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ABSTRACT

A second ordér integro-differential equation that describes electrostatic waves in
a slab plasma is solved in its full form. No expansion in the smallness of the ion
Larmor radius is made. The plasma may have arbitrary density and temperature
profiles and is immersed in a non-uniform magnetic field. Only small magnetic
field gradients, Maxwellian equilibrium distribution functions, and ky = 0 are
assumed. First the integral equation is derived in Fourier space using the linearized
Vlasov and Poisson equations,then it is transformed back into real space, which
enables us to treat the case of bounded plasmas. The two boundary conditions
specified simulate an antenna at one end of the plasma and wave-reflecting walls.
Solutions having wavelengths smaller than the ion Larmor radius have been found.
Comparison with experiments where ion Berstein waves are launched in argon and
barium plasmas shows very good agreement with the solution of our code SEAL. We

also derive and compute a positive-definite formula for the local power absorption.

a) Present address: Laboratory for Plasma Research, University of Maryland,
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I. INTRODUCTION

Linear electromagnetic wave equations, especially in the Ion Cyclotron Range
of Frequencies (ICRF), have been thoroughly studied using first cold and then
warm plasma models. In 2-D, toroidal geometry, warm plasma codes with an
expansion in the ion Larmor radius up to the second order are now available.1,2,3
They generally assume zero electron mass (except for Ref. 1) and use a finite
element method in the radial direction and a Fourier decomposition in the
poloidal direction. One of the purposes of such codes is to find out how the
conversion mechanism occurs and how or where the ion Bernstein wave (IBW)
propagates. The latter question is hard to answer in 2-D geometry, due to
resolution problems. In 1-D geometry, one can hope to have enough grid points to
resolve such small wavelengths. Codes solving the full sixth order wave equation
exist,4:5.6 but the form of the dielectric tensor operator is rather complicated.?
They can solve many interesting cases but when the wavelength of the IBW
becomes comparable with the ion Larmor radius, the second order expansion in
the ion Larmor radius breaks down and one obtains large spurious and
unphysical modes. These spurious modes exist due to the FLR expansion. Indeed
the wave equation, in its complete integral form, is equivalent to an infinite order
differential equation. However, an exact solution contains only a few modes;
therefore an expansion to an order greater than the number of modes introduces
spurious modes which can not always be eliminated through adequate boundary
conditions. Thus to take care of this problem and to be able to solve for arbitrary
wavelengths, we have to use the equation in its integral form. In this way we find
all the physical modes, even if they have very short wavelengths, without
introducing other modes. The integral equation has already been solved in

Fourier space, that is assuming an infinite extension of the plasma. Eigenvalues
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and eigenvectors have been found for various cases, but always using Gaussian
density profiles of the guiding centers and homogeneous temperature
profiles.8,9,10

Let us note that the IBW are not only important in the mode conversion

mechanism but also in heating processes via direct launching.11,12

In this paper we shall restrict ourselves to the electrostatic approximation
and slab geometry with the magnetic field parallel to the z axis and the
inhomogeneity along the x axis. The Vlasov and Poisson equations lead us, after
linearization, to solving a homogeneous second order integro-differential
equation. We shall present here the results of the SEAL code, which find the
Solution of an Electrostatic wave problem valid to All orders in the ion Larmor
radius, for arbitrary density, temperature and magnetic field profiles, assuming
a Maxwellian equilibrium distribution function, a slowly varying magnetic field,

and k= 0.

In Sec. II, the physical model as well as the basic equations are presented.
Then the numerical model is developed in Sec. III and the results are shown in
Sec. IV. The latter is divided into two parts : the first one gives a comparison
between the results of the SEAL code and the local dispersion relation, while the
second one gives a comparison with an experiment. In Sec. V we show how one
can define a positive-definite local power absorption and present some results.

Finally we draw conclusions in Sec. VI.

IL. PHYSICAL MODEL

We start from the Vlasov equation within the electrostatic approximation:
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where ¢ stands for the electron or ion species, f4(r,v,t) is the distribution function,
®(r,t) is the fluctuating electrostatic potential and qg, mg are the charge and
mass of the particles respectively. The magnetic field B is assumed to be slowly
varying, which enables us to take it locally uniform. Following the conventional
procedure to linearize the equation, we assume a small perturbation around the

equilibrium and keep only the first order terms :

fo= £+ 10, win [ << [£7]
o2 o

The equations for f  and f5 (1) are then :

© , 4q d 0
V‘V fo + -Elg; (VXBO)'é'—v-fo = O , (2)
0 m  q d . _ q d 0
(5t-+V'V)fo +-ITGO—(VXBO).5—V—f° = I—n—gqu)'gfc . (3)

Equation (2) is satisfied if f5(® has the following form :

f((’o) = féo)(V_L,V//’X=X+Vy/(D Y=Y'Vx/wco) ’ @)

cc?

