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Abstract

An explicit expression for the local power absorption density in a
uniformly magnetized slab plasma is derived from the Vlasov-Maxwell
equations, taking into account density and temperature gradients. Us-
ing a transformation to lagrangian coordinates, the kinetic flux of en-
ergy due to particle streaming can be separated in a unique way from
the actual power dissipation.

Computations using this expression show how equilibrium gradi-
ents play a role in the modelling of low-frequency Alfven wave heating,
and give a threshold below which the gradient effects are important

in a medium size tokamak.



1 Introduction

The absorption of waves in non uniform plasmas is one of the principal problems in
the theory of radio frequency heating. Of particular interest is the determination of
the power absorption density per species as a function of suitable spatial coordinates.
Recently a general formulation for the local power absorption density has been ob-
tained from the Vlasov equation assuming a locally homogeneous plasma (Vaclavik
and Appert, 1987). Such a formulation has been needed to guarantee positive power
deposition profiles all over the plasma.

In low frequency regimes, effects due to temperature and density gradients become
important, and may even lead to instabilities. Homogeneity may then not be assumed
any longer when calculating power profiles. This naturally leads to questions about the
threshold below which gradients significantly contribute, and how they do.

In the present work, we study these gradient effects on the modelling of Alfven wave
heating. We first derive an expression for the local power absorption density assuming
a hot, uniformly magnetized, inhomogeneous plasma. Using a 1-D finite element, full
wave code, the power deposition is computed for low frequency Alfven waves in a
plasma with parabolic density and temperature profiles. A threshold is given beyond"

which we show that gradient effects become important.

2 Power Deposition

In this section we derive an expression for the local power absorption density of a small
amplitude eletromagnetic field in a hot, uniformly magnetized; inhomogeneous plasma.

Using a transformation to Lagrangian coordinates, the power is calculated without
introducing the flux due to particle streaming, and corresponds to the local exchange
of energy between the wave and the particles. This technique was found necessary to
guarantee positive absorption profiles in homogeneous plasmas, which are known to be

stable.



The derivation is along the same lines as for the homogeneous case, except that now
effects due to density and temperature gradients are included. The energy moment of
the Vlasov equation is first transformed into Lagrangian coordinates. A time averaging
over the scale A7 ~ |w—Q,|~! where w is the excitation frequency and (. the cyclotron
frequency of the species, must be carried out concurrently with an averaging in space
over Ay = Arv, the distance a particle with a typical velocity component v, along
the equilibrium magnetic field B, travels during the time A7. Doing so, we obtain a

general expression for the local power absorption density as

Py(z1) =2 [dv Re < E*(@!) - v'fy(@),v') >¢ (1)

where we have set
f=fot+ fL+ OB, 2)
{E(z,1), fi(=,v,)} = Re {E(=.), fi(w.,v)} expli(kyzy — wt)]. (3)

Here f is the distribution function of a species with charge ¢ and mass m, while f; is
the linear perturbation induced in the presence of the electromagnetic field E and B.
Primed quantities @’,v',t' refer to position, velocity and time in the Lagrangian frame
of reference with the trajectories of particles given by

o =z, + %Jl [(sina —sina’)e, + (cosa’ — cosa)e,],
c
v' = v (cosd’e; +sind’ey) + v,e,, (4)

a'=a+Q(t-t), v.= (vi—i—vi)l/z, o = tan 2
T

The cartesian coordinate system was chosen with the z-axis along the static magnetic
field B,. It is interesting to note here, that the trajectories of particles depend exclu-
sively on B,, and are the same whether homogeneity is assumed or not. The only term
in (1) carrying information about the inhomogeneity is fy(z',, v')

Next, by integrating the Vlasov equation over unperturbed orbits, f; is related to
the equilibrium distribution function fy, which is known to have a dependency of the

form fo(X =2 + v,/ Y =y — v,/Q,,v,,v1), all four parameters being constants of



motion. For practical use, fp is assumed maxwellian

2 2 1/2
Fo(X 1,00, 0p) = fag = =302 - vt—3 exp [_ (vi + ’UII)] : vy = (.Z_T) (5)

v} m
where no(X ) and T(X,) are the plasma density and temperature. Upon using the

Fourier transforms
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V1 k —4q
Al = ac'Ik-L—qJ-L tang_, = (ﬁ) (12)

which is equivalent to a similar expression derived by Yasseen and Vaclavik (1986)
using an another method. J, and J; represent respectively are the Bessel function and
its derivative. In order to satisfy causality, the frequency w is assumed to have a small,
positive, imaginary part.

