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Abstract

A numerical code solving axisymmetric magnetohydrodynamic
equilibria with rectangular bicubic Hermite elements has been de-
veloped. Two test cases are used for checking the convergence rate of
the solution. The mapping of the equilibrium quantities into flux co-
ordinates for magnetohydrodynamic stability calculation is performed
by a method which preserves the convergence properties of the cubic
Hermite elements. Convergence studies show the behaviour of the
stability results when the equilibrium mesh is varied.




1 Introduction

The study of ideal and resistive linear magnetohydrodynamic (MHD) instabilities in
toroidal configurations requires accurate solutions of the equilibrium equations. Most
existing equilibrium codes use finite linear hybrid elements [1] or finite differences [2],
where the solution converges like the square of the mesh size. However, in many cases
of interest, the number of intervals required is such that the calculation becomes too
expensive in computer time. One possible way to avoid this problem is to use Fourier
decomposition in the poloidal plane [3], where the error decreases exponentially with
the poloidal mode number. Another solution is a higher order finite element approach.
In this work, we present a new numerical code, called CHEASE ((C)ubic (H)ermite
(E)lement (A)xisymmetric (S)tatic MHD (E)quilibrium solver), which solves the Grad-
Schliiter-Shafranov equation for a fixed boundary plasma, using bicubic Hermite finite
elements on rectangles, and provides equilibria for the two stability codes ERATO [4]
and MARS [5].

With bicubic Hermite elements, the error on the solution converges as
| ¥ — T4l < Ch? (1)

where C is a constant, and the energy of the poloidal magnetic field converges propor-
tional to O(h®) [7]. The Grad-Schliiter-Shafranov equation is an ideal candidate for
higher order elements, because its solution is generally very smooth.

The Hermite bicubic elements ensure that the gradient of the solution is continu-
ous over the whole equilibrium mesh, which makes easier a precise localisation of the
magnetic axis |[VV¥| = 0, even for an asymmetric plasma cross-section. Furthermore,
they guarantee that the second derivative of the solution converges within every cell of
the mesh, which is very important for the stability calculations.

In section 2, we give basic definitions and outline the method of solution. In the
following two sections, we show convergence tests with CHEASE. These fall into two
different categories:

1. Computation of the solution of the Grad-Schliiter-Shafranov equation (Section 3).
Convergence studies for the poloidal magnetic energy are presented for a Solovev
equilibrium [8], and for a nonlinear equilibrium with JET (Joint European Torus)
plasma cross-section. In addition, for the Solovev case, we study the convergence
of the magnetic flux towards its analytic solution.

2. Mapping of the equilibrium to flux coordinates for stability calculations (Sec-
tion 4). The two test cases used to check the Grad-Schliiter-Shafranov equation
are unstable equilibria. The accuracy of the mapping has been verified in both
cases by studying how the growth rates of the instabilities computed by ERATO
and MARS converge when the equilibrium mesh is varied.



2 Physical Problem

2.1 Basic Equations

In a static ideal equilibrium, the MHD equations reduce to
Vp=(VxB)x B

(2)

V-B=0

where p and B denote respectively the plasma pressure and the magnetic field. For a
study of tokamak equilibria, we use cylindrical coordinates (r, z, ¢) (see figure 1) and
only consider axisymmetric solutions with /8¢ = 0. The general solution for the
magnetic field which fullfils equation (2) in axisymmetric geometry [6] can be written
in terms of the poloidal magnetic flux ¥ and the toroidal magnetic flux T :

B=TV¢+V¢x V¥ (3)
Introducing (3) into (2) leads to the Grad-Schliiter-Shafranov equation

VI js_ dp 1 dT?
V{?}-r—-d—aj‘ﬁw (4)

where T? and p are functions of ¥(r,z) only, and j, represents the toroidal current

density.
1
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Figure 1: The cylindrical coordinates (r; z; ¢) in toroidal geometry.



2.2 Method of Solution
2.2.1 Variational Problem with Hermite Bicubic Elements

For the spatial discretization, the plasma cross section  with ¢-constant is subdivided
into N; x N, rectangular cells, where (z;y) are general coordinates such that zo <
21 < ... < <Tipn < ... < TNz t=0,...,Nyg—land yo < y1 < ... < yi <
Yi+1 < ... < Yny, J = 0,..., N, — 1; both meshes can be spaced arbitrarly. Equation
(4) is then solved by the Ritz-Gallerkin method projected on standard Hermite bicubic
subspaces [7].