i.e. if f5(® is the distribution function of the guiding centers. weg = qgB¢/mg is the

cyclotron frequency. The Fourier transform of Eq. (4) gives :
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where the Fourier transform is defined by :

g(x,t)=fd3kfdmg(k,m)ei(k'x“”t) : (6)

Taking the Fourier transform of Eq. (3) and using Eq. (5), one obtains the solution

for £5{1) in the form :13
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where Jy, is the Bessel function of order m. We have introduced a small positive
imaginary part in o, i.e. ® = 0y + ie, such that f5(1) is well defined around ky vy =
® - nw¢g. The fact that € has to be positive comes from the term e-iot jpn O(x,t),
which gives a e€! dependence. Therefore, € positive means that we " turn on " the
field smoothly from t = - « . The cylindrical coordinates for k, v and k'| are

defined by :

v=(vy,a,vy) ; k=(ky,0ky) ; K =(ky,¢)
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Closure of the equation is obtained through Poisson equation in Fourier space :

0

k2d>(k,w)=zg£ffg)(k,v,m)d3v . )

At this point we shall take ky = 0 and choose the velocity dependence of fG® as :

2 2
. n (X Ve +v
32 DoX) exp { - L= Y11}

X, v, ,v,) ==
(o] 1 i V%O(X) VTO(X)

) 9)

i.e. the equilibrium distribution function of the guiding centers, X , is assumed to
be Maxwellian in velocity, with arbitrary density and temperature profiles. The
quantities ng , Tg and v2p4(x) = 2Tg(x)/mg are the density, temperature and

thermal velocity of species o, respectively. Thus f5 (v , vy, k |)in Eq. (5) is

given by :
f(o) f(o) 1 " 5&_ vi + V/2/ e ikxX"
s Wi,k )=f(v, v, k)= 5/2 dx — €Xp {- —-—T} . (10)

Inserting Eq. (10) into (7), we can perform the velocity integrations in Eq. (8) using

the following formulas for the Bessel functions Jy, and I, :14

ZJmij(a) Ji(b) = J(ath) , (11a)
J
f tdtJn(at)Jn(Bt)eu2t=_1_2exp{ +B }1, (0‘B : (11b)
0 2u ap? 2

The integral equation in Fourier space for ®(ky), assuming arbitrary
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inhomogeneous density and temperature profiles, is then given by :

(k2 +k2) <D(kx)+fK(kx,k'x) (K, )dk, = 0 (12)
with
Kk, k',) = 22-——2— "’—‘-9—(—’5:—[1 75 Zn o) ] I (pox" ky K, )
2 80 T( // TG( )

cexp (- 1p3a) A2+ kD) e (ka- KX

where Zpg =Z { (0-nweg) / 1k vpg ) is the plasma dispersion function!® and

p25 = v2ps/2w2.g is the Larmor radius squared.

As we want to solve (12) in a bounded plasma, we need to transform it back
into real space. To be able to integrate exactly over ky and k'y , that is without
cutting out any part of the spectrum, we use the following integral representation

of the Bessel function I, :14

n
I (z) = _Lf e**% cos(n@) do
™ Jo

Taking the inverse Fourier transform of Eq. (12) and integrating over ky and k',

we obtain :
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' 2
"LX+X .
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4 pf,(x") sin’0 pf,(x") sin%0

x exp { -

where we have expanded the electron contribution to the kernel up to the second
order in the electron Larmor radius. Thus, in Eq. (13) and for the rest of the
paper, the subscript e stands for electrons and ¢ only for the ion species.
22D g=€0T¢/nga2g is the Debye length squared.

We still need two boundary conditions to complete the second order

integro-differential equation (13). We shall take them as follows :

do -
d x (xpl) 0 ’
(14)
()] _
gx (%pr) = -1,

where xp] and xpy are the left and right boundaries of the x interval. We shall
discuss more about the boundary conditions and the limits of integration of x, or
x', and x" variables in sec. IV, where we shall show that conditions (14) simulate

an antenna on the right-hand side and reflecting boundaries for the field.



Let us study closer the kernel K(x,x'). We see that it is symmetric and that the

integrand has two singular points at :

a) 0

]
o

and x=x',
(15)

b) 0=n and x"=(x+x")/2 .

At these points the integrand is proportional to 1/sin 6. These singularities give a
global behavior for the kernel of the form :

Kxx) ~ In Ixx'| ,

which is an integrable singularity. Therefore (13) is regular and we can expect to
find a regular solution ®d(x). Note, nevertheless, that it is difficult to integrate
numerically these 1/sin 0 singularities to get the In |x-x'| behavior. Thus we
shall resolve these singularities using analytical integrations. This will be
explained in the next section together with the numerical method used to solve

(13).