A general form of the local power absorption density may now be obtained by
inserting (4) and (8) into (1) and carrying out the time averaging. For practical use
however, we restrict ourselves to the case where the Larmor radii of the species are small
when compared first to the scale of variation of the electric field and secondly to the
equilibrium parameters such as temperature and density. Assuming homogeneity in one
direction across B, allows us to treat y as an ignorable coordinate of the equilibrium.
Some rearrangements finally yield an expression for local power absorption in slab

geometry, valid up to second order in the equilibrium and field gradients:
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Pyom refers to the absorption in the homogeneous case as found by Vaclavik and Appert

(1987), and Y® is the imaginary part of the plasma dispersion function as defined by
Shafranov (1967).

To conclude this section, we write the time averaged Poynting theorem as

—_— Im(E* €-F) (15)



where S is the time averaged x-component of the Poynting vector and e the dielectric
tensor of the plasma as derived by Martin and Vaclavik (1987). The rhs of Eq. (15)
consists of dissipative terms Pr and energy flux terms S7 due to thermal motion of

particles. Taking the difference

w . _ dSr
—gIm(E 'G'E)_PL__IE_ (16)

both contributions Py, and %71 are separated in a unique way.

3 Numerical Results

The expression for local power absorption obtained in the previous section, together
with an expression for the dielectric tensor derived by Martin and Vaclavik (1987) can
now be used to study numerically the effects of density and temperature gradients on
the excitation of Alfven waves in a medium size tokamak. Since these effects are found
to be stronger at low frequencies, we concentrate on this part of the spectrum.
The eigenmode equation
w?

VXVXE = € E, E ~ exp(—iwt) (17)
is solved for a plasma slab, using the cubic-hermite finite element code ISMENE (Ap-
pert et al., 1986; Appert et al., 1987). The parameters used for the computations,
unless otherwise specified, are those of a medium size tokamak (TCA) (Collins et al.,
1986) and are summarized in Table 1. The density and temperature profiles of the

deuterium plasma are
z? z?\?
n(z) = ng (1 - s-;) , T.:(z) = Tioeo0 (1 - 3—(1—2) (18)
while the axial wave number k, was chosen to obtain several Alfven oscillations within
the plasma. The calculation was discretized on an irregular mesh of 400 points, with a

higher density of points around the boundaries.



Static magnetic field B, [kG] 15

Minor radius a [em)] 18

Central density no [em® |2.3x 1013
Central ion temperature T [eV] 350

Central electron temperature | T,y [eV] 800

Profile shape factor (Eq. 18) | s 0.95
Poloidal wave number ky, [em™']| —5.0x 1072
Axial wave number k, [em™']|5.6x 1073
Frequency fo [kHZ] | 500

Table 1: Default computation parameters

Shown in Fig. 1, are the waveforms for the case where a fast magnetosonic surface
wave mode converts into a kinetic Alfven wave. For this, we recognise a typical con-
version pattern: the antenna, which is situated outside the plasma at z,,; = 19 cm,
between the wall at . = 21 cm and the plasma edge at Zpiama = 18 cm, first couples
to the fast magnetosonic cut-off wave, which is not apparent in the figure. Around
z = 8 cm, it meets the Alfven spatial resonance and converts into a kinetic Alfven
wave (KAW). This then propagates inwards to higher density regions and builds up a
standing wave (global eigenmodes of the KAW) if it is not damped out before it reaches
the center. Near the edge, where the temperature is sufficiently low to have k,v;. < w,
the short wavelength oscillation can be identified as the surface quasi-electrostatic wave
(SQEW) directly excited by the antenna.

Let us now analyse the effect of equilibrium gradients on the electric field (Figs. 1
and 2) and on the corresponding local power deposition profiles (Figs. 3 and 4). At
2.5 MHz, the waveform is essentially the same as for the calculation made without
equilibrium gradient terms and the amplitude is changed by less than 5%. In contrast,
the field structure is clearly affected by the gradients on the antenna side from 1 MHz
downwards. The corresponding absorption profile (Fig. 4b) shows that they remove a
false peak near ¢ = 16 cm, which grows as the frequency decreases. Below 250 kHz,

the difference is so great that the fields and absorption profiles become meaningless if



the gradients are not taken into account.

Important for consistency, and as a check for the previously derived expression, is

to ensure that the power radiated by the antenna

1 .
P, = _ERG/ B Jons - B* (19)

vacuum

where junt denotes the antenna current, equal to the local power absorption (13) in-
tegrated all over the plasma volume. While this is clearly wrong for low frequencies
if equilibrium gradients are neglected, very good agreement (up to 3 digits) has been
obtained using the full expression.

As a first conclusion, we see that the threshold beyond which gradients are qualita-
tively affecting the fields and the absorption profiles, lies around 1 MHz. Surprisingly,
the effect on the electric field is more to maintain the high frequency wave structure
down below the threshold rather than to modify it. Except for the amplitudes which
decrease as a power of the excitation frequency, the field and absorption profiles ob-
tained using the full expressions change little over the whole frequency range studied
here.