It has been shown [1] that the stepness of the convergence curve of equation (4)
strongly depends on the representation of the boundary §(Q2) in the coordinates z and y
used for the discretization. For most geometries of interest, () is badly approximated
by cartesian or polar coordinates. The use of a modified polar coordinate system
(z;y) = (0;6), where

T = 0p,(8)cosb + 7o

(5)

z = 0p,(0)sinf + 2o
has the great advantage that §(f2) is exactly described by o = 1.

2.2.2 Boundary Conditions on Quasipolar Mesh (o;6)

The boundary condition ¥ = 0 on §(£2) is fulfilled by the bicubic expansion of ¥ if for
every 8;,7=1,...,N,
Y(e=1;6;) = 0
(6)
Vg0 =1;6;) = 0
The axis of the (0;60) mesh is more difficult to treat, because we have to impose
¥ = const and |[V¥| = const on all the Ny nodes where ¢ = 0, in order to sat-
isfy the regularity of cubic Hermite elements. The behaviour of the solution of problem
(4) around the axis is determined up to second order by the expansion in power series

U =T+ 0py(6)[¥rcos(8) — T.sin(6)] + O([op,(6)]") (7)

where ¥,, ¥, and ¥, are unknown. The limit ¢ — 0 of equation (7) gives

V(e=0;0) = ¥,
‘Ifg(d = 0; 9) = 0
V(0 =0;8) = U,p,(6)cosd — U,p,(0)sind (8)

Uop(0 =0;0) = T,.[5,(0)cosd — p,(0)sinb)
— U,[p:(0)sin® + p,(6)cosé

This is imposed by collocation, i.e. for 6;,j = 1,..., Nj, and the (4 - Np) unknowns ¥,
Vg, ¥, and ¥,4 for o = 0 are replaced by three: ¥,, ¥, and ¥,.



2.2.3 Picard Iteration

The nonlinear problem (4) is solved iteratively by a Picard method. ¥ is only defined
up to an arbitrary constant, and we limit the problem to the fixed boundary case with
¥ <0on and ¥ = 0on §%). As a normalization condition for the iteration, one
possiblity is to fix the total toroidal current

I= /9 jg dS, (9)

but there are other possible normalizations, as will be discussed in section 4.3. The
pressure profile and toroidal magnetic flux required to define j 4 in equation (4) are
arbitrary functions of ¥. To prescribe p and T?, we impose that

p(\II) = A p*(q’/\pmin)

(10)
T2(\I’) = /\ T*2(\I,/\I’min)

where p* and T*? are given functions on the interval [0; 1].

The Picard iteration starts with an initial guess ¥, which in our case, is a simple
paraboloid. Calling (¥4; Ar) the solution after k Picard iterations, one obtains the
solution Uxy; by solving

1 .
/Q VU1 Vi dS + ,\k/QJ;,kn dS =0 (11)

Here, 1 represents an arbitrary function on the same functional space as . Introducing
V.41 into equation (10) permits to compute the new source term Jg k41, and conse-
quently, to correct A by demanding

I= e [ G341 dS (12)

The Picard iteration is stopped when A and ¥ are not altered by more than e between
two successive iteration steps, i.e.

[Zks1 — T

| @l
| Ak+1 — A (13)

| A]

To integrate equations (11) and (12), we use a 16 point gaussian quadrature, which is
exact for a polynom of order ¢76.

2.2.4 Solver

This finite element approach leads to a system of linear equations of the form
A-zpy, = b (14)

where @, includes all unknowns at Picard step k+ 1, by represents the source term at
step k. A does not depend of ¥, and consequently remains unchanged during the Picard
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iterations. It is a positive definite symmetric banded matrix which is decomposed by
a Gauss elimination method into

A= LDL! (15)

where D is diagonal and L is lower triangular. Every Picard iteration requires a
backsubstitution, which is numerically not very expensive.

The mapping of the solution of equation (4) to flux coordinates (¥;y) is difficult
unless the magnetic axis |[V¥| = 0 s close to the axis of the (o; ) mesh. To obtain this,
we have introduced the possibility of changing the mesh size. In a typical run, we start
with the polar mesh centred at (ro; 29) = (Ryo;0), where Ry is the major plasma radius,
and N, = Ny = 16. The purpose of this is to locate the position of the magnetic axis
sufficiently accurately. The center of the (o; ) mesh is then moved onto the magnetic
axis. To restart the Picard iteration, we interpolate the old solution onto the new mesh.
The number of mesh changes is a free parameter, but to avoid performing more than
one LDL* decomposition when A has a big size, we usually set it to two.