III. NUMERICAL METHOD

As one of the main characteristics of the solution ®(x) is the fact that short
and long wavelengths may coexist, we shall use the finite element method to solve
Eq. (13), which enables us to pack the mesh where it is needed. We shall take
linear basis functions (Fig. 1), as they are the simplest for a second order

equation.
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Let us rewrite Eq. (13) in a more compact form :

Xp

-(—&—(A(x) j§¢(x))+B(x) D(x) + f K(x,x)®(x)dx' =0 , (16)

xp

where A and B can be identified from Eq. (13). The finite element method consists
in solving the weak form, also called variational form, of Eq. (16). This form is
obtained by multiplying (16) by a test function, ¥(x), and integrating over the

plasma "volume" :

i daoxn] "+ |4 d
¥ AG) 000 ], 7+ f [£960] A [ a0 dx
(17)
+f‘I’(x) Bx) &) dx + f dx ¥(x) ] Kxx)ox)dx' = 0 ,

where the limits of integration have been omitted for simplicity. In this form the
boundary conditions, Eq. (14), can be introduced naturally. Of course, arbitrary
boundary conditions involving ® and d®/dx can also be specified. It can easily be
shown that the solutions of Eq. (17) are the solutions of (16) and vice versa. We
then define linearly-independent basis functions 71(x), nNg(x),..., Ny, 1(x) and solve
Eq. (17) in the space spanned by nj(x). As mentioned above, we shall use linear

basis functions defined as follows (Fig.1) :
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5()'(—;)3((_1_1 if x; , <x<x;
1 1-1
X:1-X
1 .
n;(x) = Al — i x,<x<x; (18)
1 X1 " X5 1 1+1
0 otherwise

We then write ®(x) = X u; nj(x) and introduce it into (17), while using as a test

function ¥(x) the different basis functions n;(x). It gives :

jZMij u; Equj {fdx[ad;ni(x)]A(x) [c—ld;nj(x)] +fdx 1300 B(x) (%)
(19)
1 r ' _ d Xpr
+,[de dx’ n;(x) K(x,x) nj(x)} = M) A(X)E;(D(X)]Xp] .

Therefore, to solve Eq. (17), we have to compute the matrix Mij and then solve for
uj. We see clearly that an arbitrarily spaced mesh can be used easily.
The most difficult and time-consuming part is the computation of the kernel

contribution Kj; to the matrix Mj;, given by :

Xi+1 Xj+1
Kij = I dx n;(x) f dx' K(x,x") n j(x') . (20)
Xi1 Xj.1

As noted above, the main problem lies in the singularities of the 0-integrand of
K(x,x"). In order to get rid of them we need to do some analytical integrations or
adequate changes of variables. Let us first show how we can eliminate these
singularities through two changes of the variables x" and x', thereby proving that

Kjj is regular. First, we change x" to :
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z = (x"-XtX') Y1-coso

2 sin 0

y

which gives for K(x,x"), Eq. (13) :

Zpr 2
K(X,X')" ZZI M I dzexp{ _— }
onlo Vi-coso Zp] p2Ix"(2)]

{- (x-x)% (1 +c0s0)
4p0[x"(z)] sin”0

x C[x"(z)] exp

with
z, = (xv x+x ) h cos 6 , v=pl,pr
sin 0 @1)
Q+—0 7 (x")
C(x") = k//VTc( x")

A (%) p2(x")

We see that the second singular point, (15b), has disappeared and is replaced by
the limits of integration, zy, , that may be infinite. But this is not a problem, owing

to the term exp(-z2). For the other singularity, (15a), we proceed in the same way :

y = (x'-x)Y1+cosO
2sin 6 ’

which gives the following contribution to Kj; :
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T yj+1 2 .
jde cos(nG)[ 2dyexp{-____}'_____}nj(x+ 2sinf )

0 Yi-1 pcz,[x"(z)] Y1+ cos @

bpr 9
x[ dzexp{-z—z———} Cly) ,
byl psLx"(2)]

with

(Xj11-%) Y1+ cos®
i 2sin 6

) + y sin 6 + Z sin O
V1+cose Vl-cose

b, = (x,-x- ysin® ) 11-cos® , v=pl,pr
Y1+ cos 6 sin O

Again, owing to the term exp(-y2), the integral is regular, eventhough the
integration limits may become infinite. We now see directly that all the 6
singularities have disappeared, showing that Kjj is regular. Note that we have

used the fact that sin 6 is positive as 0 lies between 0 and .

