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Ideal magnetohydrodynamic (MHD) equilibrium and stability computer codes
have been essential tools in both the predictive and interpretive fases of magnetic
plasma confinement devices. The roles of the ideal MHD stability codes
concentrate on the determination of the stable operating windows for a device
and the identification of the conditions that maximize the ratio of the plasma
pressure to the magnetic field energy density (commonly referred to as the beta
parameter, 3). Thus, the stability packages ERATO [1] , PEST [2] and the

Keldysh code [3] have been applied extensively to two dimensional (2D)

axisymmetric equilibria that model existing devices such as JET, TFTR, D-IIID,
JT60 and the design phase of next generation devices such as NET and ITER.
Stability packages for three dimensional (3D) plasma confinement
configurations have only recently become operational, but have been limited to
the study of internal mode structures [4,5]. The 3D code, TERPSICHORE has
now been generalized to investigate external ideal MHD instabilities by treating
the vacuum region surrounding the plasma as a pressureless and shearless
pseudoplasma.

Theoretical comparisons of the internal global stability properties of torsatron
configurations based on the stellarator expansion method [6] and of Mercier
stability between flux conserving equilibria and equilibria with zero net toroidal



plasma current has led to the conclusion that toroidal currents flowing in the
plasma are destabilising [7]. However, the problem of the modification of an
externally applied rotational transform and the resulting impact on the stability
of internal tearing and kink modes has been analysed by Mikhajlov and
Shafranov in a cylindrical approximation where helical fields are averaged and
the plasma pressure and magnetic field line curvature are neglected [8]. They
find that the destabilizing effect of the toroidal current is not universal.

In this paper, we consider the effect of toroidal plasma currents tailored to flow
in the outerpart of the enclosed volume on the global external ideal MHD
properties of 3D equilibria that model the ATF torsatron in its standard
configuration. If the current reduces the externally applied rotational transform,
the stability properties are deteriorated, but if the current increases the
transform, the stability properties are enhanced.

We have generated 3D equilibria with nested magnetic flux surfaces using the
VMEC code [9]. The Fourier amplitudes of R (distance from the major axis) and
Z (distance from the horizontal midplane) of the plasma boundary are
prescribed and correspond to the standard ATF configuration in which there is
no current in the mid-vertical field coils [10]. We also prescribe the pressure
profile p(s) and the toroidal current 27tJ(s) enclosed within each flux surface

labelled with the variable s which is proportional to the volume enclosed.
Specifically, for the pressure profile, we impose that p'(0)= p(1)=p'(1)= O and
p'(1/2) be a minimum to obtain a bell shaped profile of the form

p(s) = p(0) (1 -352 +2s3), (1)
where we vary 3 with p(0). For the toroidal current profile, we impose that

J(0)=J'(0)=J"(0)=J'(1)= 0 and 1J'(2/3)! be a maximum to obtain a profile of the
form

2mJ(s) = 2mJ(1) (4s3 -354), (2)

where 2rJ(1) is the total toroidal current enclosed. The normalisation in VMEC
is such that the toroidal magnetic flux 2n®(1) enclosed in the plasma is 7. Subject
to this normalisation, we have chosen three sequences of equilibria to investigate:

a) cases with J (1)= 0 that correspond to zero net toroidal current
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b)  cases with 2rtJ(1)=0.5 that unwind the externally applied transform in the
vacuum by15% compared with J(1)= 0, and

c)  cases with 2rJ(1)= -0.5 that wind the externally applied transform in the
vacuum up further by 13.5% compared with J(1)= 0.

In the vacuum state, the ATF equilibrium with 2rtJ(1)= 0.5 has a magnetic well
region that extends to the inner 60% of the enclosed plasma volume. That with
2rJ(1)= -0.5 extends to only the inner 25% of the plasma volume. The finite 3

equilibria show that the Shafranov  shift increases (decreases) significantly when
J>0 (J<0) compared with the zero current case. As an example, a magnetic axis
shift of 37% of the distance between the magnetic axis position in the vacuum

state and the outer midplane location of the plasma boundary occurs at B = 4%
for zero current and at 5% for 2nJ(1)= -0.5.

The equilibria that are obtained with VMEC are mapped into the Boozer
magnetic flux coordinate system [11] to undertake the stability computation. This
choice is made because the field lines become straight and the parallel current
can be very accurately constructed [12]. A very efficient Fourier technique is
employed to map equilibrium quantities into the Boozer frame [5]. A multigrid
type approach is employed to determine the spectrum of modes required to
reconstruct the equilibrium in Boozer coordinates. An equilibrium is calculated
with a coarse radial mesh and a very broad spectrum is selected for the mapping.
Then only the dominant modes in the Boozer coordinates (those for which Ry,

or Zmn exceed 10-7) are retained for refined radial mesh calculations. For the

ATF examples presented here, 128 modes sufficed to satisfy the selection
criterion and the error in the radial force balance was almost identical to that
calculated in the VMEC coordinates.

The linearised ideal MHD equations in variational form can be expressed as
OWp + 8W,, - 02 Wy =0, (3)

where 5Wp represents the internal potential energy of the plasma, W,
represents the magnetic energy in the vacuum region that surrounds the plasma,
dW/ represents the kinetic energy and @2 corresponds to the eigenvalue of the
system. The potential energy can be described as

sWp=3 113 [C2+ypl V-5 1 %Dl £ vs |2 @)

where & represents the perturbed displacement vector, ¥ is the adiabatic index
and

C=Vx(ng)+|—j—V§—Vl§2—-<&.vs) (5)
S
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In the plasma domain, the radial variable s satisfies 0 < s < 1. The perturbed
displacement vector is represented as

(B x Vs) O]

- s ;
& =Vg&Ve x Vo +n B2 ®'(s)B2 n

LlB 7

where 6 and ¢ are the poloidal and toroidal angles of the Boozer coordinate
system, Vg is the Jacobian and ( &S , W) correspond to the three components
(radial, binormal, parallel) of the decomposition of the displacement vector. We
impose the incompressibility constraint V - & = 0 to eliminate p algebraically
from the problem. As a result only stability indices rather than physical growth
rates are computed, thus a simplified model kinetic energy is invoked. This
reduces the size of the stability problem quite considerably as only two of the
three components of the perturbation have to be calculated. The vacuum region
is devised as a pressureless and currentless pseudoplasma with nested
pseudomagnetic flux surfaces with a coordinate system (s,,,0y, ¢,) that satisfies
the conditions sy=s= 1, 6= 0 at the plasma vacuum interface ¢,= ¢. Two

important constraints are imposed in the development of the vacuum domain:

