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ABSTRACT: Axisymmetric toroidal plasma equilibria with mass flows and
anisotropic pressure are investigated. The equilibrium system is derived for
a general functional form of the pressures, which includes both fluid models,
such as the magnetohydrodynamic (MHD) and the double-adiabatic models,
and Grad's guiding centre model. This allows for detailed comparisons
between the models and clarifies how the "first hyperbolic region", occurring
in the fluid theory when the poloidal flow is of the order of the poloidal sound
speed, can be eliminated in guiding centre theory. In the case of a pure
toroidal rotation, macroscopic equations of state are derived from the guiding
centre model, characterized by a parallel temperature that is constant on
each magnetic surface and a perpendicular temperature that varies with the
magnetic field. The outward centrifugal shifts of the magnetic axis and of the
mass density profile, due to toroidal rotation, are increased by anisotropy if
py< p, or decreased (and can even be inverted) if p;> p,. The guiding centre
model shows that poloidal flow produces an inward shift of the density

profile, in contrast with the MHD result.



I. INTRODUCTION

Neutral-beam injection has become a major source of plasma heating on
many Tokamaks. New phenomena occurring in these experiments call for
important modifications of the usual static description of the plasma
equilibrium, based on the MHD model. The plasma can rotate: toroidal
velocities up to the ion sound speed have been measured on ISX-B,1 PDX,2
and, more recently, on TFTR3 and JET4. Moreover, depending on the angle
of injection, the pressure distributions can be strongly non-isotropic.

In this paper we study the influence of toroidal and poloidal flows and of
anisotropic pressure on the equilibrium properties of axisymmetric toroidal
plasmas. Particular attention is devoted to the analysis of the poloidal
variation of the equilibrium quantities, such as the mass density, on the
magnetic surfaces. This is motivated by the experimental observation3,5 of
systematic anomalies of the density and electron temperature profiles in
plasmas with large mass flows.

Up to now, the effects of flows and pressure anisotropy have usually been
investigated separately, using different models. Axisymmetric equilibria
with flows have been studied mainly in the framework of MHD, see, e. g., the
original work by Zehrfeld and Green® and more recent works by Hameiri?
and Semenzato et al.8 On the other hand, analyses of static equilibria with
tensor pressure have been carried out,%:10 using more realistic forms of the
pressures, obtained by analysis of the distribution functions of the beam
particles.

An equilibrium description including both flows and tensor pressure
was developed by Dobrott and Greenell using Grad's guiding centre plasma
(GCP) model.12 GCP is a semi-macroscopic model in which the particle
motion parallel to the magnetic field is described by a one-dimensional

collisionless kinetic equation. Dobrott and Greene noted that the guiding



centre description gives very different results, compared with MHD. Their
analysis suggests, in particular, that the first hyperbolic region, occurring in
MHD for poloidal flows of the order of the poloidal sound speed, is removed in
GCP.

In this paper we construct an equilibrium formulation which uses fluid
equations for the dynamics perpendicular to the magnetic field, but allows
for different models of the parallel dynamics. This is achieved by choosing a
general functional form of the pressures which includes both MHD and
GCP, together with other equilibrium models, such as, for example, the
double- adiabatic model of Chew, Goldberger and Low (CGL).13 We use this
formulation to discuss fluid equilibria with flows and tensor pressure and to
make a detailed comparison between the fluid and the guiding centre
approaches.

In Sec. IT we give the basic equations of the model. The pressures are
taken as functions of the mass density p and the magnetic field B, subject to a
relation which ensures energy conservation.

The equilibrium system is derived in Sec. III. The respective models for
the parallel dynamics of the plasma are characterized by three coefficients,
expressing derivatives of the pressures with respect to p and B, which
determine the parallel gradients of the mass density and of the pressures.
When poloidal flow is present, the fluid models predict that the density
gradient becomes singular at the sound speed. This gives rise to the so-called
first hyperbolic region of the equilibrium system. We show that, in the
guiding centre model, the macroscopic variables (p, Vi Pyy»PL) are well
behaved when the particle distributions are non-increasing functions of
energy. As a consequence, the first hyperbolic region is eliminated in GCP.

The condition for ellipticity of the equilibrium system is studied in detail
in Sec. IV.