3 Results

3.1 Solovev Equilibrium

Solovev has found a class of analytic equilibria [8] for which (4) reduces to a linear
equation for ¥. These equilibria are characterised by

1+ E?
P =~ FRg (16)
T(\If) =To=1

where E denotes the elongation, Ry and a respectively the major and the minor plasma
radius and go the safety factor on the magnetic axis. Replacing equation (16) into
equation (4) leads to

E 2,2 2 _ p21? 2 :
V=2 (L2 PRl Be ety
ZR()QO E2 4 2R0q0

Here, we have chosen the Solovev equilibrium with go = 3/4, E = 1, a = 1/3 and

Ro =1 as a test case. Figure 2 shows the convergence curve of the poloidal magnetic
energy

_ 1 1 o, |V\p|2
Wg = 2.[::0/(;:0 opi(9) . dodf (18)

of the numeric Solovev solution, for an equidistant # mesh and for a packed 6 mesh

such that the flux area
1 réin

i = 5 0=0;
is constant for j = 1,..., Ny. In both cases, the convergence law is O(h8), as expected
by theory (h = 1/N, = 1/Njp is the width of a cell). The converged value of the poloidal

#2(8)d8 (19)
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Figure 2: Convergence study of poloidal magnetic energy of the numeric Solovev solu-
tion. The poloidal magnetic energy is given by Wg = 0.017788 + y - 10~7. The open
(filled) circles are obtained with an equidistant (packed) 6 mesh.
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Figure 3: Convergence study of poloidal magnetic energy of the analytic Solovev solu-
tion. The poloidal magnetic energy is given by Wp = 0.017788 + y - 10~7. The open
(filled) circles are obtained with an equidistant (packed) 6 mesh.
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Figure 4: Convergence study of the residu of the Solovev solution on the (o;6) mesh
nodes. The open (filled) circles are obtained with an equidistant (packed) § mesh.
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Figure 5: Convergence study of poloidal magnetic energy of the JET test case. The
poloidal magnetic energy is given by Wp = 0.0201 + y - 10~5. The open (filled) circles
are obtained with an equidistant (packed) 6 mesh.



magnetic field is checked by substituting analytical values for ¥, ¥,, ¥, and ¥, on
the nodes. In this case, the magnetic energy converges as O(h*), (see figure 3) because
the solution is given by bicubic expansions everywhere, except on the(o; #) mesh nodes.
The Ritz-Gallerkin method minimizes the error in the poloidal magnetic energy. This
can be observed by comparing figure 2 and 3.

In figure 4, we present the convergence of the magnetic flux towards the analytic
solution on the (o; 6) mesh nodes. The convergence rate is O(h*), as predicted for local
quantities by equation (1). The slopes of the curves in figure 2 and 4 are smaller for
the packed 8 mesh.

3.2 JET Equilibrium

As a nonlinear test case, we have taken an equilibrium with JET geometry. The plasma
surface is defined by

r = Ry + acos(d + §sin6)

(20)

z = Fasiné
where a, E and Ry have the same meaning as in equation (16), and § is the triangularity.
The parameters for JET are a/Ry = 0.423, E = 1.68, § = 0.3 and R, = 2.96m. To sa-
tisfy the normalization condition (9), we impose the total toroidal current I = 6.80 MA
with a toroidal magnetic field of 3.5 T, which corresponds to go = 0.8. For the two free
functions given by equation (10), we have chosen

P*(‘I’/‘I’min) = ()():l(\I’/“Ilmm)2

21

T2T/Uin) = 1.0004055 — 4.0455.10~4( T /T, ;)2 @)
The volume averaged beta is 3.96 %. The convergence curves of the poloidal magnetic
energy (18) on an equidistant § and a packed § mesh defined by equation (19) converge
in O(h®) (see figure 5). Comparing figure 2 and 5, we see that packing the 6 mesh
influences the slope of the convergence curve much more for the JET case than for the
Solovev case. This is a consequence of the elongation and the triangularity of the JET
plasma cross section.