1) the geometry varies smoothly accross the plasma-vacuum interface (PVI)

2) the pseudomagnetic flux surfaces remain nested and do not cross the major
axis. A conducting wall can be prescribed in two ways:

a) by extrapolation from the PVI such that the radial derivatives of R, Z and the
geometric toroidal angle remain constant and

b) by varying smoothly from the shape of the PVI to an arbitrarily shaped wall.
To avoid violating the flux surface nestedness constraint, the first method is
appropriate to describe a wall that is close to the PVI while the second method is
preferable for a wall that is far away. In the work we present here, a circular
axisymmetric wall that reaches close to the major axis is prescribed to model a
wall at infinity. The ratio of the diameter of the wall to that of the PVI at the
¢=0y=0 midplane is 7.4 and 1<s,<2. Invoking as gauge condition that the
perturbed vector potential A has a vanishing component along a pseudomagnetic
field vector T that satisfies V-T = T-Vs,, =0 allows us to express the magnetic

energy in the vacuum region as
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where we express the displacement vector in the vacuum region as

®'(s=1) Xy (T x Vsy)
= \/ Vo, xVo, + ——5——Y )
Ev gv (D, /ds,) v X Voy T2 \%

The boundary condition at the PVI, (§,-Vs) T = (§-Vs) reduces to
d¥,/d®,=Y'(1)/®'(1) which we extend throughout the plasma domain to avoid
introducing fictitious resonances in the vacuum region and
Xy(1,0v,0v)=E5(1,6y,0y). The poloidal and toroidal pseudomagnetic flux

functions are denoted by ¥y, and ®,, respectively. The boundary condition at the
conducting wall is X,,=0.

We apply a Fourier series decompostion of the perturbation components £S and

n given by
£%(s,0,0) = X 5=/ X;(s)sin(m;8-njo+A) (10)
]
N (s,0,0) = %,Yl(s)cos(mle-nl¢+A) (11)

where [ is an index that labels the mode number pair (my ,nj), A is a phase factor,
and the exponent q; = 0 for equilibria from codes like VMEC which employ flux
zoning. For equilibria in which the radial variable is proportional to the radius
rather than the volume enclosed q; =1 for m; =1. The decomposition of X, and
Y, is identical to that of &5 and 1 respectively. Because radial derivatives act only
on X; , a finite hybrid element radial discretisation scheme is applied and the
energy principle reduces in the weak form to an eigenvalue problem of the form

Ax = ABx (12)

where x = (Xl, Y)), the eigenvalue is A = 0)2, the matrices A and B are symmetric

and have a special block pentadiagonal structure. An inverse vector iteration
procedure is used to invert this equation and determine the smallest eigenvalue of
the system. By means of an eigenvalue shift, we are able to find all the
eigenvalues of the system [5].
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In axisymmetric systems, the toroidal mode numbers are all decoupled one from
another. In 3D systems with stellarator symmetry and a finite number of field
periods, there are families of toroidal modes numbers that are decoupled one
from another. In a 12 field period device like the ATF there are 6 such families.
These can be described by (m ; LNtk), where 0Sm<eo labels the toroidal mode
numbers of the instability, L=12 is the number of field periods, -cc<N<eo labels
in general the toroidal modes that describe the equilibrium state and 1<k<6
labels each independent family of toroidal modes that describe the instability
structure. Thus for example, k=1 corresponds to immediate toroidal sideband

structures of the equilibrium state and include the toroidal modes withn= -1, 1,
11, 13, 23, 25, etc. The proposed WVII-X device with 5 field periods has 2

families. Toroidal mode numbers with n= -1, 1, 4, 6, 9, 11, etc. constitute one
while those withn=2, 3, 7, 8, 12, 13, etc. constitute the other.

In the calculations we present in this paper, we concentrate on the stability
properties of ATF equilibria to global low toroidal mode number n instabilities,
though we have carried out also some selected calculations for more localized
modes. It is not always an easy task to distinguish high-n ballooning modes from
high-n modes destabilized by the finite hybrid element scheme [3]. The
procedure we have followed, is to first select a single toroidal mode number with
a spectrum of poloidal modes to obtain an eigenvalue A. We then try to follow
this branch as we couple in modes with different toroidal mode numbers. For the
cases that we have studied, we find that either with single or multiple toroidal
mode numbers, that as we vary the number of radial mesh points, the
convergence properties of the eigenvalue are quadratic from the unstable side.
The convergence curves with multiple toroidal mode numbers are shifted
towards the unstable side compared with single toroidal mode number cases. The
shift becomes less pronounced as the marginal point is approached. The number
of radial intervals in the vacuum is fixed at one quarter the number of radial
intervals in the plasma.

The ATF equilibrium with toroidal current 21tJ (1)= 0.5 has already at a value of
B = 1.4% a noticeably nonmonotonic rotational transform profile 1(s) with

multiple values of 1=1/2. The transform at the edge is 1=0.87. This configuration

is strongly unstable to an m=1, n=1 external mode coupled together with a
noticeable m=2, n=1 component in the interior of the plasma. The standard zero

net toroidal current ATF equilibrium at a value of B=3.35% also has a
nonmonotonic 1(s) profile but the local minimum in 1 remains greater than 1/2.

The value at the PVI reaches 1=0.98. The perturbed pressure distribution at the
PVI shows the distinct m=1, n=1 structure of the instability in Fig. 1. The n=2
family only becomes unstable to global structures at $=3.96%, when local
minimum in the 1-profile drops below 1/2 and modes with n=2, m=4,5,6,7 make
significant contributions. The ATF equilibria with 2rtJ(1)=-0.5 have the 1=1
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surface inside the plasma, but in a region of very high magnetic shear. As a
result, the n=1 family remains stable to global structure beyond B=5% as the

m=1, n=1 mode becomes very localized due to the effects of high shear. At a
value of B = 4.5%, the 1-profile, though still monotonic, becomes very flat with

1>1/2 in the internal part of the plasma. The n=2 family becomes unstable to

global structure dominated by the internal m=3, n=2 mode. This type of
structure is evident in the perturbed pressure distribution on the PVI shown in
Fig. 2. The bulk of the stability calculations that we have performed are
summarized in Fig. 3, where we show the converged eigenvalue that we have

determined as a function of the volume averaged 3 for

1) the sequence of ATF equilibria with a finite toroidal current 2rJ(1)=0.5
established by the n=1 family of global external modes, where strong instability
subsists well below B=1%,

2) the sequence of ATF equilibria with zero net toroidal current established by
the n=1 family of global external modes, at about 3.14%, and

3) the sequence of ATF equilibria with finite toroidal plasma current 27J (1)=-
0.5 established by the n=2 family of principally global internal modes which has
a P limit of about 4.25%.

