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ABSTRACT The shaping of non-circular plasmas requires a non-linear mapping
between the measured diagnostic signals and selected equilibrium parameters. The
particular configuration of Neural Network known as the multi-layer perceptron
provides a powerful and general technique for formulating an arbitrary continous
non-linear multi-dimensional mapping. This technique has been successfully
applied to the extraction of equilibrium parameters from measurements of single-
null diverted plasmas in the DIII-D tokamak; the results are compared with a
purely linear mapping. The method is promising, and hardware implementation is

straightforward.



1. INTRODUCTION

The fast extraction of a reduced number of tokamak equilibrium parameters
from the experimental data is essential for interpreting many diagnostic results as
well as for real-time shaping of the plasma itself. In order to perform this
extraction, we must develop a representation of the mapping between a selected
measurement data vector M and the extracted parameter vector G. We shall denote
this mapping by G, such that G = G (M). The equilibrium problem is typical of many
data interpretation problems, for which we posess a full physical description of the
inverse mapping G-1, in our case the Grad-Shafranov equation embodied in an axi-
symmetric equilibrium code. Since we cannot derive a closed form of the mapping G
from the physical model, we are required to construct an approximation of G,

N
denoted by G, which we hope will be valid over a given range of interest of the vector

M.

In the case of almost centred circular plasmas, the mapping G is obtained by
linearising, and then inverting, the known physical mapping G-1. As the shape of
the plasma varies and the range of equilibrium parameters increases, the
linearised mapping becomes less and less reliable, especially in the extreme ranges
of plasma parameters which are of most interest, or for particular parameters such

as the X-point position which are less well linearised.

So far there have been three main approaches to approximating the non-linear
mapping G . As the aim of this paper is to discuss the applicability of a proposed
fourth method, we briefly discuss these three previous approaches in turn for

comparison.



The first approach is to develop a description of G using ad hoc trial functions,
and is successfully used on the DIII-D tokamak [1-3]. A database of reconstructed
equilibria provides many examples of both measurement (M) and parameter (G)
data. Trial functions are proposed, intuitively or by inspection, and the several free
parameters in each of the trial functions are fitted by regression analysis. The
starting point for the trial functions is a linearisation about a chosen operating
point, based on a first order Taylor series expansion of the poloidal flux. The result
is a set of different non-linear relationships é\ (M), valid and optimised for
particular ranges of equilibria. These functions are then hardwired for real-time

plasma control.

The second approach is to reduce the data by Principal Component Analysis
(PCA) and subsequently develop a quadratic expansion for (3, which has been
developed on ASDEX data [4] for use on the ASDEX-Upgrade tokamak [5]. Again, a
well populated equilibrium database is used. A linear extraction of a significantly
reduced number of 'principal components' is performed, and a quadratic

relationship is then assumed:
GM=A+B-M*+M*T-C-M* ; M*=PCA-M 1)

where PCA is the principal component projection matrix and the matrices A, B, C
together provide a non-linear mapping. We are restricted to a small dimension of
M* in order that the large matrix C be manageable, and realistically implementable
in hardware. One significant advantage over the method of ad hoc trial functions is

the generality of the expression (1), allowing its straightforward implementation in

hardware [6].

The third method presupposes no functional form of G except that it be locally

N
linearisable over a significant distance in the space of G. The linearised matrix G



must be varied as the space of G is explored by the plasma evolution. Each local
matrix (3 can either be deduced by linearising a subset of an equilibrium database,
or it can be deduced directly from the equilibrium [7]. The former approach fits a
hyperplane through a portion of the function G, minimising the mean square
residuals of the set of examples of G. The latter approach calculates the local
tangential hyperplane. These linear methods have been developed for the control of

the TCV and Alcator C-MOD tokamak plasmas [8].

These three methods all have both advantages and disadvantages, which are
summarised in Table I, in which the questions of hardware implementation are left
out. In the remainder of this paper, we investigate the applicability of a new
technique. We introduce the multi-layer perceptron in Section 2, study its
performance on non-centred circular plasmas in Section 3 and on DIII-D tokamak

equilibria in Section 4, and discuss the results in Section 5.



2. THE MULTI LAYER PERCEPTRON

The Multi Layer Perceptron (MLP) is one of the fruits of an expanding interest
in the Neural Network approach to Artificial Intelligence. The field has an oblique
and mystifying vocabulary which we deliberately avoid; the interested reader is

referred to Refs [9, 10] for further background information.

