of the two methods discussed above. This
quiet start loader is particularly efficient for simulating the growth from a very low
electromagnetic input power, in a high gain FEL (G > 1). The two other schemes
generally fail in such circumstances.

One last particle initialization technique used in the waveguide FEL simulations
[19] should be mentioned in this section. In this method, each of the initial parti-
cle space variables (1,79, 6,) for a cylindrical beam is sampled using the N*! order
Gaussian quadrature points with the appropriate weights. This is possible because,
in the FEL model used in [19] (which is quite different from the one in this paper),
the source terms of the field equations can be expressed in terms of integrals over

(1,70,60). For a cold beam (no spread in v and p ), this technique already requires
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1000 particles for a 10*" order Gaussian quadrature, hence it would be rather de-
manding of computer resources in a warm beam simulation. In addition, any desired
phase-space distribution functions can be easily produced, using either the random
sampling or Hammersley’s sequences (see for example [17,18]), while it is not clear

how to achieve this using this last technique of particle initialization.

3.2. Electromagnetic field calculations

The numerical treatment of the wave equation (3.1.d) and the scheme to interpolate
the field values seen by the particles [Eqs.(3.1.b—c)] will be treated in this subsection.
The methods that we shall present in detail are based on the use of a transverse
spatial grid on which fields (a,, ¢,) and various particle density functions ({sin %),
(coslyp), {(aw exp(—18)/v)) are defined. This approach is similar, in several aspects,
to the PIC method used in plasma physics.

Integrating both members of Eq.(3.1.d) over a “volume” V', bounded by a closed
“area” S, in the transverse space (z,y), and using the Green’s identity and the

definition of the brackets in (2.16), yields:

L d > 2 eZy I "
22’633—; LAdV+LVJ_A'dS——mcz-ﬁ;jgyaw(r_j_])

e—ia,-
Y (s
J

v
where A is the electromagnetic field complex amplitude a, exp(ids) and J denotes
all the particles that are located inside V.

Let us now specialize (3.4) to an axisymmetric electromagnetic field. Divide
the radial axis into N, intervals bounded by Te+1/2, K =0,1,... Ny, with ry ) =0
and Ty, 41/2 = Rmax. The intervals [Fk—1/2Tk+1/2] need not be equal, and the
value of Ry ax is chosen to be much larger than both the electron beam size and the
initial electromagnetic beam radius. Hence, the “volume” V; and the “area” Sy, /2

introduced in Eq.(3.4) can be expressed as:

Vi = (i1 — rE_1/2)s Skt1/2 = 2T k41/2. (3.5)

13



Defining the grid values Ax(z) = A(r, z) where rp = (rp_q/2 + Tk+1/2)/2 is the
mid-point of the interval [ry_; /9, 7k41/2], the first and second terms of the left-hand

side of Eq.(3.4) can be approximated in terms of the grid quantities as

d Tk41/2
2k, — 27r/ Ardr ~ 2ik, th—iﬁ (3.6)
dz re_1/2 dz
and
6LA.d§g5k+l/2_’ft_’Si'_1___A’°_5k_l/2ﬂ_‘_'A_’£:1_ (3.7)
Sh, Tk41 — Tk Tk —Tk-1

respectively. In (3.6), the grid value A is approximated by an average of A over the
interval k, and, in (3.7), the first order finite differences have been used to discretize
the radial derivative.

Substitution of Eqs (3.6) and (3.7) into Eq.(3.4) yields a set of N, ordinary

differential equations for Ax(z):

dA L
_,E. = ¢ Z Mk,kl Akl

dz 2k,
k'=1
i eZo 1 I Lo e
Wm%—ﬁ; aw(""lj) i 3 kzl?"'vNTa (38)

JET: J

where My ;s is a real tridiagonal finite difference matrix:

1 Si— 1 5
Mgy = ____L/z_, M g4 = = _Pk+1/2

; k= Jk— k1.

(3.9)
The boundary conditions, at r = Rpyax, on A are enforced either (a) by setting
Mn, N.+1 = 0 in the case of the natural boundary condition r8.4/8r = 0 (as can be
deduced from (3.7)), or (b) simply by setting Ay, +1 = 0 in Eq. (3.8) in the case of
the essential boundary condition A = 0.