Benchmark studies of fixed boundary internal MHD stability of flux conserving
sequences of ATF equilibria with parabolic pressure profiles for low and high
toroidal n mode structures have been performed. These equilibria are stable to

the n=1 family of modes up to B =6.7%. At this value of 3, the coupling between

n=2 and n=-2 modes weakly destabilises the n=2 family. The critical B value

drops to 4.1% for the n=3 family of modes and to 3% for the n=9 modes. The
higher n modes have very distinct ballooning mode structures.

In summary, we have investigated the global ideal MHD stability properties of
the fully 3D standard ATF configuration with a bell-shaped pressure profil and a
range of toroidal currents that flow in the outer part of the plasma column. The
magnitude of the currents were very modest altering the rotational transform by
t 15% compared with the standard zero current case. Such small tailored
currents could easily be produced with an ECRH current drive. Nevertheless, the
MHD stability properties of the configuration were modified significantly. The
zero current case has a 3 limit of 3.14% imposed by the n=1 family of modes. If
the current imposed unwinds the externally applied transform, the stability
properties deteriorate and the configuration is unstable below B =1%. If the
current winds the externally applied transform further, the n=1 family is

stabilised and the n= 2 family imposes a limit at f= 4.25%.

This work was financed by the Swiss National Science Foundation and Euratom.
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A MODIFIED ELECTROMAGNETIC WAVE EQUATION

X. Llobet, K. Appert, and J. Vaclavik

Centre de Recherches en Physique des Plasmas
Association Euratom - Confédération Suisse
Ecole Polytechnique ¥édérale de Lausanne

21, av. des Bains - 1007 Lausanne / Switzerland

The aim of this paper is to find an alternative to the usual electromag-
netic wave equation: that is, we want to find a different equation with the
same solutions. The final goal is to solve electromagnetic problems with
iterative methods. The curl curl operator that appears in the electromagne-
tic wave equation is difficult to invert numerically, and this cannot be done
iteratively. The addition of a higher order term that emphasizes the diagonal
terms in the operator may help the solution of the problem, and the new
equation should be solvable by an iterative algorithm. The additional mode is
suppressed by suitable boundary conditions.

1. Introduction

The curl curl operator that appears in the electromagnetic wave equation
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is difficult to invert numerically, as it is well known [Weitzner, 1984; Jaeger
et al, 1986; Batchelor et al, 1988]; in effect, the curl has a large null space: all
the functions that are gradients. In the vacuum we can consider the
eigenvalue equation (with w%/c2=1) curl curl E = A E ; this equation has the
degenerated eigenvalue A = 0, and the associated eigenfunctions are those
with div E # 0, that is, all the electrostatic modes. Numerically, the array |
that has to be inverted has diagonal elements that are smaller than some
off-diagonal terms; this imbalance prevénts the straightforward use of
iterative solving methods. Another inconvenience, related to the existence of
the degenerated zero eigenvalue, is the eventual appearance of polluting
modes when the three components of the electric field are represented with

the same finite element basis functions {L.amalle, 1988].

On the other hand, the Laplacian operator V2 does not present any of
these difficulties: the diagonal elements are dominant, and it is pollution-free
(under the conditions mentioned above). The fact that the difference between
the Laplacian and curl curl is grad div suggests that adding a term of the '
form A grad div, with A a constant, to the curl curl operator could help in
solving the equation, eliminating the degenerated zero eigenvalue. The
solutions of the driven equation (frequency ﬁxed by a source) will not be
changed by the additional term if: a) the eigenvalues of the modified operator
include all the non-zero eigenvalues of curl curl, and b) the new modes,
corresponding to the additional finite eigenvalues, do not appear in the

solution.

In Section 2 we present first such an operator in the vacuum, where it is
easier to follow the steps that lead to the introduction of the new term, and we

introduce later the more general case of a plasma, with a dielectric tensor.
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And in Section 3 we discuss the numerical resolution of the modified

equation and show some preliminary results.
>

2. Theory

2.1 The vacuum.

The electromagnetic wave equation in vacuum is

curlcurl E = QZEE (1a)
c

and, for a perfectly conducting boundary 9Q, the boundary conditions are

nxE =0 onoQ (1b)

where n is the unit vector normal to the surface dQ; more generally,
nxE continuous across oQ. (1)

In the case of 1-D problems, Eq. (1a) is a fourth order system of three ordinary
differential equations, and only needs four boundary conditions; for example,
- those given by (1b) or (1c). We will consider ® as a fixed parameter, given by
the source {an antenna) added to Eq. (1a).

For w # 0, Eq. (1a) implies div E =0. If we use the identity curl curl =
- V2 + grad div, we can write the system of equations

-V°E = 53231«: (2a)
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divE = 0 (2b)
nxE continuous across 0Q. (2¢)
e
equivalent to (1) for o # 0. As this system is exactly equivalent to (1), it is of

fourth order in the 1-D case, even if Eq. (2a) is by itself a system of sixth order.
When we take the divergence of Eq. (2a), we see that

(Ve @)y =0 3)
¢z

where y =div E. If y = 0 on the boundaries, Eq. (3) guarantees that y =
div E is zero everywhere if ® is not an eigenvalue of (3). Thus we can replace
Eq. (2b) by a boundary condition, and we obtain a system of equations that

gives the same solutions as (1) when o # 0 is not an eigenvalue of (3):

-V’E = @2g (4a)
c2

divE =0 onodQ (4b)

nxE continuous across oQ. A (40)

This is now a sixth order system in 1-D, and it needs six boundary conditions;

the two additional conditions are given by divE =0 on oQ.

Although we have succeeded in replacing the curl curl operator by the
Laplacian, the system (4) is not satisfactory: the new additional non-zero
eigenvalues of Eq. (4) (that is, those of Eq. (3) ) are equal to the eigenvéIués of

(1). In effect, the eigenvalues of (1) — the dispersion relation — are

@RI = k2 + k2 + k2 ®)
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twice degenerated (two polarizations), if we assume the usual Fourier-style
spatial dependence, whereas the eigenvalues of (3) are also given by (5). It
would be much more desirable for the modified operator to have the new

"unphysical” eigenvalues well separated from the "true" eigenvalues.