The MLP is an explicit non-linear and continuous mathematical relationship
between a multi-variable input data vector (in our case diagnostic information) and
a multi-variable output data vector (in our case reduced equilibrium parameters).
The MLP is often represented schematically as in Fig.l. The input vector, of
dimension Nj, is linearly projected by a matrix W12 onto a usually reduced
intermediate vector of dimension Ng. This operation is reminiscent of the initial
PCA projection onto a reduced dimension vector M*. As in the case of PCA, the size
of this intermediate vector is the only design choice when specifying the MLP
configuration. On the other hand, we no longer have to handle the large and
probably sparse matrix C (N3 X Ng X Ng). The reduced vector is then passed element
by element through a compression function S, known as the sigmoidal function,
which is bounded + 1, continuous, differentiable and monotonically increasing. The

chosen sigmoidal function is:

2
S(x)=(1—:e_—x)-1 (2)

The compressed vector is then linearly transformed by a second matrix Wag into
an output vector of dimension N3. Such a configuration is referred to as a
1-hidden-layer MLP (an MLP-1); if we recompress and re-transform the output
vector to produce a new output vector, we have a 2-hidden-layer MLP (an MLP-2)

and so on. If we make a simple linear projection we have the historically special

case of an MLP-0.



A
The MLP-1 representation of G can therefore be written explicitly as

- 2
G M =Wos * |5y -1 3

The vector exponent denotes an element by element exponentiation, giving a
vector result. In practice, a constant term is added to each non-output layer to
provide an offset bias; this and other details of the practical implementation of an

MLP are discussed in Ref. [11].

A wide range of literature can be found on the generality of the MLP-1 and
MLP-2 functions. It has been demonstrated that all bounded continuous functions
can be expressed as an MLP-2 over a given volume in the space of M [12]. A similar
demonstration has been proposed for the case of the MLP-1 [13, 14]. The choice
between MLP-1 and MLP-2 appears to be dictated by whether the simpler MLP-1 is
adequate for a given functional mapping [11]. The work in this paper is restricted to

MLP-1 mappings which are shown to be adequate for the particular problem.

Having established the applicability of an MLP-1 network, two problems remain:
(i)  choosing the size of the condensed hidden vector and

(ii) finding the optimal linear transformation matrices Wjo and Wos.

The first question is a compromise. Too few elements in the intermediate vector
result in a too encoded form of the output, with linearly interdependent output
variables. Too many elements lead to a badly defined set of matrices, and an
inefficient solution in terms of hardware. As the number of free parameters
increases, we also risk finding a solution which is adapted to the fitted examples,
rather than generalising the functional dependence, the well-known problem of

overfitting or bias.



The second question is fully discussed in Ref. [11]. The aim is to minimise the
sum of the squares of the errors between examples of data which have been
modelled, Gi = G (M;), and the estimated form of 8 given by the MLP-1 mapping (3).
We define an RMS residual for each output denoted j:

. \/ Y (Gij - G (Mi)))2
1
=2 number of examples @)

In order to restrict the range of the values of the matrices W12 and Wa3, we

normalise the vectors G and M to lie within the cubes [-1, 1] N3 and [-1, 1] N1
respectively. Expression (4) for oj therefore corresponds to the residual as a fraction

of the full-scale range of the j-th parameter (% FS).

In practice, we have minimised the RMS value of the oj's, using only half of the
available mapping examples {Mj, G;}. The remaining examples are used to test the
general validity of the approximated function. The minimisation is performed using

a modification of the standard Gradient Descent Technique [11].



3. CIRCULAR PLASMAS

In this section we consider the testcase of an unshaped plasma immerged in a
purely vertical poloidal field, within a 3:1 rectangular limiter aperture, Fig. 2. In

the large aspect ratio approximation, the poloidal flux distribution is given by

I
y(R,Z,A) = _p_llOzI R [In 8R/p-2] - _Euin [1n (p/a) + (A + 0.5)(1—a2/p2)] pcosw  (5)
b

where p, a, ®' are shown in the figure.

The free variables are the major radius (R), vertical position (Z) and poloidal

asymmetry factor (A). The plasma current I, was held constant.

The detection signals were chosen to be a set of poloidal flux loops placed
slightly outside the limiter aperture, shown in the figure, and the mapping inputs
were the differences in flux with respect to one of the loops. This testcase has the
required property of being non-linear by virtue of Eq. (5), as well as being simple and

descriptive of the full problem.

A set 0f 1000 equilibria was generated, of which 500 were to be mapped, and 500
were used for testing the quality of the derived mapping. The values of [R, Z, A] were
varied randomly and uniformly between [0.8 - 0.9, -0.48 - 0.48, 0.5 - 4.0] respectively.

The first 500 examples were mapped by both a linear relationship and by the MLP-1

with N2 = 10. The quality of the representation was taken to be the mean square
residual, normalised to the full range of each parameter. This exercise was carried

out for a varying number of flux-loops, obtaining the results shown in Fig. 3.