Thus we can now compute directly Kjj- However, this would be very
time-consuming as the intervals of integration for z and y are not fixed and may
be infinite, even if they could be cut around 3 or 4. Therefore we shall discretize

the x" integration in N" integrations, as follows :

Xpr N" [X'k41
j dxn % 2 f dxn
X k=1

pl X"y

Then, using the central values for the plasma parameters, i.e. setting C[x"] =
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CI(x"k + x"k4+1)/ 2], we can integrate analytically in each N" cell. This is roughly
equivalent to integrating with a trapezoidal rule, except that here we keep better
the track of the x" dependence of the integrand. In particular, for homogeneous
profiles, with only one interval, i.e. N" = 1, the integration is exact. Note also that
at this point we can assume a non-uniform magnetic field as the procedure
carried out in Sec. II can be done in each x" cell where the magnetic field is
assumed to be uniform. This is true only if the magnetic field is slowly varying.
As can be seen from (21), the x" or z integration gives rise to error functions of the

form :16

et {1 = (¢ 320 ) oc0s ) v_f a . o

sin O

This is not a severe difficulty as a very precise simple formula for error functions
of real arguments exists and is vectorizable.16 We can perform the x' integration
analytically using the expression for n;j(x), Eq. (18), and neglecting the x'
dependence in (22) over each interval. We could keep the x' dependence and
integrate numerically, using the above y(x') variable, but, as mentioned before, it
would be much more time-consuming. Nevertheless, we have checked that both

methods converge to the same solution.

Thus we are left only with the x and 6 integrations, which we shall compute
using the Gauss formula. In this way, Kjj , and therefore M;j; , can be computed
accurately, without further assumptions. We shall note, however, that the
computation of the matrix takes a lot of time as loops over the x, x', x", and 6
meshes, as well as over n and o, are needed. To reduce this time we have coded

these loops in a vectorizable way, as we have run our SEAL code on Cray
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machines, i.e. Cray 1, 2 and XMP. We have also decoupled the loop over the
harmonics n, by inserting the summation into the 6 integrand. In this way, the
sum over harmonics can be done very quickly, permitting a sum over many
harmonics. The typical number of harmonics used is 21, i.e. from n = -10 to +10.
The running time for the cases presented below is approximately [ 7.5 - N" - (N /
256)2 ] seconds on a Cray 2, of which 95 % is used for the computation of Kjj» Eq.
(20).

IV.RESULTS

The plasma geometry is shown in Fig. 1. The typical parameters used are the
ones of an argon plasma with a charge number Z; = 1, density n = 1017 m-3,
temperature T = 14 eV, T} = 0.1 eV, magnetic field By = 0.2 T and a parallel
wavenumber k; = 100 m-1. These parameters correspond to those used in a
cylindrical experiment, where electrostatic waves are launched, with which we
shall compare the results of our SEAL code. First, however, we shall run the code
for a few benchmarks, comparing the wavelengths with the corresponding

dispersion relation, to show that it solves Eq. (13) correctly.17
A. Convergence study and comparison with the dispersion relation

First we show in Fig. 2 the convergence study of the values of the real and
imaginary parts of @ at the antenna, i.e. on the right-hand side of the plasma. It
clearly exhibits a convergence rate of at least 1/N2 for N > 192. For all cases shown
in this paper, we have packed N/10 points in 10 Debye lengths on the right and on
the left-hand side of the plasma. The rest of the points are equally spaced in

between. Therefore for N = 192 points, we have packed 19 points on each side of the
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plasma, which leaves 154 points inside. As the solution has about 25 short
wavelengths, we can deduce from Fig. 2 that, after having packed a few points to
resolve the Debye screening, we have a good solution with 6 points per wavelength
or more. To illustrate this better, we have plotted in Fig. 3a the solutions with
N=160 and 192 points. If a solution with N greater than 192 was plotted on Fig. 3a,
one would not be able to distinguish it from the solution with N=192 points. In Fig.
3a, we have cut the solutions at x=2.99 cm, that is near the antenna, as there is
about one order of magnitude difference between the amplitude of the electrostatic
potential inside the plasma and at the antenna. We show the solution near the
antenna in Fig. 3b, where we have used the same units, but not the same scale, as
in Fig. 3a. We see the sharp drop of the wave amplitude due to the Debye
screening and that it has indeed the Debye scaling, as the Debye length is of the
order of 10-3 cm. Let us note also that the ratio of the amplitudes at the antenna
and inside the plasma is of the same order as in the experiment, where one also

sees the Debye screening effect. This is a pure electrostatic shielding effect.

We have also checked the computation of the kernel by computing the electron
contribution in the kernel, without using its Larmor expansion. That is, we have
taken A(x) = 1 and B(x) = k//2 in Eq. (16), and ¢ summing over electrons and ions
in K(x,x"), Eq.(13). The solution obtained is the same as the one shown in Fig.3,
within 2 or 3 digits, i.e. it could not be differentiated from the other solution if they
were plotted on top of each other, except for a few points near the right boundary,

where the electron Larmor radius is of the same order as the wavelength.