It should be noted that the second term in (3.8), which is proportional to the cur-
rent density of the bunched electrons, can be viewed as a “nearest grid point” (NGP)
charge assignment employed in PIC simulations. In other words, the particle density
1s approximated by a piecewise constant function on the interval [ri_q /2, 7541 /2)> as
is the electromagnetic field (see Eq. (3.6)). Consistent with this, the electromag-

netic field A and the electrostatic field seen by an electron located in the interval
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[7k—1/2, k41 /2] should both be approximated by their respective grid quantities: For
the electromagnetic field, it is just the solution Ay of (3.8), while for the electrostatic
field, which is proportional to the second term of the right-hand side of (3.1.b), the

following relation can be used:

(sin lp) + i{cos lyp) ~ 27 /THW( 1Y pdy = Z e, (3.10)
Vk Tho1/2 VkN JE.7

It can be shown that the balance between the electron beam power defined in

(2.25) and the electromagnetic power written in terms of the grid values as:

N,
m-c
S Vilka AL (3.11)

1s exactly preserved in the numerical model when the charge assignment and the field
interpolation scheme described above are employed [12]. This conservation property
is a very useful diagnostic tool for the simulation code.

The finite difference method presented here can be extended to the two-dimensio-
nal Cartesian case, starting from the wave equation (3.4). It has been considered in

[20], using a five-point finite difference to approximate the Laplacian in Eq.(3.7).

3.3. Higher order schemes

Higher order charge assignment and interpolation schemes can, at least in principle,
be constructed in a straightforward manner. One method is to start from the weak
variational form [21] of the electromagnetic equation which can be derived by multi-
plying Eq.(3.1.d) by a test function G(7 ) and integrating it on the whole transverse

space domain. Applying the Green’s identity would then yield

2ikszg; /Ag dQFJ_—/ﬁ.LA'ﬁ_Lg &7y = —-E-Z-E— Zaw(ru) g(’“J.J) (3.12)

i"-—1

The problem of solving for the field amplitude A can then be stated as follows: For
all “sufficiently smooth” test functions G(7, ), find the field A such that the integral
equation defined in (3.12) is verified. The technique to solve this variational problem,

using the finite elements method numerically, can best be illustrated by considering
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the axisymmetric case. First, the interval [0, Riayx] (with Ry, sufficiently large such
that the electromagnetic field is negligible at r larger than Rumax), is cut into N,
sub-intervals (or elements) [rx_1,7%], £ = 1,...,N,. Assuming that the solution A

is linear on each of these intervals leads to the following formulation for A:

A(r,z) = i Arp(z)Ag(r), (3.13)
k=0

where Aj(2) = A(rg,2) and the real function Ag(r) is the “hat function” which
is zero outside the interval [rr_y,rt41] and piecewise linear inside this interval, as
shown in Fig.(2).

Inserting the expansion defined in (3.13) into the weak form (3.12) and using
the linear basis functions Ax(r) as test functions yields a system of N, ordinary

differential equations for A (z):

N,-1 dAkl N, -1
2tk Z P P Z My g A
k!'=0 k'=0
N .
ey I X e~ 0
_mczﬁp-. aw(r;) fi Ax(rj), k=0,...,N.~1,
J=1

(3.14)
where the matrices Py 3 and My g can be calculated analytically from the following

integrals:

Py = 27r/Ak(r)Ak'(r)r dr,
(3.15)
My = 27r/A'k(r)A',(r)r dr.

Note that the matrices Py, My 1o are tridiagonal, the hat functions Ar(r) being
non-zero only in two adjacent intervals [see Fig.(2)]. Note, also, that in the second
term of the right hand side of (3.14), only particles located in [ry_;,74+1] are taken
into account with their appropriate weight Ax(r;).

The expansion (3.13) should be used, for consistency, for the expression of the
electromagnetic field A in the particle equations. It enables us to evaluate the field

A at any particle radial position. Similarly, the same expansion can be applied to
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the electrostatic terms (cos ), (sin l4)) as follows:

N,—-1

() (r,2) = Y (e )a(2)Au(r), (3.16)

k=0

where the grid values (e*'¥); are computed by inverting the following tridiagonal

system of equations numerically:

N-—1 ) 1 Y
Y P () = o > eiAg(r;), k=0,...,N, -1 (3.17)
k'=0 1=1

The expansion using the linear finite elements as described above, is similar
to the first-order weighting cloud-in-cell (CIC) scheme employed in plasma physics.
Starting from the weak variational form (3.12), higher-order expansions (quadratic
elements, cubic splines etc.) can be derived in a systematic manner, by choosing the
appropriate basis functions.