The replacement done to Eq. (1a) to obtain Eqgs. (2) is equivalent to
substracting grad div E from the left hand side of Eq. (1a). If we substract

A grad div E , with A a non-zero constant, we obtain, for o # 0,

-V’E + graddiv(1-A)E = @;-E | (6a)

c 4
divE = 0 - (6b)
nxE continuous across 0Q. (6¢)

The divergence of Eq. (6a) gives now

(AVZ+ —c“‘—:-)w=0- %)

Thus, for ® # 0 not an eigenvalue of (7), the sixth order system of equations

-V2E + grad div (1 - A)E = 992314: (8)
C

or, equivalently,

curl curl E - A grad divE = ‘—”—éz—E [¢:))
c ..

with the boundary conditions
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divE = 0 ondQ (8b)

nxE continuous across 9Q. (8¢c)

has the same solutions as the original system (1). The new eigenvalues are
now those of Eq. (7), that is,
0)2/02=A(k,2+ky2+k,2) 1€))

and they may be separated from the original ones. In a 1-D problem, for

example, where o, k, and k, are given, the physical modes
k2 = oc2- (k2 + k,2) (10)

can be kept away from the unphysical modes

k2 = (0%c?)/A - (ky? + k;2) (11)
by a suitable choice of the value of A; if we are studying propagating modes
(ky2 > 0), setting A < 0 makes the A-dependent modes evanescent. The
amplitude of these modes, which are characterized by div E = 0, is set to zero
by the boundary conditions.

As an added bonus, it is straightforward to verify [Llobet et al, 1990] that

the modified system of equations is pollution-free.

2.2 The plasma.

In a plasma the electromagnetic wave equation becomes
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curlcurlE = ﬂé D (12)
c

where D = ¢ E, € being the dielectric tensor, which is a differential operator
for hot plasmas. The boundary conditions are still given by (1b) for a perfect

conductor, or (1c).

Now, div E is replaced by div D. For finite frequencies, Eq. (12) implies |
div D = 0. Substracting A grad div D from the left hand side we obtain,

curl curl E - A grad div D =@23D (13)
C

divD =0 (13b)

nxE continuous across oS). (13c)

The divergence of Eq. (13a) gives

(AVZ + %)w =0 (14)

with y =div D. Thus, for ® # 0 not an eigenvalue of (14), the system of '

equations

curlcurlE -AgraddivD = m;l) (15a)
c
divD = 0 onoQ (15b)

nxE continuous across 0. (15c¢)

has the same solutions as (12). In the cases of physical interest, this
modified operator is two orders higher than the original one, as in the

vacuum case, and it needs the two additional boundary conditions div D = 0.
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As the dielectric tensor depends on ®, we cannot treat 2 as an
eigenvalue, but we can still consider the dispersion relations of the two
systems of equations. It/is clear that the new modes are those described by
Eq. (14), which is identical to Eq. (7). Thus, their dispersion relation is that of

Eq. (7) and, like in the vacuum case,
o?/c? = A (k2 + k2 + k,2). €))

It is somewhat surprising that these additional modes, obtained by the
addition of a term that depends on the plasma dielectric tensor, and
characterized by div D = 0, have a dispersion relation that does not depend at

all on the plasma: they look like pure cavity modes.

3. Numerical resolution.

We have solved this Modified Electromagnetic Wave Equation (MEWE)
using its operator in the 1-D slab global wave code ISMENE [Appert et al,
1987]. The vacuum and the cold plasma cases are a success, as the results
are even better than those from ISMENE. On the other hand, in the hot

plasma case, the converged results are the same, but the convergence is

- somewhat slower.

The ISMENE code uses a finite element method to solve the equations.
The equation to be solved is multiplied by a test function, and integrated over
the domain; the details can be found in the paper by Appert et al, 1986. Only

the relevant calculations are presented in what follows.
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3.1 The vacuum.

~
Multiplying Eq. (8') by the arbitrary test function F we have, after
integrating by parts over the domain Q,

f dV[(curlF). (curlE)+ A(divF )(divE) - -(%FE ] =
Q c

=f dSn-[FxcurlE + AF(divE)] (16)
aQ

The boundary condition div E = 0 allows us to drop the second term in the
surface integral. If the boundary is a perfect conductor, the essential
condition (1b) n x E = 0 permits to drop also the first term [Strang and Fix,
1973]; but we may study more general regions of space (for example, a region
near an antenna) and evaluate the first term with matching conditions (8c).

More specifically, the terms in the integrand of the right hand side are
[FxA(divE)+Fy(Ey’-ikyEx)+Fz(Ez'-ik,Ex)] ey, amn

In this case (the vacuum) it is trivial to evaluate these terms (proportional to
B, and B,), as the fields are continuous, and we can write these terms as
- functions of the tangential components of the electric field at the interface

and of the source characteristics.

It is appropriate to notice that the surface terms in (17) provide the ability
to impose three natural boundary conditions, as there are three free test
function parameters (F, , Fy and F, at the surface). The three boundary

conditions are the continuity of the tangential components of the electric field
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(two conditions), and div E = 0, which can be imposed separately by dropping
the A-dependent surface term. The matching conditions obtained by
integrating Eq. (8') across the interface (vacuum-vacuum in this case), are
that the factors of Fy,Fy and F, in (17) have to be continuous; in this case,

the use of these conditions does not bring anything new.
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Figure 1. Electric ﬁéld in the vacuum case.

Fig. 1 shows the results in the case of an evanescent wave (240 MHz),
launched by an antenna parallel to the y-z plane, so that E, should be zero.
The domain extends from xj = -125 c¢m to x, = 125 c¢m, with the antenna at x, = |
131.5 cm and metallic walls at x =138 cm; the y and z components of the
wave vector are ky =0.02 cm! and k, = 0.05 cm™! {(these values, except for the
frequency, apply to all the cases presented in this paper). The left panel
shows (the logarithm of) the tangential components of the electric field; the
results of MEWE and of ISMENE agree to more than five digits with each

other and with the analytical solution. On the other hand, E, is not zero: its
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source is the finite value of the combihation ky Ey +k, E, at the boundary,
which should be exactly zero, but the two terms cancel each other "only" up
to 10-5 . It is clear that ISMENE's result isig.ood enough, but the fact that
MEWE improves it is encouraging. The improvement is much more

remarkable in the cases where ISMENE suffers from pollution.

These results were obtained using cubic Hermite finite elements, which
guarantee the continuity of the solution and of the first derivative, and only
these quantities are used in the volume integral and in the surface integral.
Linear elements could be used in ISMENE, és the discontinuities in the first
derivative do not matter in the volume integral, and the surface integral can
be written, as explained above, as function only of the solution at the
boundary, not of its derivatives. MEWE needs to take into acéount the div E |
term, even if it is to dismiss it naturally; although the first derivative is
discontinuous at the mesh points, it is finite and its one-sided limit exists,

and this is what is needed.