Let us discuss shortly the boundary conditions and the limits of integration of
x and x" in Eq.(13). Formally, both intervals should extend from -« to +e, as we

have transformed Eq.(12) back from Fourier space. The x" interval depends on the
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density and temperature profiles of the guiding centers. We can cut this interval,
named [x"]eft , X"right] , where the profiles vanish. On the other hand, limiting
the x interval at [xp] , xpr], consists in imposing reflecting boundaries for the
field, as will be seen below. Thus, both x and x" intervals can be chosen
independently. Note that there are still some particles on the distance of a few
Larmor radii outside the x" interval due to finite Larmor radius. This is shown in
Figure 4, where we have chosen X"right = -X'left = 2 cm and Xpr = “Xp] = 3 cm. The

boundary conditions have been taken as follows :

g%(x l) = 0 ’

(23)
42 (x,) = 0,
X

and we have introduced a source term proportionnal to 8(x) in the right-hand side
of Eq.(13), where 3(x) is the Dirac function. We have computed the electron
contribution inside the kernel K(x,x') in order that the coefficients A and B of
Eq.(16) are continuous, and we have imposed a jump of ®'(x) and continuity of
®(x) at the antenna. We see in Fig.4 that both IBW and ion acoustic wave (IAW)
are emitted and that they connect to an evanescent wave in the vacuum. Note,
nevertheless, that the transition does not occur at 2 cm, where the guiding center
profiles vanish, but at 2.2 cm, which is about two ion Larmor radii further, where
the profiles of the particles vanish. If we bring the walls closer, i.e. if we shrink
the x interval, the solution builds up standing waves, especially for the IAW,
which shows that the finite x interval imposes reflecting boundaries for the field.
Therefore, the boundary conditions (14) simulates an antenna at X=Xpy and
reflecting walls at both sides. We have verified this by introducing boundary

conditions as above, Eq.(23), a source term proportionnal to &( X-Xpr ), and by
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taking the same intervals for x and x". We have obtained exactly the same
solution as shown in Fig.3, except, naturally, very close to the right boundary, as

®'(xpy) is not the same.

We shall now compare the results of our code with the dispersion relation.
This relation is obtained in the case of an infinite and homogeneous plasma

directly from Eq. (12), after integration over x" and k'y :

(1+—Q 7 )

D(k,) = k2 + k2 + 3 ¥, — VT
G n

7\'Dcr

2.2
I(pgke) ePo'x = 0 . (29)

One sees immediately from this formula that D(ky) has no zeros for very large ky
as In(x) eX is proportional to x'1/2 for Ix| >> 1. Therefore (24) has a finite
number of real solutions, i.e. of modes. This explains why spurious modes are
introduced when (24), or (12), is expanded in an infinite series of the parameter
kxpg. Figure 5 shows the dispersion relation for an argon plasma. Two modes are
present : the IAW, which is not sensitive to harmonics as the ratio T¢/Tj is large,
and the IBW. We have chosen these parameters because the two waves are
"decoupled” and have comparable amplitudes, which allows us to precisely
identify them, as can be seen in Fig. 3. In this case, the plasma is homogeneous

and w/w¢j = 3.50. From the dispersion relation we obtain the following

wavelengths :
Disp. rel. Disp. rel.

whereas the wavelengths measured on the solution shown in Fig. 3 are :
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sol. sol

A = 2.40%0.03 cm , MBernstein = 240£0.03mm

on ac.

which are in a very good agreement. Note that we do not expect to get exactly the

same values, as the code calculates the solution for a bounded plasma.

We shall now compare the solution with the dispersion relation in two cases
with a weak inhomogeneity. This time we solve D(ky) = 0 using the local plasma
parameters. First we study the case of inhomogeneous temperature profiles. As
the JAW is sensitive mainly to the electron temperature and the IBW to the ion

temperature, we take both profiles inhomogeneous :

T (x)-Ty(x,.) Ty(xy)-To(x,)
To(x) = S BL__C 7P (yyx)® g P 0P 4y n 3% 4 T (xy) ,
4x3 4x2 P P
P P
Xpr = -Xp = X, =3em

i.e. we take cubic profiles with zero slopes at the edges and :

Ti(xpD) = 0.5eV , TiGpr) = 0.05 eV

From the dispersion relation, we get the following wavelengths for both waves:

at x=xpj=-3cm : Mion ac. = 3.8 cm ABernstein = 6.3 mm
X= Ocm : xlon ac. = 24 cm A.Bernstein = 2.9 mm
Xx=Xpr= 3cm Aion ac, = 0.9 cm ABernstein = 2.1 mm