In Sec.V we analyze the poloidal variation of the mass density. We find



both in the fluid models and in the GCP model that toroidal flows lead to an
outward shift of the density profile. This shift is increased (if Py < PL), or
decreased, and can even be inverted (if p;> p,), by the pressure anisotropy.
For bi-Maxwellian distributions a macroscopic model is derived from GCP,
giving a simple analytic expression for the mass density. We solve the
generalized Grad-Shafranov equation for this model in the large aspect ratio
limit, and give an explicit expression for the Shafranov shift. Related results
have been obtained independently by X. Wang and A. Bhattacharjee.l4
Finally, the effect of poloidal flows is investigated. Using model distribution
functions, we show that poloidal flows produce an inward shift of the density
profile in the GCP model, in contrast to the MHD result.

Part of this work has been presented previously,15 in a short version. A
formalism similar to that employed here, unifying different models of the
parallel dynamics, is also applied in a related paperl6 on cylindrical stability

with flow.

II. BASIC EQUATIONS

The plasma is assumed to evolve according to

o,p +V-(py = 0, (1a)
pdy/dt =JxB -V- P, (1b)
B =-VxE, VB =0, (1c)
E+ yxB =0, (1d)

P =p, L+ABB, A=(p,-p)/B2. (1e)



where p is the mass density, v the mass flow, B and E the magnetic and
electric fields, J =V x B is the current density and d/dt = d,+ y-V is the
convective derivative. The pressure tensor P is defined in (1e), where p, and
p, are the pressures parallel and perpendicular to the magnetic field,
respectively, and the quantity A measures the pressure anisotropy.

In a fluid description, such as MHD or CGL, the system (1) is closed by
equations of state. Instead, in the guiding center model a one-dimensional
collisionless kinetic equation governing the parallel dynamics is added 11,12
and the quantities p, v, p;,p, are obtained in terms of the moments of the
guiding center distribution functions. It should be noted that the continuity
equation (1a), and the parallel component of the equation of motion (1b) are
satisfied automatically in GCP, where they are obtained by taking the first
two moments of the kinetic equation. Therefore, if the pressures are
computed from a kinetic analysis, all other macroscopic variables can be
computed!2 from the fluid system (1).

In order to construct an equilibrium formulation which is common to
the fluid models and the GCP model, we consider rather general forms of the
equations for the pressures. However, these have to satisfy a certain
condition, which is required for energy conservation. If we take the scalar
product of the equation of motion with the velocity y, then the pressure term

gives the work done on the plasma. This can be written as
yV-P =VIp,y+AxBB1+ (py/p) dp/dt - (AB) dB/dt , (2)

where the definition of P, the continuity equation and Faraday's law have
been used. In order to get local energy conservation, a function U must exist,

such that

dau _ Pudp o dB
e = pa By ©)



The quantity U is of course the internal energy per unit mass for an
adiabatic plasma or the Helmoltz free energy for an isothermal one. In CGL,
for example, U =p,/p + py2p, as is easily verified using the double-adiabatic
equations of state d(p,/pB)dt =0, d(p;B2/p3)/dt =0.

For equations of state of the form

py,L = Py, L(P,B,Y), 4)
where y is the magnetic flux, Eq. (3) gives a constraint on the pressures

which must be satisfied by our physical model. In this case U = U(p,B,y)

satisfies
oU p U
('_ By _2’ (“‘“‘ =-4B . ®)
op W 0 oB’ PV 0]
The constraint is then simply the integrability condition for this system

dp
1 (=N -A =B, -
B(aB)‘W A =B,-By- (62)

Here we have introduced the dimensionless quantities

9Py
By = L ( 1) 5 ~ (6b)
vi ap
and v,=BAp isthe Alfvén velocity. It is easily seen that CGL and MHD
(Py =p1=p, @pplyy =0)are included in this model, provided that the initial
conditions satisfy Eqs. (4) and (6). In the next section, we show that also the

GCP equilibrium expressions for the pressures can be put in the form (4) and

satisfy (6).