4 Mappings for ERATO and MARS

4.1 Computation of Poloidal Flux Surface Integrals

In this section, we discuss the mapping of the equilibrium into the flux coordinates
required by the two stability codes ERATO [4] and MARS [5]. ERATO is an ideal MHD
stability code using the so called hybrid finite elements in both the radial and poloidal
directions. MARS is a resistive MHD stability code that uses Fourier decomposition
in the poloidal angle and finite differences in the radial direction. The metric in the
poloidal plane of both stability codes differs completely from the one used for the



equilibrium calculation. The radial stability coordinate of the two codes is

\I]min -V
_ - ¥ 22
° Wnﬁn ( )
The angular variable x is defined by the choice of the Jacobian J of the mapping from
(¥; x; ¢) space to cartesian coordinates. In the equilibrium code, J is restricted to the

form .
r
J = = = C(T)r*|VI|# 23
VT (VX xVe) - NTx vy - CLnrtivel (23)
where o and p are integers. C(¥) is a function of ¥ only, and is obtained by normalizing
x such that x(27) = 2r. To obtain its explicit expression, we let dl be the arc length

element along ¥ = const,

rdl r1-a) gy
24
X =Vx-dl = ToE = G (24)
and the normalization of x leads to
1 r(-a)d]
)= 52 Sy TR (2)

By expressing dl in the equilibrium coordinates (o;6), we obtain with equation (24)
that

_ rop¥(6)
dx = SENIED d0 (26)

This expression permits the integration of quantities along constant ¥ surfaces
X
F(¥ = const ;x) = /0 FQU5 5 Wo5 Wop; Wog; Ugip)dx’ (27)

needed by the two stability codes. Certain numerical problems remain due to the use of
Hermite elements. We remind that even a simple trapezoidal integration rule applied
to equation (27) has an error proportional to the second derivative of the integrand.
The Hermite cubic elements do not demand continuity on the cell edges for ¥,, and
Wgg. Thus, to perform integrals of the type (27) accurately, the integration interval is
split into a set of subintervals delimited by the intersections of the constant ¥ surfaces
with the (; ) cell edges. Over each subinterval, the integrand of equation (27) is C*
and a high order integration scheme can be applied (a 4 point gaussian quadrature in
our case).

The non-orthogonality
vy .V Vi . vy

Box = vepR

(28)

is obtained by

dﬂ@x

)[a(lnr] C(4t2) [B(InIV\IID]n_C’(‘II)

(IWP 5y com) o 29)



The index n in equation (29) stands for the normal derivative with respect to ¥, j, is
defined by equation (4) and C’'(¥) is derived from the periodicity condition By, (0) =
Bux(2m).

If we set @« =2 and & = 0, (¥; x;¢) becomes the PEST-1 coordinate system with
straight field lines and the normalization condition (25) defines the safety factor

T(¥) dl
27 U=cte TlV‘I’I

All equilibrium quantities calculated by CHEASE for the stability codes are presented

in Appendix A for ERATO and in Appendix B for MARS. It is clear that an integral

such as (27) is computed easily on the (0; ) mesh only if the mesh axis is situated

inside the first flux surface. This is the reason for the mesh shift mentioned in section
2.2.4.

¢(¥) = C(V)T(¥) = (30)

4.2 Convergence Studies of the Mappings

The Solovev equilibrium described in section 3.1 permits to avoid the resolution of the
problem (14), because we can substitute analytic values for ¥, ¥,, ¥4 and ¥,4. Conse-
quently, the mappings can be completely decoupled from the equilibrium solver in this
case, and the convergence properties of the equilibrium quantities as well as the accu-
racy of the integration scheme presented in section 4.1 can be checked independently.

The convergence properties of the mappings are checked by observing the growth
rate of the most unstable linear eigenmode, keeping the stability meshes fixed (for
ERATO, (N,; N,) = (100;100), and for MARS, (N,; N,) = (110;11), where N,, is
the number of modes used for the poloidal Fourier decomposition). For the Solovev
test case, we have computed the growth rate for toroidal mode number n = 3, with
a perfectly conducting wall at the plasma edge. With the analytic solution vector,
both mappings show a convergence rate in O(h*), while for the numeric solution, no
evident scaling can be extracted, because the scattering of the curve is comparable
with its global variation (see figure 6 for ERATO and figure 7 for MARS). The error
on the growth rate is smaller with the numeric solution because the finite element
representation minimizes errors in a global sense. The values of the growth rates
after convergence of the equilibrium are different in figure 6 and 7 because of different
truncation errors in the two stability codes.