We see in Fig. 6 that the solution follows well these values.
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The second case is that of a non-uniform magnetic field. We introduce a
"toroidal” profile proportional to 1/(Rgtx), depending on whether the antenna is
on the low field side (LFS) or the high field side (HFS) respectively. Note that this
profile is slowly varying as assumed above. We have chosen Ry = 0.647 m, such
that for the HFS case w/oj = 3.95 at x = xp] and 3.60 at x = Xpr» and vice versa for
the LFS case. From the dispersion relation, we expect the following wavelengths

for the HFS case :

x=0cm , 0w =3775: Ajon ac. = 2.2cm ABernstein = 4.2 mm

The imaginary part of the solution from the SEAL code is shown in Fig. 7. We
expect a strong 1on cyclotron damping of the ion Bernstein wave when o is closer
to a harmonic, i.e. when ®/w.; approaches 4. This is clearly shown in Fig. 7a,
where the antenna is in a region where o is far from a harmonic. Therefore both
waves are well excited, but as the waves approach the left-hand side, the cyclotron
damping is enhanced and the IBW is damped. On the other hand, when the
antenna is on the LFS, (Fig. 7b), i.e. in a region of a high ion cyclotron damping,
only the IAW is launched. We see, however, that the IBW is re-emitted on the left
boundary, but naturally with a smaller amplitude than via direct launching (Fig.

7a).

We have thus shown in this section that our code gives the right solutions for
different homogeneous and weakly inhomogeneous cases, and that the

convergence behaves well. We shall now compare it with the results of an
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experiment performed at our institute.
B. Comparison with experiment.

In this experiment, electrostatic waves are launched in a homogeneous
cylindrical plasma of 2.5 cm radius and of 5 meter length.18 Two plasmas have
been studied : the first with argon, n = 1017 m-3, By =02 T, w/wei = 3.5, k= 200
m-1 Te =18 eV, and T; = 0.03 eV and the second with barium, n = 1016 m-3, Bg =
0.25 T, w/odgj = 3.07, k;; =30 m'1, and T, = T; = 0.1 eV.

The wave electrostatic potential in the argon plasma is shown in Fig. 8a taken
from Ref. 18. The corresponding numerical result is presented in Fig. 8b and
shows very good agreement. This is not, however, very surprising, as in this case
the solution is approximately the sum of the two modes found in solving the
homogeneous Eq. (24). This is due to the high ratio T¢/T; and the decoupling of the

modes in the dispersion relation, as mentioned before.

In the case of the barium Q-plasma, however, both temperatures are equal,
which changes the dispersion relation dramatically (Fig. 9). In isothermal
plasmas, it is difficult to distinguish between the ion acoustic and the Bernstein
branches. Another difficulty is the fact that the experimental plasma is drifting
along the cylindrical axis with a non-negligible velocity vg,ifi.- Therefore there is a
Doppler shift of the frequency, k;; vqrift , between the plasma and laboratory
frames. Thus we expect an influence of the k; spectrum of the antenna, as a
change in k;; changes also the effective frequency of the wave. The antenna is
made of two plates at the plasma edge with oscillating charges. The parallel

wavenumber is determined by the size and separations of the plates along the
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magnetic field. Therefore k; is not uniquely defined, which is why we have
computed the solutions for different k;;, introducing the Doppler shift. The sum of
these solutions gives the final solution shown in Fig. 10b. We can compare it with
the experimental result, Fig. 10a,19 where we see that the wave has a very
- different behavior than in the case of argon. First, it seems that only one mode is
present : in this case it is the JAW. Secondly, as the ion cyclotron damping is
important, the wave is rather quickly damped over a few wavelengths. Figure 10
shows that both features, as well as the relative amplitudes along the wave, are

well represented by the numerical result.

V. POWER ABSORPTION

We want to define the power absorbed by the particles and especially the local
power absorption. The first idea is to calculate P(x) = Re [ j(x) - E*(x) ]. This
definition, however, is not adequate as it takes into account the flux of energy of
streaming particles. Indeed, let us consider the power absorbed in a "volume"
element P(x)dx; then the power due to the energy flux of particles streaming in
and out of this "volume" element is counted, as has been shown in Refs. 20 and 21.
We shall follow the procedure of Ref. 21 in order to define a local power absorption
density Py,(x) that does not take the energy fluxes into account. In this way, for the
case of ky = 0, we shall be able to define a positive-definite local power absorption
for an inhomogeneous plasma, which is valid to all orders in the Larmor radius.
Of course, Py,(x) is in fact the average <P (x)> over the length parallel to the

magnetic field and over time.