It is worth mentioning other approaches that use global functions as basis func-
tions in the expansion (3.13) instead of the local functions considered above. In
Ref.[22], eigenfunctions of the wave function (3.1.d) are used in the expansion: Gaus-
sian-Hermite polynomials in the Cartesian (z,y) representation, and Gaussian-La-
guerre polynomials for an axisymmetric FEL configuration. In closed waveguide
FEL configurations in which the full Maxwell equations should be considered instead
of the scalar wave equation (3.1.d), expansions using the TE, TM waveguide eigen-
modes are generally used (see for example [4,5,23]). In general, these methods are
restricted to problems which require expansions with only a few modes, because of
the computational cost in evaluating the complicated basis functions. According to
Ref.[22], the cost of computation is spent mainly on the electromagnetic field calcu-
lations, in contrast with the grid methods in which the CPU time needed to solve the
discretized wave equations (3.8) or (3.14) is much less than that spent in advancing
the particles [12]. In order to reduce the number of terms kept in the expansion,
variants of these spectral methods have been introduced [24, 25]. The thrust of these

methods is to introduce appropriate free parameters into the expansions. They can
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be very accurate, even with a relatively few number of modes, provided that the free

parameters have been chosen well.

3.4. Integration along the longitudinal direction

The treatment of the Laplacian in the wave equation, using either the finite differ-
ences, the finite elements or the spectral methods discussed above, results in a system
of 2N, real first order ordinary differential equations for the grid values (or expansion
terms in spectral methods) of the electromagnetic field. Together with the particle
equations (3.1.a—c), they form a set of 6N, + 2N, ODEs in the most general case, in
which the transverse betatron motion is taken into account.

One way to solve this system of ODEs is to integrate the whole system simultane-
ously using, for instance, the Runge-Kutta method, which is very easy to implement.
More sophisticated integrators have been tried, such as the Gear predictor-corrector
method [26]. These latter types of integrators, which can be found in many numeri-
cal libraries, are, however, very costly in both computer storage and CPU time. For
example, the DGEAR routine found in the IMSL library [27] requires a working array
whose dimension is seventeen times the number of ODEs! In the spectral methods
which require a few modes to represent the electromagnetic field accurately, this is
still affordable. In cases where a large number of grid values for the field (which in
turn requires a large number of simulation particles to generate a smooth represen-
tation of the electron current density), simple schemes are mandatory, specially in
the fully three dimensional codes.

A simple scheme has been proposed in Ref.[12]. In this scheme, the integration of
the 6V, particle equations is performed by a special low storage fourth order Runge-
Kutta algorithm developed by Blum [18, 28]. The field equations (3.14), which are
already an approximation of the original wave equation, require only a less accurate
treatment than that used for the particle equations. Using the first order forward
difference to approximate the z-derivative, the field equations (3.14) can then be put

in the following matrix form:

Az
4k,

Az
4k,

Az
4k,

[P +i MJ a(z + Az) = [P —i M] a(z) — i—2s(z — Az/2) (3.18)
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where the array s represents the second term of the right-hand side of Eq.(3.14). Since
the matrices P, M are tridiagonal in the axisymmetric case, a very fast direct Gauss
elimination can be performed to solve (3.18). Using, then, the solution a(z + Az),
the particle equations can be advanced from z — Az/2 to z + Az/2, followed by
the construction of the new source s from the particle variables defined now at z +
Az /2. In this way, the centering in z of the wave equation discretization is preserved.
This algorithm for marching in z is analogous to the usual leapfrog time stepping
algorithm. In two-dimensional Cartesian coordinates, the iterative ADI (Alternating
Direction Implicit) method has been employed [20], although direct elimination can

still be done, since the matrices are sparse.