3.2 The plasma.

In the plasma the dielectric tensor is a differential operator. To the
second order of the expansion in powers of the Larmor radii, it is of second

order, and has this structure in 1-D [Martin and Vaclavik, 1987]:

=4 o d d ;. d gt
€ dxmdx-'-ﬁdx-*-dxB Y - U8)

with
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Oxx Oxy O
o =|-Oxy oy 0 |, (18a)
P 0 0 oy
0 By Bx 0 0 0
B=| 0 0 Bp| B =[Py 0 0 |, (18b)
0 0 O Pxz -Byz: O

and Y given by functions of ®, ky, k,, the plasma parameters (density,

temperature, magnetic field) and their derivatives, assuming B = B(x) e,.

Multiplying Eq. (15) by the test function F and integrating once by parts
we obtain the analog of the Eq. (16)

[ dV [ (curl F }(curl E) + A(divF XdivD) - -@23F-D ] =
Q C

=f dSn{FxcurlE + AF(divD)] (19)
;o]
with the boundary condition

divD = 0 onodQ (19

Now the term div D has third derivatives. Third derivatives of cubic
Hermite finite elements are not only discontinuous but singular (5 function)
at the mesh points; they must be avoided [Strang and Fix, 1973, p. é2].
Integrating by parts once more leads to



25

~

Xe

dx [(curlF }cud E)- A grad (divF }eE -

- %F('Y + B%)E + _Q(‘:% (E%F) (B+ + aadx—}E ] = (20)

- [[FxcurlE + AF@vD)- A @vF)DL + L F (3 + o d)E ]"
C dx x

with the boundary condition
divD = 0 atx andx,. (20"
The surface term in (20) is

Fy [A(divD) +(0¥c?) (0 Ey' + 0y E) ] -
- F,AD, +
+ Fy (B -1k By )+ (@) B+ E + o E)y+iky ADg] +
+ Fy (B, -il, By )+ @¥c) B+ E + a-E), +ik,AD,] . 1)

We now have to impose the three boundary conditions: continuity of
tangential components of E, and div D = 0. But we need four conditions to
have a unique solution. The fourth boundary condition can be obtained from
the matching conditions; integrating Eq. (15) across the interface gives that -

the combinations

A(divD) + (0)2/(;2) g Ey +ayE) (22a)
(0¥c?) B+ E + a-E), +(curl E), - (22b)
() B+ E + oK), - (curl ), (220)

are continuous, so they can be replaced by their values in the vacuum. Then
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we have (22a) =0, and this is the fourth condition.

The two boundary conditions div D =0 and (22a) = 0 can be imposed by
dropping the first surface term, corresponding to F, (natural condition) and

setting
OBy +agEyS =0 (23)

(essential condition); this combination ensures that div D = 0. It is clear that
this condition cannot be imposed essentially, due to the singularity of the

third derivative.

We can use the continuity of (22b) and (22¢) to simplify the expression of
the surface terms, as their values in the vacuum can be expressed as’

functions of the tangential fields alone. The expression of the surface term is
FxcarlE, ] - A(divF)D, . (24)

The last step is to obtain an expression for D, at the inside surface of the
boundary, to evaluate (24); in general, for a hot plasma with finite density
and temperature at the edge, there are surface currents and charge, which
make D, discontinuous. There are two ways to calculate D, : the first one is
to use Dy = (¢ - E ), ; this implies the use of second derivatives, which exist
only as one-sided limit. The second way is to realize that when div D = 0, D
is proportional to curl B, so the jump of D, can be written as a function-of the -
jumps of By and B,, which we know from the integration across the interface

of Eq. (15) mentioned above. The result is
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Dy = (Ex)vac - ik‘(B+ + (X-ad;)E (25)
~

where k hasonly y and z components; the vacuum value of E, is computed .

from the tangential components.

It turns out that if (25) is used in all the occurrences of D, in the surface
term the results are wrong; if at least one term (on each boundary) is
evaluated from (e- E ), , the results are correct. This occurs even in the
vacuum, where the choice is to get E; from the solution directly, or from the
tangential components. Thus, even if both ways appear in principle to be

correct, the second one must be a computational crime.

Following this method, the results obtained are indeed quite good. We
have focussed most of our efforts on one test case: a JET-size deuterium
plasma with parabolic density and temperature profiles, launching a fast
wave (60 MHz) above 2w,. More specifically, the parameters at the center
are: ng = 4.5 x 1013 cm3, T, = T; = 2 keV, By = 3.4 T. Fig. 2 shows the real and
imaginary parts of Ey (we use E, as diagnostic, as its behaviour is
representative of all the other components: its real part is large, and its
converged value agrees very well with ISMENE, while its imaginary part is
small, and shows the largest relative error). With 300 points the results
agree to better than 1-2%, and the difference between the results of ISMENE
and MEWE wouldn't be appreciated in the figure, but as it can be seen in Fig.
3, which presents the solutions near the right edge, it is clear that the MEWE

solution is not satisfactory: it shows a sharp bend.



Figure 2. Real and imaginary parts of Ey in a plasma (fast wave).
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Figure 3. E, near the right boundary; ISMENE and MEWE solutions.

As this "feature” seems to be localized in the last interval, we can-tr&r to

pack more points near the edge. Thus to add N, additional points in the last
interval of length H we place the first at H/2 from the edge, the next at H/4,
the next at H/8, etc. With this packing, the behaviour of the solution near the
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Figure 5. Edge values of E, as a function of the number of additional points.

edge becomes acceptable, as shown in Fig. 4, where we plot the fields for a
different number of additional points (0 to 4) and the ISMENE solution. How

many’ points should be inserted? In Fig. 5 we show the field values at the
edge versus the number of additional points. It is a general feature that as

this number increases, the solutions tend first to a value, but later diverge
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(this behaviour recalls the asymptotic expansions). In this case, the
"optimum"” value, which should be determined from all the components of
the solution, seems to be 5. When we use 600 points, the optimum ;alue is 4,
and for 1200 is 3. It looks like there is an optimum value for the smallest
interval at the edge; it turns out to be of the order of the smallest physical
distance imbedded in the dielectric tensor, which is the electron Larmor
radius, or the Debye length. This distance is much smaller than any of the

wavelengths derived from a WKB analysis.