Another important property of the model is related to the parallel
dynamics. In fact, using Eq. (5), the parallel component of the equation of

motion can be rewritten, after some algebra, as

4 (¥By _ v

with

W = W(o,B,y) = U+%, (7b)

showing that |v-B d3x is conserved on each flux tube. The function W is the
thermodynamic enthalpy for an adiabatic plasma. Equation (7) allows to find

a Bernoulli law 6.7 in axisymmetric equilibrium configurations.

IT1. THE EQUILIBRIUM PROBLEM

In this section we discuss axisymmetric equilibrium (9, = 0) solutions of
the system (1), with the pressures defined by Eqs. (4) and (6). Cylindrical
coordinates (r,$,z) centered on the main axis of the torus are used, where r is
the distance from the axis and ¢ is the ignorable coordinate (3/9¢ = 0). The

magnetic field B is written as
B = B+ _B¢ = Vo x Vy(r,z) + I(r,z) Vo, 8)
where B, and B, are the poloidal and toroidal magnetic fields, respectively,

vy is the poloidal magnetic flux and I is the poloidal current flux.

We obtain the following equilibrium system:



== VW), (92)
Y

Vo Wy I ,

= —er—z = dp(y), (9b)

11 - Py op = I, , (9¢)
(v, B)® 2

M - Laop® + WioBY) = Hyw), | 9d)

P

' i S " . OW
V(15) = -1 - T, Loy vB + gpprv, - pHy+pT,  (9e)
r oy r oy

where v =|y|, v, and v, are the magnitudes of the poloidal and toroidal
flows, respectively, and the prime means derivative with respect to y. The

function 1 is given by:

2 2
v ’
t=1-4-M2, VL T (10)
B: P

where the poloidal Alfvén Mach number M_, relative to the poloidal field, has
been introduced. The equilibrium system is completed by the equations of

state (4) and by the equations (7b) and (5) for W, which can be combined to give

oW 1 /%P W 11¢°PI
- = (1L ) — = 4 - AB|. Q1)
The six functions vy , ¢g, Iy , Hy, 9p /0y, oW/dy (one more than in MHD,

due to pressure anisotropy) can be given arbitrarily.



The system (9) can be derived in the same way as the MHD equilibrium
system.6-8 Equations (9a-b) are simple consequences of Faraday's law and of
axisymmetry and Egs. (9c-e) result from the projection of the equation of
motion in the direction of ¢, b and Vy, respectively.

The velocity is within the magnetic surfaces and is determined by two
free functions of y: yy(y), which is the poloidal flux of the momentum py,
and ¢g(y), which is the electric potential. Equations (9a-b) can be combined

to give the well known representation

g:WTMB_ + Vo, V=-ro,, (12)

where V measures the flow induced by the electric field. V=0 (.e. ¢5' = 0)
gives a field-aligned flow, while wy)' =0 corresponds to a pure toroidal
rotation, with frequency ¢g'(y), of each flux surface.

Once the function W is known, Eq. (9d), which is similar to Bernoulli
law, can be regarded as an equation for the local mass density p. In MHD
and CGL this relation is algebraic. In general, it may not be possible to
express W analytically, but its existence is ensured by Eq. (6), which is also
the integrability condition for the system (11). Finally, Eq. (9¢) is a second
order, quasi-linear, partial differential equation for vy, analogous to the

Grad-Shafranov equation of static MHD.
II.A MHD and CGL equilibria

The MHD and the CGL equilibrium systems are special cases of (9). The
MHD system is obtained by putting p, = p;= p = S(y)p?, where S is an
arbitrary function of y. For the double-adiabatic system we have p, = S, (y)pB
and py = Sy(y)p3 /B2, with S, ; arbitrary functions of y. In both models the
equations of state are of the form (4) and satisfy the integrability condition (6).
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The corresponding expressions for W are found from (7b)

i
v-1

-ord

Py
Wy = Weor = b + 321 (13)
A general expression for the variation of the mass density along the field

lines can be obtained from Eqgs. (9d) and (11) :

2
9p£ - (1- ﬁ_L)%i . M)z_d_‘}’_ (14)
By-M By-M,

[The differential along a field line is denoted here by a "d" and will
sometimes referred to as the parallel gradient.] The MHD and CGL

expressions are then obtained by substituting in (14) the respective values of

By
LB The GCP equilibrium.

In this section we discuss the GCP equilibrium and compare with the
formulation (9). We recall some of the results given by Dobrott and Greene,11
to which the reader is referred for more details.