4. Time Dependent Simulations

Thus far, we have assumed that the electromagnetic field a, exp(i @) is time indepen-
dent, i.e. only a single frequency is present in the system. In the time dependent case,
the source term for the wave equation (2.14) is no longer constant in time. The re-
sulting non-uniform gain deposition along the electromagnetic pulse during the FEL
interaction can induce a modulation in the wave amplitude a, exp(i¢,) and excite a
multimode (or sideband) spectrum. This effect was pointed out in Ref.[2], where it
was discussed for a tapered wiggler FEL. Sideband growth can cause particles to be
detrapped from the ponderomotive potential, thereby lowering the FEL efficiency.
The instability can occur even in an untapered wiggler configuration [29,30], because
of the strongly overmoded resonators employed in FEL oscillators. A transition to
a stochastic regime may take place in the case of strong instability [31,32]. Further-
more, one has to take into account the difference between the axial electron velocity
v, and the electromagnetic pulse velocity v,. A a result of this difference, the elec-
trons slip behind the electromagnetic pulse along their transit through the wiggler

whose length is L, by
s=L(1/v; —1/vg), (4.1)
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called the slippage time, which is of the order of 27 N/w, = N),/c for electrons close
to the resonance, N being the number of wiggler periods. Notice that this slippage
is much smaller than the wave transit time L/v, through the wiggler, but much
larger than the wave period. When the electron pulse duration is short (tp ~ s), the
non-uniform gain deposition results in laser lethargy, first analyzed in Ref.[33]. The

analysis of this effect was refined in Refs.[34,35].

4.1. Mathematical formulation

In the following discussion, we will concentrate on the techniques used in the simu-
lation of the time dependent effects and discard, for simplicity, the transverse spatial
non-uniformities (wave diffraction and betatron motion) already discussed in detail
in the previous section, as well as the space-charge electric field. Consider an nt! pass
through the resonator whose length is L,. Denoting the electromagnetic field ampli-
tude during this pass by A" = as™ exp(iégn)) and expressing the particle equations
(2.8.c-e) and the wave equation (2.14) in the characteristic variable for the wave (or
particle retarded time)

t'=t—2/v,, (4.2)

yields the following one dimensional time dependent equations:

D _ P g 1 g
- = —W away" sin(6; + ¢;"), (4.3.a)
do; _we 14 aZ — 2a,a8™ cos(8; + ¢("))
—L =k (4.3.0)
dz c 27]
d(ct. (n) , (n)
( J) =.L_i=—c-.9]= 1—-c— +1+a 2awa COS(6]+¢3 ), (436)
dz Bz vy L Vg 271'
0 eZ Qe 0
A 1COT Y _ L4 g\ Fwe
2iks 5= A", 2) = —— YA N Z&(t ) : (4.3.d)

In (4.3.d), we assume that each electron j carries a charge density Q /Ay Np, where Q
and A, are, respectively, the total charge and the cross-section of the electron pulse
injected into the wiggler. The initial conditions for the N, electrons can be specified

by a particle distribution function F(v,6,t') defined at the entrance of the wiggler
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z = 0 and at each pass n. The beam distribution in ¢' is defined in the interval [0, 1,]
for an electron pulse of duration ¢,. The limiting case of a continuously injected
electron beam would have to be modeled with —co < t' < co. However, since the

electromagnetic field .A(™ is periodic in ¢/,
AN 4 Try2) = AW 2), T, =2L,/c, (4.4)

only the interval [0, T,] must be considered. In practice, some long pulse simulations
employ a small “window” (of the order of a few slippage times s) in #' [32] in order to
cut down the computational cost, but this is done at the expense of lower resolution
in the Fourier spectrum for the electromagnetic field.

For the wave equation (4.3.d), one should define an initial electromagnetic pulse

shape A(t',z = 0) for the first pass. In the following passes, the boundary condition
AM (' 2 =0) = RAI(, 2 = L), (4.5)

where R is the complex reflectivity of the resonator mirrors, provides the initial
condition required to integrate the wave equation (4.3.d). The numerical methods
needed to solve the system of equations (4.3), together with the particle and wave

initial conditions discussed above are treated in the next subsections.

4.2. Discretization of the time dependent equations

In comparing the source term of the wave equation (4.3.d) with that found in the
single frequency two-dimensional model, Eq.(3.1.d), it is worth noting that the wave
variable t' plays a role which is very similar to that of the radial coordinate . Using
this analogy, one can then discretize the electromagnetic field amplitude AM™ | with

a “temporal grid” on which the grid quantities
AN ()= AW = ¢ 2) (4.6)

are defined. Integrating the Eq.(4.3.d) over the interval [t} _, /2>tk1/2] Yields the
following set of first order ODEs:

dAl™ t ey Q a0
—k = g ] k=1,...N 4.7
Atk dz 2"5.9 me? Apr j; ~; 9 1, t ( )
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where Aty =t} _, /2~ ot /2 and J denotes those particles having their retarded
time t' inside the interval [t} , /22 tiy1/9)- This field discretization is nothing but the
NGP charge assignment scheme described in section 3.2. The electromagnetic field
A" seen by the particles can then be interpolated, following the same NGP method.