With this "recipe”, the convergence of the fields at the edge of MEWE, in
the "optimum" series (300,5), (600,4), (1200,3) is approximately in N-2
(ISMENE converges as N4 ). We certainly expect a slower convergence in the
modified equation, as second derivatives are used, which are poorly
represented (they are discontinuous). An additional reason to explain the
relative poor convergence is the (in)famous boundary condition div D = 0; the
fact that third derivatives are not properly represented by cubic Hermite
elements may explain the need for the "ad hoc" introduction of points near

the edge and the slower convergence.

4. Conclusions.

The modified electromagnetic equation introduced in this paper has a
series of theoretical advantages with respect to the classical equation: it has
no degenerated zero eigenvalue, is pollution-free, and has a more dominant
diagonal. In the dispersion relation the new modes can be factored out, and
crossings with the physical branches may be avoided. The numerical

resolution of this equation poses some practical difficulties, mostly in the
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evaluation of the new surface terms and in the implementation of the div D =
0 at the boundary. We have found a way to solve these problems, and the
numerical solutions of the modified equation converge to the classical

solutions, though more slowly.

The main goal of building this modified equation is to allow the use of
iterative methods, which seem not to be of use in the classical equation. We

have not yet tried any of these methods, but plan to do so in the near future.
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A general expression for local power absorption of small amplitude electromagnetic
fields in a hot, uniformly magnetized plasma is obtained starting from Vlasov-
Maxwell equations. Using a transformation to Lagrangian coordinates, the power
is calculated without introducing the flux due to particle streaming, and corre-
sponds to the local exchange of energy between the wave and the plasma.

Assuming the Larmor radii of the species to be small compared with the char-
acteristic scale length of the fields and the equilibrium quantities such as density
and temperature, an expansion to second order is carried out. This results in an
explicit expression for local power absorption in a 2-D plasma, which takes into

account the effects due to density and temperature gradients.

1 Introduction

One way commonly used to raise the temperature in a fusion device is to launch elec-
tromagnetic waves into the plasma, the energy of which may then be converted into
electron and ion heat according to the well known wave-particle processes such as Lan-
dau damping, cyclotron damping and transit time magnetic pumping.

In order to control the heating, it is important to know exactly where the energy
is dissipated. Such deposition profiles depend on the characteristics of the wave and
on the local properties of the plasma along its trajectory. Standing waves created by

partial reflections inside the plasma, eigenmode oscillations and strongly damped waves
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are field patterns commonly encountered in RF heating, for which a WKB description
often does not hold.

In this paper, an expression for the local power absorption density is obtained in
terms of an arbitrary linear EM field in a hot, uniformly magnetized plasma, taking

into account effects due to density and temperature gradients.

2 Energy Balance in Lagrangian Coordinates

A general formulation for the local power absorption has recently been obtained directly
from fundamental principles (McVey et al., 1985; Vaclavik and Appert, 1987). Using a
transformation into Lagrangian coordinates (2’,v’,t'), the energy moment of the Vlasov
equation is first written without introducing the flux of energy due to thermal motion
of particles. With the lowest frequency involved in the expression for power absorption
being |w — |, it has been shown that an average in time over the scale Ar ~ |w — Q]!
must be carried out in conjunction with an average in space along the direction of
magnetostatic field B, = By e,as the particles will then move in the same direction by
a distance Ay = A7v,. Here v, is a typical particle velocity component parallel to the
magnetic field, 2. the cyclotron frequency of the species and w the frequency of the
wave. All this yields an expression for the power absorption in terms of the electric
field components E of the electromagnetic field and the linear term f; in the expansion

of the distribution function f in powers of E:
Py(e1) =1 / dv Re < E*(2)) - v'fy(2/,,v') >u . (1)

The trajectories of particles with charge ¢ and mass m are given by

) =z, + ;;—‘L [(sina — sina’)e, + (cos o’ — cosa)e,],
c
v' =v,(cosa’e, +sina’e,) + v,e,, (2)

o =a+Q(t-1t), vy=w+0v) a = tan ¥,

x

and depend exclusively on the static magnetic field By so that the only term in (1)

carrying information about inhomogeneity is fi(2 ,v).
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3 Linear perturbation of the distribution

By an integration of the Vlasov equation over unperturbed orbits, f; is related to the
equilibrium distribution which is known to have a dependency of the form fo(X =
z+ vy /Q, Y =y — vy /Qe,vy,vL), all four parameters being constants of motion. For

practical use, fo is assumed maxwellian

2 4 .2 1/2
fo(X1,v1,v) = fyr = 7" ngv; P exp [ (%_42"1_’12] o "E (_2%) v (3)

Vi

where no(X,) and T(X, ) refer to the plasma density and temperature. Upon using

the Fourier transforms
{B(e1), fu(m,0)} = [dkyexpiChs-z)] {B(kL), ks, )}, (4

fo(X1,v) = / dq. exp [ige(z + vy /)] exp [1g, (y — vo/Q)] folqu,vi,vy),  (5)

we obtain

fi(k,v,w) = exp [Qic(k X v)- ez] };exp[—iﬁa]

. —ig/m
x/dql exp[z'e(pk—q] (w—k"U""‘ch) (6)
XAl(k, q:,v,, v“,w) * E(kJ."QJ.)’

A - {(“j;’*) 2 T8 cosine) = I AE)sinle-y)
G L

) (7
+ i [gy sin(pr—q) + ¢z c08(k—g)] ;Je(Aﬁ) sin(px_)

+ 1 [gy cos(r—q) — gz sin(r_g)] i%gJé(Aé) Sin(wc—q)} fum,
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Ay = {(12-—) [ A sing) + TS cos( )

Ui

- 5 IdAY) ['“"”" ] g

(8)
~ i gy sin(pr—q) + gz cos(r—4)] Jl(Aﬁ) cos(Pk—q)
— t[gy cos(Pk—q) — gz Sin(k—)] i%éJé(Aé) COS(m-q)} Ins
Ay, = {( Zv") Jo(AE)
- ilaycos(pnce) — aosinng] | BB sag)) )
Ab = 22|ky—qu|, taney_, = (ky‘%) (10)
—Qc 1—4q1], Pr—q = kx""q:c ’

which is equivalent to a similar expression derived by Yasseen and Vaclavik (1986) with
another method. J, and J; are the Bessel function and its derivative. In order to satisfy

causality, the frequency w is assumed to have a small positive imaginary part.