In the guiding centre model the distribution functions for ions and

electrons satisfy11,12
~ ~ 2
%+(!l+qb)-an+[b~V(Y2¥-uB-—¢")+qK v_l_]s-&= , (15)

where 2 denotes the different species. Here g is the microscopic parallel
velocity, p is the magnetic moment, e, and m, are the charges and the

masses of the particles, y, = (ExB)/B2 is the electric drift, ¢, is the potential
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for the parallel electric field, b =B/Band x = b-Vb is the magnetic field
curvature. Macroscopic quantities are obtained in terms of the moments of

the guiding centre distribution functions fy (u,q,x,t)

(p, PV P> p||)n = Bf

0

du f dq [1, q, 1B, (@-vp°1f,. (16)

-]

The parallel electric field is determined from the constraint of charge
neutrality X, py(e,/my) =0.
At equilibrium, in axisymmetric geometry, the kinetic equations (15) are

solved by f, =f, (u,H,,y), with the pseudo-Hamiltonians H, defined by
B 2 e 2
¢ V
HQ:%(q-E—V) +|J.B+ Jn—q)“ '7. (17)

The parallel gradients of the mass density and of the pressures can be

expressed, using the definitions (16) and charge neutrality, as

— ={(1+ — - — Vdv ’ 18
AR e
dp, = @p, + c*)% - C,Vav, (19)
dpy = ®y-p, + MpvaCO B - (p-Mivic) Vav . (20)

The kinetic functions C,, C, and C« are given by
e e e, 2
C,=ZX,Cy, - (T, -ﬁﬂgcn,1 XZ, -Ih—'lzcn,o)/zn (ﬁ—”;) Cho » @1)

e 2 e
C, = Z,Cpp - (g 5 Cao) /2, G Cy @
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e 2 e,.2
C* = ZQ 02,2 - (ZQ #;CQ,I) /ZQ (#Q_) CQ,O s (2'3)
with
netf o oaf . Of
c, = ™Y aupr| aq 2o (24)
A . OH,

The variation of p, p, and p; across the flux surfaces, which is not relevant to
the present analysis, is given explicitly in Ref. 11.

We note that Eq. (18) for dp has the same form of Eq. (14), except that the
coefficents of dB and dV are different. If C,,V # 0, we can solve for dV and
eliminate it in favour of dB and dp in the expressions (19)-(21) for the
pressures gradients. By virtue of this transformation of variables, the GCP
model gives the pressures as functions of p,B and . It is easy to verify that
the transformed expression for the pressures satisfy the integrability
condition (6). As a consequence, a function W exists and the Bernoulli law
(9d) is valid also in GCP. Thus, the equilibrium description that we have
developed, also includes guiding centre, although (4) is not the natural form
for the kinetic calculation.

We will complete the analysis of the equilibrium system using the
general formulation. Then the results for different models can be obtained
simply by replacing the corresponding values of the three "thermodynamic"
functions (9gp, )y, B. and Py, which determine the gradients of the pressures
and of the mass density in the magnetic surfaces according to Bernoulli's
law. The values of these quantities in MHD, CGL and GCP are given in the
Table 1. The pressure gradients in the "GCP variables” B, V and vy can also

be obtained, using Eq. (14) to eliminate dp. For example,
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op 9p B
(—B_I;L)V"" = (a_Bl oy * Bﬁl(l'ﬁg)- (25)
1" P

Comparison between the expressions (14) and (18) for dp and between Egs.
(19) and (25) indicates what is the main difference between the fluid and the
guiding centre approaches. In the fluid models B, and B, are always positive
quantities, so that the coefficients of dB and dV in (14) diverge for sonic
flows, M,2 = B, and similarly for the pressure derivative (25). As will be

shown in the next section, this singularity is at the origin of the first
hyperbolic region in the Grad-Shafranov equation, for the MHD and the
double-adiabatic models. In the guiding centre model singular behaviour of
the density and the pressure can occur only if the kinetic integrals C, and C,
diverge. Using the definitions (21)-(23) and charge neutrality, these integrals

can be rewritten as

2, Png“’l 2
C, = p—>, c,-—— (26)
Z (PQ) z (PQ)
t Cho * Coo

with Cy4, Cy; given in (24). Therefore, in order to recover an hydromagnetic
type of behaviour, the denominators of the right hand sides of the expressions
(26) must vanish. This is possible only if the functions C,, for ions and
electrons have opposite signs. However, by inspection of the definition (24), it
is immediately seen that C,( are negative definite for distribution functions
with Jf/dH <0 and the integrals C, and C, remains finite (the same result
holds also for C.). In other words,the MHD resonance can be recovered only
if the ion distribution has either large regions with df/dH > 0, or positive

Jjumps.