The JET case described in section 3.2 shows a n = 1 instability even with a perfectly
conducting wall on the plasma edge. The stability calculation for this equilibrium is
more delicate than for the previous test case, because of the presence of several rational
safety factor surfaces in the plasma (go = 0.8 on the magnetic axis and geq,e ~ 5.4 at
the plasma edge). MARS shows a convergence rate in O(h®) in figure 9, whereas with
ERATO, the convergence curve is diffuse (see figure 8). The reason for this is probably
that ERATO uses finite elements in the poloidal plane, which implies that every small
fluctuation of the equilibrium solution is interpreted as a high m mode. This problem
does not arise with MARS, because the high m modes are truncated.

For the two test cases, the x coordinate defined by the constant volume Jacobian
(J = C(¥) or & = 0 and p = 0 in equation (23)) gives good results for the stability

10
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Figure 6: Convergence study of the Solovev test case with ERATO. The filled (open)
circles are obtained with the analytic (numeric) equilibrium solution vector.
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Figure 7: Convergence study of the Solovev test case with MARS. The filled (open)
circles are obtained with the analytic (numeric) equilibrium solution vector.
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Figure 8: Convergence study of the JET test case with ERATO.
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Figure 9: Convergence study of the JET test case with MARS.
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calculations (far better than with straight field lines). It must be emphasized that the
error on the growth rate due to the equilibrium is negligible in comparison with the
error due to the stability calculation itself. The converged value of the growth rate
with fixed equilibrium mesh (N, = Ny = 30) is v = 5.395 - 102 for the Solovev test
case and v = 6.198 - 1072 for the JET test case with both stability codes. Thus, the
error on v resulting from the equilibrium calculation with a 12 x 12 mesh is already
less than the one due to the stability calculation for MARS with (N,; N,,,) = (110;11)
or for ERATO with (N,; N,) = (100; 100). For the stability calculations with ERATO,
the s mesh is packed on the rational safety factor surfaces (¢ = 1 for the Solovev test
case and ¢ = 1,2, 3,4,5 for the JET test case). For MARS it has been kept equidistant.

4.3 Scaling transformations of the Equilibrium

With one solution of the variational problem (4), a whole set of equilibria can be
generated by changing the normalization condition (9) and by using the fact that 72
is only defined up to an arbitrary constant. There are two basic scaling operations. The
first is a multiplication of the poloidal field ¥ by an arbitrary constant. The second is
a shift of T2. These two operations can be combined to specify T at a given surface
(T =1 either in the vacuum or on the magnetic axis) and either ¢ on an arbitrary flux
surface, or the total toroidal current I defined by (9).

After the scaling of the solution, all relevant physical quantities characterising the
equilibrium can be computed. A list of these quantities is given in Appendix C.

5 Extensions of the Code

5.1 Specification of the I)j and the p™* profiles

It has been found useful in beta-optimization studies [2] to modify the definition of
the current profile from that obtained by specifying p™* and the T'T"*2. Instead, we can
prescribe the surface averaged toroidal current density

RO n) = (§,_330max) 1 (§,_ (T/myax) (31)

and the p™ profile. According to (4), I}y can be written in terms of the three integrals

Co = fq’:ctc(.]/r)dx
C = ]g! _ Jix (32)
02 - fl’:cte(J/rz)dX

=cte =cte

This gives us an expression for 77" on a constant flux surface :

Co G
* e /%
TT" = G Iy o.P (33)
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This profile specification introduces a new iteration over the problem (4) and the map-
ping, which stops if the residue on the values of the integrals (32) is less than e between
two successive iteration steps.

5.2 Ballooning Stability, Mercier and Resistive Interchange
Criterion

Ballooning modes are toroidal modes with infinite toroidal mode number n [9,10]. The
potential energy for these modes is given by

o9 =1 [ {52

| T glEIZ} Jdx (34)

where ¢ is the radial component of the displacement vector, and y is a generalized
poloidal angle extending from —oo to +co. For ballooning stability, oW, must be
positive definite on each flux surface. The quantities appearing in (34) are [9)]

JT
vV = F
1 r2| VOt

fo= J2|V\Il|2<1+T2+IV\I/|2G

_ 2r2p/ oP r’TG 1 /0P (35)
T Trvep |\av ), T T ver 7 \ax ),
=5 x { Qv . 0 P ,)
¢ = vhut XO(a\p M “anlx(/xo”dx .