'This system of ODEs for the electromagnetic wave, together with the 3N, par-
ticle equations (4.3.a—c ) may then be integrated, for each pass through the wiggler,

using one of the marching schemes presented in section 3.4. The whole multiple pass

procedure can now be summarized as follows:

a. Initialize the electromagnetic field profile A (¢ 0).

b. Initialize the particle variables v,  and t', using one of the sampling methods
described in section 3.1.

c. Advance the particles as well as the electromagnetic field toward the exit of the
wiggler z = L, by integrating the system of particle equations (4.3.a~c) and wave
equations (4.7).

d. Set the electromagnetic field profile at the entrance of the wiggler z = 0 as
prescribed by the boundary condition (4.5). The next pass calculation, starting

with step b., can then be performed.

It should be noted that the higher order schemes cited in section 3.3 can be
applied to discretize the ¢ variable as well. In addition, since the field amplitude
is periodical as stated in Eq.(4.4), the Fourier transform method could be used.
Defining an equally spaced grid t; = kT,./N,, k = 0,..., N, — 1, the finite discrete

Fourier transform of A (#') is then:

Ny-1 .
jo _ 1 (n) (41 2m
A = o ; A (84 ) exp(— A k). (4.8)
The inverse transform is:
N-/2 271
(n) ) = v&(n) . .
A (t) ,__ZN:/Z " exp(Fkl) (4:9)

22



The ODEs for Agn) are obtained by taking the Fourier transforms of Eq.(4.3.d):

—i(8; 427t} [T,)

djl;") 1 ey Za w€

dz 2k, mc? A,,N T, , l=—=N./2,...N. /2, (4.10)

while the field seen by the partlcles is interpolated from the grid values given in (4.9),
using either the NGP scheme or higher order ones. The merit of this method is that
the FFT algorithm used to compute the sum (4.9) is very fast. Using a small window

w < T, [32] can further reduce the overall computational time.

4.3. Low gain approximation

The multiple pass method as described in the previous subsection can be very time
consuming in a low gain FEL because of the large number of passes required to
reach the saturation. When low gain and high mirror reflectivity (|R| ~ 1) hold, an
approximated wave equation [31,36] can be derived. First integrate Eq.(4.3.d) over

the wiggler length, taking into account the boundary condition (4.5), to find:
APTD 0y — AW (#,0) + (1 — R)AM™ (¢, 0) =

1R SZO L Ayt —i6;
6(t' —t%) 4.11
2k, mc? AbN Z ( -+ ( )

Making the assumptions of low gain, |R| ~ 1, and

A+ 0y — A 0
(t',0) (t,0) <1,
Al)(t0)

allows us to introduce a continuous slow time 7 = 2nL,/v,, which can replace the

(4.12)

discrete pass number n. Thus, the approximated field amplitude is constant in z, can
be written as A = A(7,t'), and satisfies the partial differential equation:

N, .
17 g , i vy eZy Q L N -
< — - S — ¢y Zwe
5 T (1 Lr] A(r,t) A dz jgzl (t' —1t3)

2k; 2L, mc? AyN, V5

(4.13)
The virtue of this formulation is in its providing the possibility of reaching the satu-
ration in the low gain FEL oscillator rapidly. This is accomplished by using implicit
time (in the slow time 7) schemes that allow time steps much larger than T, (see
for example [37]). Thus far, this type of simulation has not, to our knowledge, been

explored.
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5. Conclusion

In this paper we have presented a survey of techniques for FEL simulations. Partic-
ular emphasis has been placed on the development of multi-dimensional FEL codes
in free space and the time-dependent simulations. Numerical models have been quite
successful in predicting the gain and phase shift of the FEL in the linear and non-
linear regimes. Simulations have been developed for a large number of experiments,
from the centimeter to visible wavelengths, and may have an even more important

part in the design of the next generation of FEL facilities.
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Figure Captions

Fig. 1 The z and y phase space variables sampled, using (a) a random number generator
| and (b) using the Hammersley’s sequence. The number of points N is 4096.

Fig. 2 The piecewise linear “hat” functions Ag(r).
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Figure 1b
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