4 General expression for power absorption

After substitution of (2) and (6) into (1), exponentials of Lagrangian quantities are

expanded according to
exp(iasinb) = ) Jy(a) exp(ifb), (11)
¢

and the average over time is carried out. Further use of Graf’s summation theorem for

Bessel functions (Gradshteyn, Ryzhik, 1965)

Te(ky —q1) =) Tern(kL) T2 (qL), Jz(k,l.) Jl( )exp(z&pk), (12)

finally yields a general form of the local power absorption density in terms of the local

properties in the plasma:
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Py(z,) = PO + PO, (13)

2
PO = 2q—Im/d'vZ(w - L2, — kllv")“lf dk,dk’, dqexp (il[p; — pr])
m ¢

Xexp (i[kl — K] :cl)exp(iql &1)Jo (%]kl — kL - (IJ.I)

X[Bl(k.La V1, vll) : E(kl)](—%)fM(qLa vih 'UJ.) [Bl(kf]_’ ’l)J_,'U“) ' E(ki)]*a

2
q _ .
P@ = %Im/dv % (w — €82, — kyvy) 1/ dk dk' dqiexp (il[pr — ou])

. . v
xexp (illes — k] 21 )expligs - 2)Jo (o lk, — by — au)

X[Ce(k,qu,v1,vy) - E(kL)]fm(qy, vy, ”n)[Bt(kl, vL,vy) E(kl)r,

Bl(kla V1, ’U")

Cl(k’ q1,v,1, U")

(14)

o [ prgdilE) — isin sak.f;(e)] e,

vy [Sin wnge(ﬁ) + 1 cos W«U(f)] €y

vllJl(f)em

(Z) 00 + 2 aa xb)o O] sin e — cosie)

iv" Z

B e g Xk (22— 1) 2 aen - g

Q.
(15)

In the homogeneous limit, P(? vanishes and the local power becomes positive definite.

5 Larmor radius expansion

In many situations of a practical interest, the Larmor radius of the species p is small

when compared to the characteristic scale length of the electric fields (Jk|p < 1) and

the equilibrium quantities such as density and temperature (|g|p < 1). The previously

obtained expression (13) may then be expanded to any desired order to obtain a more

explicit expression which can be handled by the computer.

Some rearrangements finally yield an expression for local power absorption in a
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uniformly magnetized 2-D plasma, valid up to second order in the equilibrium and field

gradients:

rg -

Pl(i):i:l =

Ey =

2
Pyzy)= Y [P + PP
=2

1 2052,

={ (l(VXE>z:2+|(vxE>z eeer)
dE,|* |8E,}?

( “;1) ( = +|3_y +2Re(E:ALE,)

§|E,.,|2.Al + (VLIE) - VJ.) } Y

1 {1 Qu (OE, _ 0E,\[’
& {2 Bet 20 ( 5y T oz

%Re (E.*-[5ALE, —2V (V- E)]
i(EL*X [5ALE, — 2V (V- E)]),)

OE.|° |8E.|* 1 .
8; + ’ a; + §|E:h|2A.L + (VJ.|E:|: |2) . VJ.] 92} Yiq
1 dE; , .0E; ] .

g{ 0z i Oy }Yﬂ

wiv}
2w?

B [(V.B)X V], = [:22" wljﬂ}

—Im {(VXE*) (ExV)z

1 .[(OE, OBE\ (8 _ .9\ v
5;1’”{*& By am)('é;}q”??'; 9,

Z
B ||(Z2il)E| xv| 2 (%ez,, 4%
* Oz ’ay z4Qc w EFT L

0

. T \/?
(E;+iE,), @ = (w-£2,), p = e
w2 T - w—L0
s _ 1 S _ p§ c
—tayZ Zo= pte =2 ( [y )

(16)

(17)

(18)

where Z° = (X5 — {Y) is the plasma dispersion function as defined by Shafranov

(1967).
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ABSTRACT

The linearized Vlasov-Maxwell equations for an inhomogeneous bounded slab
plasma have been derived without any assumption on the ratio of the Larmor radius
to the fluctuation wavelength and inhomogeneity scale. Only Maxwellian
equilibrium distribution function, slowly varying magnetostatic field By and ky =0
have been assumed. In this case, the equations consist of three second order
integro-differential equations for each component of the elecric field. The first
results of the code SEMAL, which solves these equations, are presented. They are
compared with the results obtained with the code ISMENE, which solves these
equations expanded to second order in the Larmor radii. Good agreement is found
for the kinetic Alfvén wave and a small shift in frequency is found for the surface
mode of the fast magnetosonic wave. A formula for the local power absorption is also
derived, which consists of a positive-definite term, due to resonant particles

absorption, and a non-resonant term which can be of either sign.
L INTRODUCTION

The interaction of the waves and the plasma particles in the ion cyclotron range

of frequencies (ICRF) is of main interest for better understanding the heating
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mechanisms of tokamak plasmas. First cold and then warm models have been used
to solve the linearized Vlasov-Maxwell equations expanded up to second order in the
Larmor radii. These equations have been solved in 1-D and 2-D toroidal
geometries.1-3 These models are restricted by the condition that the product of the
perpendicular wavenumber with the ion Larmor radius, k| p;, should be smaller
than one. Therefore the models using an expansion in kjpj are limited to
wavelengths of at least one order of magnitude larger than p;. This condition can
easily be broken with the high temperatures reached in the tokamaks. The study of
the interaction of heavier particles, like alpha particles, with the plasma or the
interaction at higher harmonics also needs a model which does not use any
assumption on the size of the parameter k| p; or even k| pa. This model, called here
hot model, has already been developed in the case of electrostatic waves interacting
with an inhomogeneous bounded slab plasma.4 In the present paper, we have
extended the hot model to the electromagnetic waves, including the three
components of the electric field. The physical model and the full integro-differential
equations are presented in Sec.II. In Sec.III, we derive a formula for the local
power absorption. Preliminary results of the code SEMAL are shown in Sec.IV, as

well as a brief presentation of the numerical model, and we draw our conclusions in

Sec.V.
II. PHYSICAL MODEL

The procedure is the same as for the electrostatic case, except that we have to use
Maxwell's equations instead of Poisson's equation.4 We start from the Vlasov
equation, linearize it and take its Fourier transform. Then we solve for the perturbed
distribution function f{1)(k, v, ®) as a function of the equilibrium distribution
function of the guiding centers and of the fields, which gives for isotropic

temperature and plasma slab:5
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and where qg, mg, v27g = 2Tg/mg and Wcg are the charge, mass, thermal velocity
and cyclotron frequency of species o, respectively. ng and Ty are the density and
temperature of the guiding centers. Jy, is the Bessel function and the magnetostatic
field By is parallel to the z direction.