— 1 2 2
P = p+2—r—2-(T +|V\I’|)

The integral (34) is solved on the (¥;x) mesh of ERATO by a hybrid linear finite
element method. The diagonalization of the matrix corresponding to the variation of
problem (34) is not unique. But according to Sylvester’s theorem [11], the number of
positive terms in the diagonal matrix is invariant. Therefore, if all eighenvalues are
positive, the surface is balooning stable.

The Mercier stability [12] and the resistive interchange criterion [13] are checked on
every constant poloidal flux surface. Let us define the integrals

1 1 1 1
o= —¢ ———Jdy ; J = — f —Jd
! 27 Ju=cte r2|V\Il|2JdX 3 27 Jy=cte |V |? X
1 r2 1 1
J3 = — —Jd s Jy = — —Jd 36
3 27 Ju=cte IV‘I’I2 X ’ 4 27 JW=cte T2 X ( )
1 1 V)2
Js = — Jd s 0 Jg = — Jd
5 27 JU=cte X ’ 6 27 JO=cte 7"2 X

A given flux surface is stable to ideal interchanges if the Mercier criterion —Dj > 0 is
satisfied, where

T, 1\* o
D= (p q’2_§) + B - BT+ ) (37)
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Resistive interchanges are stable if —Dp > 0 with
~Dp = -D;—(H -1/2)} (38)

and

_ I (J2 LCs T2J‘)) (39)

q’ Js + T2 J4
The ’ in equation (37) and (39) denotes the derivative with respect to ¥.

6 Performance on CRAY-2

The cpu-time required on CRAY-2 to compute the two test equilibria presented in
section 3 is plotted in figure 10. n = N, = Ny is the size of the equilibrium mesh. The
most time consuming operations of the equilibrium solver, the matrix construction and
the Gauss elimination, are well vectorized. The tracing of constant poloidal flux surfaces
involves many conditional statements, and therefore is not easy to vectorize. This
operation is easy to parallelize: each constant poloidal flux surface can be traced by a
different processor of the computer. However, this option has not yet been implemented.
The cpu-time for the ERATO mapping varies from 13 seconds for n = 20 up to 14
seconds for n = 40. For MARS, equilibrium quantities are needed on twice as many
constant ¥ surfaces as for ERATO. With the same radial mesh size, the cpu-time
required by this mapping ranges between 11 seconds for n = 20 and 17 seconds for
n = 40.

The equilibrium solver needs approximatively 4Ny N, (4N, + 300) Mwords of central
memory storage space, the mapping for MARS 120N,N; + 50N, N,, Mwords, where
Ny, is the number of poloidal modes for the Fourier decompostion, and the mapping
for ERATO 120N,Ny + 40N, N, Mwords. Consequently, the code may be used only on
computers with very large central memory.

7 Conclusion

The Hermite bicubic elements have proved their efficiency for the resolution of the
Grad-Schliiter-Shafranov equation. The convergence rates of the equilibrium solution
agree with the theoretical predictions, despite the special treatement on the axis of
the modified polar mesh used for the discretization. The results presented in section 3
indicate that the value of the constant appearing in equation (1) is very small. This
has been confirmed by extensive use of the code.

Furthermore, the method applied to map the equilibrium quantities into flux co-
ordinates is very accurate. The tests shown in this paper demonstrate that, with a
reasonable choice of mesh size, the error due to the equilibrium solver on the stability
results is negligible compared to the error of the stability computation itself.
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Figure 10: Cpu-time used on CRAY-2 by the equilibrium solver. The filled (open)
circles correspond to the computation time of the JET (Solovev) test case.
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A Input quantities for ERATO

Let us define the integer mesh x; = 2x(k — 1)/N, for k = 1,...,N, + 1, and the half
integer mesh xi/2 = (Xx + Xk41)/2 for & = 1,...,N,. Similarly, s; = (I — 1)/N, for
l=1,...,N,+1,and sy = (s;+ s141)/2 for | = 1,..., N,. For ERATO, all quantities
of the equilibrium involved in the stability calculation must be computed at the centers
of the stability mesh cells. In Table I, all quantities with j > 6 are computed on the
(81725 Xk/2) mesh, except at the plasma edge. All this informations are stored into an
array EQ(j;k;1),for k=1,...,N, and [ =1,...,N, + 1.