The linear representation of y — [R,Z,A] was good for very large numbers of

flux-loops. However, for smaller numbers of loops, fewer than 15, the representation



was inadequate. The MLP-1 mapping maintained low residuals even when the total
number of flux loops was decreased to as few as 6. An example of the quality of
representation, fitted value vs. actual value, is shown in Fig. 4 for this case with

only 6 input signals and 5 flux-differences.

The MLP-1 clearly is able to use its inherent non-linearity to solve the type of
non-linear mapping problem represented by Eq. (5). Only the plasma vertical
position is well represented by the linear mapping, the major radius and

asymmetry factor being essentially non-linearly related to the fluxes.
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4. APPLICATION TO DIII-D TOKAMAK EXPERIMENTAL DATA

A DIII-D tokamak database of experimentally achieved single-null diverted
discharge equilibria was also used to test the applicability of the method. Since the
equilibria are experimental, both M and G have intrinsic noise, the latter being
reconstructed from an inverse-equilibrium code [15]. During the MLP fitting, we
again used a random set of 500 equilibria as the training set, and the quality of the fit

was subsequently tested on 500 different equilibria.

Firstly, we must select the vectors G and M to be mapped. Our aim is to
extract a certain number of geometric parameters, not necessarily significant in the
formal sense of the dynamic control problem, but important for plasma operation.
Typical parameters and their possible operational importance are: X-point position,
heat load and configuration; Outer gap, antenna-plasma spacing; Top gap,
elongation control; Current centroid, fast vertical feedback; Inner gap, limiter-
separation; Core-elongation, vertical stability; Internal inductance, dynamics of
vertical control; B, heating control; area, current control; qgs5, current control. This
list can be extended at will, provided that the tokamak itself can independently vary

these parameters.

The first seven parameters have been conventionally used by DIII-D for shape
control [3] and were used as the vector G in a first test. For input variables we chose:
(i) a set of tangential magnetic field probes (22 coils); (ii) a set of magnetic flux loop
flux-differences with respect to the mid-plane inside wall loop (20 loops); (iii) both
field probes and flux loops. Figure 5 shows a schematic layout of the measurements

and of the derived parameters.

We have a further choice of mappings depending on the normalisation with

respect to the plasma current, I,. If we map [y, Bpoll = Ip » Geometry, the dominant
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dependence is the plasma current quasi-proportionality. By varying the range of Ip,

we change the apparent full-scale precision of the representation. We therefore

chose to map [y/I,, Bpol/Ip] - Geometry to assess the precision of the method.

The cycle: choice of measurement - choice of output vector - choice of Ny -
optimisation of W19, Wog - test of RMS residues oj, was carried out several times on
the same data set but for different configurations, with the results of Table II. In all
cases we chose Ng = 10. The RMS residuals obtained from a linearised fit are also
indicated in the Table for comparison. If the input-output relationship is essentially
linear, the two residuals will be the same. If the problem is non-linear, the

linearised mapping will be poorer.

For each set of input data, the MLP-1 performed on average better than the
linearised fit, showing that the MLP-1 was able to provide a useful degree of
curvature in the approximate mapping é . Combining the probes and flux-loops
provided the best fit in both cases as expected. The tangential field probes alone
provide a better definition of the plasma geometry than the flux-loops alone. We
interpret this in terms of a better 'anchorage' of the separatrix of these single-null

diverted plasmas where it crosses the vessel.

The contributions of the different oj to < 02 > are very different. In the

linearised case, the output variables are fitted independently and weighting them

differently does not change the solution. In the MLP-1 case, we can reduce < ci2> by

worsening the fit on one output variable to benefit any less well fitted variables. The

oj were simply weighted inversely to their full-scale range using (3).

To push the technique further, the full exercise was repeated with 13 output

variables, and the oj's are summarised in Table III. The linearised residuals are

also shown, as well as the physical range of each parameter, and the minimum and
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maximum absolute errors. For all parameters but one, the MLP-1 representation is
significantly better than the linear mapping; the oj are generally a factor 1.5 - 2.0
smaller and the maximum errors of both signs are also significantly reduced. The
parameter which is least well fitted is the top triangularity (0j = 5.8% FS). The MLP-
1 mapping was clearly constrained to reduce this particular oj, and this was done
at the expense of the vertical position of the plasma current (0j = 0.9% FS). Clearly
such a global mapping would benefit from a selected output parameter weighting,

such as the inverse residual of the linearised fit.

Figure 6 shows the residuals for four of the control parameters: inner gap, top
gap, geometric centre and X-point Z-position. We compare the MLP-1 fit with the
DIII-D adhoc function fit [3]. Using the MLP-1 mapping we generally obtain an
improvement of 30-50 % in the residuals compared with a general linearisation
using all of the 42 input parameters. The simple linearisation surprisingly also
performed much better than the more complicated trial functions. We consider that
this is partly due to the use of more input signals, and partly due to the removal of

constraints on the coefficients used in [3].