From Ref. 21, Py,(x) is given by :
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P, () = Re Zl—‘zhf d'v dkdk” & (k") { (v’ +k,v',) EP(k vy eF KD X) o5
o

where we have omitted the subscript x from the ky variables and introduced the

Fourier transform defined in Sec. II. X' and v' are the Lagrangian coordinates of

the particles at the time t' as they move along an unperturbed orbit :

[ v . : ]
X' = x + — (sina-sino’) ,
co

vV =v,(cosa’e, +sina'e,) + v, e, , (26)

o0 =0-0.,T , T=t-t

Further substituting x , v' and f{), from Egs. (26) and (7), in (25), taking the time

average and using extensively Eq. (11a) and the formula :14

eiasine - ZeineJn(a)
n

we obtain then the following expression :

2niq2 " ' ' * "
P, (x) = Re ), sl dvy, dv, | dk| dk" | dk' ®Kk")® (k")

m
ag,n c

(27)

2
% (k,v, + no.,)

ikx ,(0) " o . '
“)'k//V//-Il(l)co e fO' (k+k"-k') JO(T]) Jn(n ) Jn(n) ’

with
v k'v 1

mco

Note that the integration over the velocity angle a has already been performed and
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that the variable k has been changed to k + k™. In order to be able to integrate over

the variables k, we use the following integral representations for the Bessel

functions Jy, :14

.-n [T ) .+n [T ) ,
Jn(z) = 1&—] 40 €129 o5 np = 1—15——[ de' e 1zc0s cos n@'
0 0

For the first two Bessel functions in Eq. (27), we take the first formula with 6 and
0" as integration variables respectively and for the last one, the second formula
with 6'. In this way, introducing the inverse Fourier transform of the electrostatic
potential and of the equilibrium distribution function, Eq. (10), we can integrate

over k, k', k' to obtain :

7'[

. 9 "
P, (x) = Re D, —?-‘-‘-‘LI dv,,vldvldx"dx'dx"’j dede'de” ox')d (x")

n,c 1t7/2m° 0
. w D x") vZ+v2y (k,v,+no,,)’
x cosn®' cosnb —5°— exp {—i-—TJ-} L s (28)
Virg(x") Vg ©-k,v,-no,

X 8(x-x"+w) 5(x'_x"+"!°°se ) S(x"-x"4 cos 0 )
co co o

’

where d(y) are Dirac distributiohs, with which we can easily integrate over v , ¢’

and 6" respectively. As v is positive and cos 6V is defined between -1 and +1, we

have the following conditions :

vV, = W, 2 0 , (29a)
cos 0
" v
-1 < cosev=£¥x—) cos® < +1 . (29b)
(x" - x)
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We still have to integrate over v;,. This is easily done using :

i = - -
Re | lln[(;+ .-k, v, -no +ie ) ™00, kv snog)

which clearly indicates that only the resonant particles contribute to the power
absorption. The final form of the local power absorption, valid for an arbitrary

inhomogeneous plasma and to all orders in the Larmor radius is then given by :

2

P (X) - n
L n,c nmmc |k//| v,?,o(x") | x - x"|
(30)
2 2
x[“deexp{ Gx-x)” ) fd oy @)l |7
0 2poc056 sin [u(x')]
with
arcos ( X=X cos @ —es ) if |——-—-x"'x| cosf < 1
\ |x" - x| | col |x" - x|
U(X) =
0 otherwise ,
0-n, . (x"
gnc(X") = n cc( )

k,, vps(x")

Equation (30) shows that Py,(x) is positive-definite, indicating that it is a good
definition for the local power absorption. Moreover, it shows that in the case of
ky = 0, our equilibrium is stable. From Py,(x) we can define the power absorbed by

the particles between the antenna and the abscissa x, as follows :
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Xpr
P, (x) =j P, (x')dx’

X

In particular, FL(xpl) is the total power absorbed in the plasma.

The computation of Py,(x), Eq.(30), is very time-consuming, as 3 integrals and
two sums are needed for each x. Moreover, the inner integral over x' computes a
function, u(x'), with values which depend on the other variables. For the electron
contribution we can use the formula expanded to second order in the electron
Larmor radius.21 Note also that the number of harmonics, Nn, can be reduced to
the two closer harmonics, due to the exp| ‘§2no ] term. Despite this, we cannot use
many points for the different integrals and P, (x) is therefore very oscillatory,
especially due to the sharp Debye screening near the edge. In order to check that
the oscillations are only numerical, we show in Figure 11 the local power
absorption Py,(x), calculated for the electrons only, in the case of the argon
plasma, Fig.3. This way, we can compare it with the expanded formula, as the
electron Larmor radius is very small compared to the wavelengths, except near
the edge. The oscillatory curves, Fig.(11a) and (11b), represent P1,(x), Eq.(30), for
two different resolutions and the dotted smooth curves represent the expanded
formula for Py,(x). We see that if we take enough points for x, x' and x", then Py (x)
is quite smooth and closely follows the expanded formula (dotted line). Note that
this was only possible by taking fewer x points, NX=128, and a shorter x interval,
as the computing t{me goes as 230-NX-NX"-NX' / (128)3 seconds. Nevertheless,
we see in Fig.12a, that the power absorption P 1,(x) is well represented with a
small number of points, as the oscillations are integrated out. We show in Fig.12b
the total power absorption profile for the argon case, where the ion contribution
has been added to that of the electrons. In this case, four times more power is

absorbed by the electrons than by the ions. We see also, as expected for a standing
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wave, that the power is absorbed all over the plasma. Moreover, very little power is
absorbed near the antenna, eventhough the field is very large, as the Debye length

is very small.