Having examined local properties, we now concentrate on a more global approach
where only the total amount of absorbed power all over the plasma is taken into account
(Figs. 5 and 6). With increasing w/k,, the absorption suddenly peaks when the
resonance condition w/k, = c4 is met in the center of the plasma. Standing waves
(KAW) appear between the resonance layers. This results in small peaks of the total
absorption around w/k, = 5x108[cm/s], one for each new higher order mode, when the
resonance layers move towards the outside to lower density regions. Before w/k, has
become too much larger, strong damping keeps the kinetic Alfven wave from reaching
the center of the plasma preventing any further build up of standing waves. The
total power then remains constant over the whole range called the Alfven continuum
(CONT), where the wave is absorbed within a short distance of the resonance point.

The peaks in total power at high phase velocity (w/k, > 8 x 108[cm/s]) are related to



the eigenmodes of the cold SQEW wave. Starting from a high value of the parameter
w/k,, the computations show first a peak in the absorption when the fundamental is
- builtup .at theedge (w/k, =~ 1.06 x 10%[cm /5] for 2.5 MHz), while other peaks are found
for higher order modes if one keeps decreasing w/k,. It is important here to note that
even though the effects of the KAW and SQEW waves on the total power absorption
are well separated in phase velocities, both may coexist in the same plasma, one effect
simply dominating the other in a certain regime.

Fig. 5 shows how quickly the total absorption decreases with the frequency (almost
as its fifth power). The wave scenario which has just been described however remains
essentially unchanged down to 25 kHz. This seems to indicate that the power decrease
is mainly due to a drop in the coupling between the antenna and the cut-off field which
carries the energy to the resonance.

Finally, a comparison of Fig. 5 and 6 shows the effect of the equilibrium gradients on
the total absorption. As expected, their contribution increases for small frequencies,
the general tendency being to overestimate the absorbed power if the gradients are
neglected. With a frequency of 2.5 MHz, the total absorption is almost insensitive
to their presence, except for the phase velocities below the Alfven resonance and for
the fundamental SQEW mode, where the discrepancies are of the order of a factor
10. Below 500 kHz however, the power step due to the Alfven resonance disappears
if gradients are neglected and the higher order SQEW modes are ill represented. The
least affected is certainly the Alfven continuum (CONT) where the corrections are less
than a factor of two over the whole range of frequencies. It is however important to keep
in mind that although the corrections are weak if the power absorption is integrated
over the whole plasma, the deposition profile on which the total is based is completely
wrong for low frequencies.

To summarize, gradient terms, as in the local analysis again remove deviations
from the well known pattern at high frequencies which would have appeared below

approximatively 1 MHz if they had been neglected. The step in power due to the



Alfven resonance and the peaks of power due to the SQEW modes survive down to 50

kHz.

4 Conclusion

~An analytical expression for the local power absorption-density.in a.uniformly magne- -
tized, inhomogeneous slab plasma has been derived and successfully implemented in a
computer code, showing good agreement with the total power emitted on the antenna.
Applied to the tokamak of our laboratory, computations in the Alfven range of
frequencies showed that below 1 MHz, equilibrium gradients become important. Taken
into account, the usual conversion scenario remains valid down to frequencies below 100
kHz, although the absorbed power and the electric field quickly decrease in amplitude
with the applied frequency. Neglected, the waveforms become deficient on the antenna

side and the total absorption is overestimated by several orders of magnitude.
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Figure Caption
Figure 1: Parallel electric fields, including equilibrium gradients
Figure 2: Parallel electric fields, neglecting equilibrium gradients
Figure 3: Power deposition profiles, including equilibrium gradients
Figure 4: Power deposition profiles, neglecting equilibrium gradients
Figure 5: Total power absorption, including equilibrium gradients

Figure 6: Total power absorption, neglecting equilibrium gradients
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Figure 3: Power deposition profiles, including equilibrium gradients

108

3.6

-36

108

18.0

-18.0

X[cml



e = o
e > <
= oS - o® o
™ O ¢ ‘@) ) o
jn
= k7
'K'J — -~
T N N
L T T
> X X
e - el
T} o @]
. O O
N m  aand

36

_3‘6 .

108

(V] NOILISOd3d 43Mod

Figure 4: Power deposition profiles, neglecting equilibrium gradients
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Figure 5: Total power absorption, including equilibrium gradients

SQEW
\ 100 KHz
) [

1.2E409

8.0E4+08

4.0E+08

Phase Velocity [em/s]



N N N
T N
S = T I
n S Q ¥o)
o~ e} Q N
r fj
] | ]
) @) un
-] QO O
+ + |
L L

Ll
['nv] uondiosqy pyoy

-

Figure 6: Total power absorption, neglecting equilibrium gradients
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