As a further test of the advantages of the MLP-1 mapping, we compared the
quality of the linear and MLP-1 mappings when the number of input signals was
varied. The full set of 42 input variables was reduced stepwise, removing 5 randomly
chosen inputs at a time. Each set of reduced input data was then mapped to the
output data by both linear and MLP-1 mappings. Figure 7 shows the results of this
test. The MLP-1 mapping led to significantly smaller mean-square residuals than
the linear mapping, as in the test-case. The difference is, however, less marked
than for the test case. This fact can be partly due to the inherent noise in the "real”
output data, and partly due to a less significant exploration of the non-linear

function to be mapped.
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We briefly consider other mappings which may become interesting. Since the
plasma current is extractable from the input data via polp = ¢ B edl, a general
mapping function should be able to map w — position, performing the division
implicitly. This was tested, and < 6;2 > was barely different from the case in which
we mapped y/I, — position. The linearised case was unusable, as to be expected.
Although the un-normalised mapping is most relevant for the poloidal flux control,
this un-normalised — normalised mapping would be necessary for, qg5 control, Bp or

li control.

Since qg5 control is especially important when the shape is varying
significantly during the discharge, we examined the mapping [y/Ip, Bpol/Ipl —
By/(Ip ® q95), which is proportional to the ratio between qgs and the cylindrical
estimate qj. This value varied over a range of 1.9 - 3.1 for the database used (x
between 1.63 and 2.08), but will cover an even larger range in the TCV tokamak at
high elongation. Using all the flux-loops and field probes, the MLP-1 mapping
yielded oj = 0.8% FS, compared with o; = 1.3 % FS for the linear mapping. The
improvement with the non-linear mapping is significant, and probably useful,
especially at the higher elongation of the TCV tokamak. Reducing the input to just
the field probes gave 6j = 1.0%, compared with 1.7 % linearised; using a random set
of only 11 probes gave oj = 2.7 % compared with 4.1 % linearised The same general

improvement was found as with the shape parameters.
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5. DISCUSSION

The non-linear mapping offered by an MLP-1 configuration of Neural Network
provides a new approach to the inherently non-linear problem of the extraction of
the plasma configuration from the plasma diagnostics. A simple testcase
demonstrates the applicability of this class of mapping to the particular problem,
especially when only a few input signals are used. The method provides a useful
represent-ation of the DIII-D single-null diverted plasma equilibria, although the
improvement over the linearized fit is only of the order of 50%. As tokamaks become
more shaped, as will be the case for the TCV plasmas, we expect the improvement to
become even more significant, as the mapping G becomes more non-linear. The

method described in this paper provides the following potential advantages:

- A significant reduction in the dimensions of the intermediate data, as with
PCA, but without the constraint of a subsequent quadratic expansion

- Normalisation can be implicit, explicitly hardwired, or mixed

- A general representation which does not require new hardware for each
function to be mapped

- The hardware implementation is only a slight modification of the ASDEX-UG,
TCV and ALCATOR C-MOD solutions

- No switching or much less switching of the mapping will be required, than is
necessary for piecewise linear mappings

- More robust mapping in the presence of input noise or matrix noise [11].

The method also looks very promising for the mapping of more varied sets of
equilibria; the data set used was restricted to single-null diverted discharges. We
expect the mapping to be discontinuous in its derivative on transition between
limiter - single-null and single-null - double-null configurations. The MLP mapping

may well then represent a significant improvement over the mappings currently
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being studied, all of which are planned to switch on such a transition. In such a
case we are effectively using the MLP ability to perform a classification (single-null :

double-null : limiter) as part of the mapping, recalling the Artificial Intelligence

origins of the method.
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FIGURE CAPTIONS

1. The schematic description of a Multi Layer Perceptron.

2. Sketch of the test-case geometry. Variables are the major radius (R), vertical

position (Z) and asymmetry factor (A)

3. Quality of representation with (a) linear mapping and (b) MLP-1 mapping, as

the number of flux loops is varied

4. Quality of the mapping for 6 flux loop differences; (a) MLP-1 mapping and (b)

linear mapping

5. A schematic of the DIII-D tokamak, showing the measurements and some of

the derived plasma parameters.

6. Comparison between the trial function fit (upper) and MLP-1

representation(lower) for 4 control parameters (Units are cm.).

7. The Mean Square residuals, for: a) Random linear mapping and b) Random

MLP mapping (asterisks).
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TABLE TITLES

Table I

Comparison of three currently used methods

Table II

Residuals for different categories of input data, fitting with both an MLP-1 and

linearised.

Table I11

Residuals using an MLP-1 or linearised fitting. The input used both flux and field

probes, the output is 13 geometrical parameters.
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