Closure equation is obtained through combination of Maxwell's equations and

the relation between the current density and the perturbed distribution function :

i@t =), qof vff,_,l)(r, v,t)d’
[+



Taking Fourier transform, the closure equation is the following:
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Substituting Eq.1 into Eq.2, introducing a Maxwellian equilibrium distribﬁtion
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where I, is the modified Bessel function, Z is the Fried-Conte plasma dispersion
function, and p2g=v2pg/2w2.s is the Larmor radius. In the case of homogeneous
profile, both integrals in Eq.3 disappear and we recover the standard dispersion

relation for electromagnetic waves.6

At this point, we shall assume ky = 0 in G, neglecting ky versus ky in the
dielectric response of the plasma. Moreover, as typically kypi << 1, we are entitled to
use this approximation as long as we do not consider drift waves. In order to take
the inverse Fourier transform of Eq.3, we use the same integral representation for

I, as in the electrostatic case:4

i
I (z) = %f e**%cos(n@)do . @
0

Introducing Eq.4 into Eq.3 and integrating over ky and k'y, we obtain the three

integro-differential equations:

2
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These equations are valid to all orders in ion and electron Larmor radii, for any
density and temperature profiles of the guiding centers and for weakly
inhomogeneous magnetic field. It applies mainly to the ICRF and the Alfvén wave
range of frequencies, but not to drift wave problems. The restriction to ky=0in g

imposes a lower bound to the frequency range, but‘ Eq.5 still holds for very high
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frequencies.
The singular points of the theta integral, at 8=%n, can be removed by using the

same changes of variables as for the electrostatic case.4
1. LOCAL POWER ABSORPTION

Following the steps of Ref.7, we are able to define a local power absorption
formula where the energy flux due to particles streaming into and out the volume

element is not taken into account:

o ~(1 . " '
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where <..>¢ denotes the time-average and x',v' are the Lagrangian coordinates
representing the position and velocity of a particle moving along an unperturbed
orbite.? Then, we introduce Eq.1 into Eq.6 and integrate over ky and k"y by means of
the same integral representation of the Bessel function Jn as in Ref.4. We obtain,
with ky=0, a formula for the local power absorption of the wave iﬁ an

inhomogeneous bounded plasma valid to all orders in the Larmor radii:
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u(x') = arcos (2—%-cos9) , sinu=0,

lxn - Xl

and where the x' interval of integration is such that -1 < cos u < 1. The first term,
corresponding to the contribution of the resonant particles, is positive-definite,
whereas the second term, which is a non resonant term, may be of either sign. It is
difficult to compare the amplitude of these terms, but we do not expect any
instabilities with ky=0. We have not found cases where the second term is non
negligible, except very close to the boundary where a very sharp drop occurs due to
some kind of electromagnetic Debye screening, as discussed in next section. Eq.7
recovers the positive-definite formula of Ref.4 if we introduce the electrostatic
potential approximation. In this approximation, with ky=0, Ey vanishes and the

second term disappears.
IV. RESULTS

In this paper, we shall show only preliminary results of the code SEMAL, which
solves Eq.5. The numerical method used in SEMAL is the same as in the code SEAL,
which solves the electrostatic approximation of Eq.5.4 Thus, we use the finite
element method and we integrate analytically over x" and x, after having replaced
the x" integral by a sum of integrals over homogeneous short intervals. In this
paper, we shall consider only homogeneous profiles, therefore one interval for x" is
sufficient. Besides, Eq.5 consists of two second order, for Ey and E,, and one first
order, for Eg, integro-differential equations. In consequence, we take linear basis
functions for Ey, E; and piece-wise constant for Ey, in order to avoid pollution
problems due to the (VAVA) operator.8 As we shall compare SEMAL with the code
ISMENE,? which solves Eq.5 expanded to second order in Larmor radii, we use the
same boundary conditions. That is, the plasma is surrounded by vacuum, which is
itself limited by perfectly conducting walls. The antenna is localized in the vacuum

at the right-hand side of the plasma. The current in the antenna flows parallel to the
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y direction. The parameters used are the following: ng=n;=1019 m-3, T,=1000 &V,
Tj=10 eV, Bg=1 T, xgp=-x4]=12 cm, Xpr=-Xp]=8 cm, Xgpt=8.8 cm, ky=5 m-1, k,=3 m1,
deuterium plasma. We compare the power emitted by the antenna in the Alfvén
wave range of frequencies, that is for w/w;j=0.25 up to 0.75, as seen in Fig.1. The
value of k,Ca/0.; is 0.3 for these parameters, where cA2=B02/uonm is the Alfvén
velocity. The peaks of the kinetic Alfvén wave (KAW) and of the surface mode of the
fast magnetosonic wave can be seen from SEMAL (dashed line), and from ISMENE
(solid line). The first two modes of the KAW can be detected and they appear at the
same frequencies for the two codes. For the first mode of the KAW, we show in Fig.2
and 3 the imaginary part of Ey, which is the dominant component. As in the
electrostatic case,4 there is a sharp drop at the edge which scales with the Debye
length of the electrons and which is mainly electrostatic (Fig.3b).

The peak of the surface mode has a slight shift in frequency between the two
codes. This is not surprising as, on the one hand, the dispersion relation is
represented differently in the two codes. On the other hand, the condition at the
plasma-vacuum interface is very different. Indeed, in ISMENE, there is a sharp
drop of the density of the particles, whereas in SEMAL, the density of the guiding
centers is discontinuous, but not the density of particles. This difference has a
strong influence at both sides of the trace in Fig.1, where the power obtained from
ISMENE (solid line) becomes negative. This is why we have used, at the lower part of
Fig.1, a "negative logarithmic" scale. The dotted points illustrate that the line would
be continuous with a linear scaling. This non-physical feature is due to the

discontinuity mentioned above and is removed in the code SEMAL (dashed line).

The local absorption power density Py (x) for w/w¢j=0.445, corresponding to the
surface mode, is shown in Fig.4a. In this case, the contribution due to the non

resonant term is three orders of magnitude smaller than the one due to the
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the Debye screening observed in the electrostatic case.4 This drop shows up mainly
in the Ey component. We have shown, however, that this drop does not contribute to

the power absorbed in the plasma.
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FIG.1. Power emitted by antenna vs. w/w¢; from ISMENE (solid line) and
SEMAL (dashed line). The small peaks around 0/we1=0.3 are due to KAW,
whereas the large broad peak is due to the surface mode of the fast wave. The
power 1s negative for w/wj<0.293 and w/wy;>0.69 for ISMENE, therefore a
"negative logarithmic” scale has been used for the lower part of the plot.
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