VI. CONCLUSION

We have derived the equation for the electrostatic potential in a 1-D
inhomogeneous bounded plasma from the linearized Vlasov-Poisson equations,
assuming ky = 0, a slowly varying magnetic field, and arbitrary Maxwellian
density and temperature of the guiding centers, but without approximations on
the size of the Larmor radius. We have checked the solution obtained with the
code SEAL, solving this equation for a few benchmarks. The solution has a good
convergence rate and the wavelengths agree well with the local dispersion
relation, even for wavelengths smaller than the Larmor radius. The solution has
also been compared to the waves measured in two experiments, in argon and

barium plasmas, made at our institute.

We have also derived a positive-definite local power absorption formula valid
to all orders in Larmor radius, in a 1-D inhomogeneous plasma, and assuming
ky = 0. This local power absorption can be computed for each species and has been
compared with the formula expanded to second order in Larmor radius for the

electrons.
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Figure captions

Plasma geometry with a non equidistant mesh with N intervals.
Plasma left and right boundaries are at x = xp] and x = Xpr

respectively. 1j(x) is the linear basis function of the node x;.

Convergence study of the real (triangles) and imaginary (circles)
parts of ®(xpy) versus 1/ N2. A few values of N are pointed out on the

lower x-axis.

Real part of the solution ®(x) for a homogeneous argon plasma with
Te=14eV,Ti=0.1eV,Bp=02T,ky =100 m'1, n= 1017 m-3, and
o/0¢i = 3.50. Two meshes have been used : N = 160 (dashed line) and
N = 192 (solid line). The antenna is at x = 3 cm. Figure 3a shows the
solutions between xp] and 2.99 cm, and Fig.3b near the antenna
(only with N = 192). The same units, but not the same scales, have

been used for both plots.

Real part of solution ®(x) for the same plasma parameters as in
Fig.3, but with the antenna at x=0 and with the guiding center
interval [ x"jeft , X"right ] shortened to [-2 , +2] cm. That is, guiding

center density and temperatures are set to zero outside this interval.

Dispersion relation of an argon plasma with the same parameters

as in Fig.3. In this case, pj = 1 mm.



Figure 6 :

Imaginary part of solution ®(x) for an argon plasma with the same
parameters as in Fig.3, but with inhomogeneous temperature

profiles. Te(x) and Tj(x) are cubics with zero slopes at edges.

Imaginary part of solution ®(x) for an argon plasma with the same
parameters as in Fig.3, but with a non-uniform magnetic field. By(x)
is proportionnal to 1/ (Rg % x), depending on whether the antenna, at
X = Xpr, is on the LFS or the HFS respectively. Ry = 64.7 cm was
chosen such that w/w¢j(xp]) = 3.95 and w/wej(xpy) = 3.60 in Fig.7a,

and vice-versa in Fig.7b.

Experimental and numerical electrostatic potential in an argon
plasma. The parameters used for the numerical simulation are the
following : Te = 18 eV, T; = 0.03 eV, By = 0.2 T, k/y = 200 m'1, n = 1017
m-3, and w/wg = 3.50.

Dispersion relation of a barium plasma with By = 0.25 T, k/; = 30 m-1,
Te =Tj =0.1 eV, n = 1016 m-3, In this case, p; = 1.5 mm.

Experimental and numerical electrostatic potential in a barium
plasma. The parameters used for the numerical simulation are the
same as in Fig.9. The solutions with k;, = 25, 26, 27, 28, 29, and 30
m-1 have been summed. A frequency equal to 2.6 Wei in the
laboratory frame and a drift velocity vgrift / ®¢i = 0.016 m have been
used. Therefore the frequency in the plasma frame is defined by :

w/oe; = 2.60 + 0.016-k/; , and is around 3.05.



Figure 11:

Figure 12:

Local power absorption density Py,(x), for the electrons only, with the
same plasma parameters as in Fig.3, but with Xpr = -Xp] = 1 cm. The
solid lines correspond to Py, (x) and the dotted lines to the expansion
formula. Two sets of meshes for x, x' and x" have been used:
(a) N=128, N'=N"=64, which took 67 seconds of computing time, and
(b) N=320, N'= N"=160, which took 837 seconds.

(a) PL(x), Local power absorption integrated between x and Xpr, for
electrons only. The same parameters as in Fig.11 have been used,
with low (dashed line) and high (solid line) resolution.

(b) P1,(x) computed for ions (dotted line) and electrons (dashed line)
using the higher resolution, as in Fig.11b. The solid line represents

the total power absorbed by the plasma between x and the antenna.
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