B Input for Linear Resistive Stability Code MARS

MARS uses finite elements in the radial and Fourier decomposition in the poloidal
and the toroidal direction. All equilibrium quantities necessary for MARS are directly
Fourier transformed in the mapping. For this operation, we apply the integration
method described in paragraph 4.1 on

f(m;n =0)= i.’é:cte fet™xdy (40)

2
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where f can be replaced by every EQL in Table II. If a quantity is indexed by i or (and)
i/2, it is needed on the integer and (or) the half integer s mesh defined in Appendix A.
All quantities in table II are expressed as function of the Jacobian

1 r

Jy = = = 28|V, .inlJ 41
Vs (VXX V)~ Vs x x| ~ 2l ¥manl (41)
and Vs.V
s-Vyx
Box = s 28| Umin| By (42)

where J is given by equation (23) and By, by equation(28).

C Global Physical Quantities

All physical quantities computed by the code are listed in Table III. The integral in
the x direction is obtained by the method described in section 4.1, and a trapezoidal
rule is applied on integrations in the ¥ direction.

The substitution of equation (3) into the expressions of the local shear and the
magnetic field line curvature in Table III gives:

s T Tis T (0(VIP)
Hocal = T2 T VU v ).

r2

(43)

and

If we integrate equation (29) and set « = 2 and y = 0, we obtain

, 1 27 .
q (\II) - 5’;/(; Slocal‘]dx (45)
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.

EQ(5;k;1)

O O W

10
11

12

13
14

15

16

17

18

19

20

21

22

23

]
Xk
8141 for 1 # N, + 1 and s;4; is free for | = N, + 1

Xk+1
8m =(si+s141)/2for l #N,+1and s, =1forl=N,+1

Xm = (Xk + Xk+1)/2
mass density p

P
90 I \Pmin |

toroidal magnetic flux T
free

Q/(IO

plasma pressure

Pr2
q|V¥|?

non-orthogonality Bs = 23|V in|Buy

r2

[aln(r2)]

poloidal magnetic field

Js

j2ne]

rjs dln(r?/J)
—23|¥ pin| e - [ £

2\Il< ]3 _]i[alnlv\lfl] 3 ,[alnr] )

0 \[V¥]2 7 | ov oV
r2)J

[alng;j/.f)]W

o [mxJT ,,
5 L ox]
non-orthogonality 8% = ZSI\I/m;nI,B{;';' with straight field lines
[6|V\Il|2]
v

Ox

Table I: Input quantities for ERATO
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7 | EQL(j) index

1|8y, (ﬂ,.,xl-‘?-i')z . i, i/2
7, r T,[Vs]?

2 |2 _ g ('5-7-3-')2 i,i/2
7, r

3 %’-‘:’i = ;— i, i/2

2

4 2}3& = —J,B,, (":”') i,i/2

5 | 7,056 i,1/2

6 | Jsgyx i, 1/2

7 | Jogss i,1/2

8 | J.gsy i,1/2

9 |J, i,1/2

10 | Jo5% = —25| @ i | T'(T) i

10 | J,BX = 25| Upnin]| i/2

11} J,j% = —J, [p/(¥) + T(V)T'(¥)/r?] | i

11 | J,B® = J,T(T)/r? i/2

12 | p(¥) i/2

Table II: Input quantities for MARS
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Global quantities

Total plasma volume / 27
Averaged pressure
Averaged p?

Averaged B?

Total toroidal current

Plasma inductance

Total beta

Poloidal beta

Princeton beta

Wot

P

By

B*

I

]

/ / Jd¥dy
(f [ prawax) Vi
( / / pzd\I’dx) [ Viot

(f [ 7122 + 1owpi/ravay) Vi
/ / Jo(T/r)d¥dx
/ / JlV‘I’Pd\pd

mag

2p
T //de\Ildx
ag

5
Iy
2 \/ 1;2 Vtot

32

Flux surface quantities

Plasma volume within ¥ = const

Toroidal current within ¥ = const

Poloidal beta on ¥ = const

Global shear on ¥ = const

V(%)
I4(2)
Bo(¥)

3(%)

/ . dexdeﬂ
A . $34(I/r)dxa¥’
dV (')

!
I( ng/ wrmt T

q(\I!) (\Il) where p = /V(¥)/Vi0t

dv’

Local quantities

Local shear

Magnetic field line curvature

Slocal

|V‘I’l4(B x V).V x (B x V¥)

1
VY- (B-V)B

Table III: Physical quantities computed by equilibrium code
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