-14-

IV. ON THE SOLUBILITY OF THE EQUILIBRIUM SYSTEM

In this section we discuss the well-posedness of the equilibrium system,
i.e. we look for the conditions on the flow and the pressure anisotropy under
which the equations for the mass density, Eq.(9d), and for the magnetic field,
Eq. (9¢), can be solved along the field lines. We shall also determine the
conditions under which the generalized Grad-Shafranov equation for vy, Eq.

(9e), is elliptic.

IV.A The characteristic determinant

The type of the equilibrium system is determined by the differential
operator on the left hand side of Eq. (9e¢). This can change from elliptic to
hyperbolic, due to the presence of the function t, which depends on |Vy|
through p, B and the pressures. Following the analysis of Hameiri? for the
MHD case, we observe that the second order derivatives of y are the same as
in TV2y + 1Vy-V|Vyl|2, where 1= 91/3|Vy|2 In cylindrical coordinates
this becomes [t + 2 T(3,y)2] 32,y + 4 T,y o,y 32,y + [T + 2 T (3,y)2] 32,y. The
characteristic determinant D, which is the determinant of the matrix formed

of the coefficients of the second order derivatives, is therefore given by
D=12(Q1+2|Vyl2 th). @27
The equation is elliptic (hyperbolic) if D >0 (D <0). The derivative 1 can be

computed from the Eq. (Sc), using Bernoulli law to eliminate the density

gradient. In GCP variables the resulting expression for D is very simple:

’ (283.)
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with
=1+1 (%L
K = 1+B(aB)V"‘" (28b)

The ellipticity (hyperbolicity) condition is given by the positivity (negativity) of
the fraction in (28a). The GCP result, where K =1 + (2p, + C:)/B2 was
obtained by Dobrott and Greene.

In the fluid models K can be expressed using Eq. (25). Then, in the
absence of flows, the equilibrium is elliptic for arbitrary poloidal and toroidal

magnetic fields if

2
(B —1+1(%PL
o l3N>0, on_1+B(aB )p,\u+l3J-’
(29)
1-A>0.

In the double-adiabatic model the first condition becomes B2 + 2p,> p,2 /3p;
and (29) coincide with the ellipticity conditions given by Gradl2 for static
equilibria with anisotropic pressures.

However, the expression of the characteristic determinant does not
contain explicitly the toroidal flow. Therefore the inequalities (29) are also the
ellipticity conditions for anisotropic equilibria with arbitrary toroidal
rotation. They are certainly satisfied in tokamaks, where B is at most of the
order of the inverse aspect ratio. Thus, the equilibrium problem remains
elliptic for Tokamaks with toroidal flow and anistropic pressure.

Next, we consider the case M, # 0. We first note that in the fluid models
By > 0 (in CGL, for example, B, = 3 p;/B2). Therefore o is positive when the
first of the conditions (29) is satisfied. Eq. (25) shows that when the poloidal
flow approaches the parallel poloidal sound speed (i.e. Mp2 approaches B)
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from below, K decreases, goes through zero at M2 =8* =p,-8,2/a, and
becomes negative for f* < M 2 < B). In the fluid models the behaviour of the
denominator of (28) around the sound speed is similar to that of K. However,
the zero and the change of sign occurs for a value of My? slightly larger than
B*, giving rise to a small interval where D is negative. This is the first
hyperbolic region of the equilibrium. To see that in detail, we rewrite D,

using the Eq. (25), as

2
*. M
D = 12B%a 5 f p2 , , 30
BpMp'XMp +Y
with
Y=B20p +B2p, (1-A X=B2a +B2(1-A
=B,ap +B;B,(1-4), =By,a +B;(1-A+8,),

which is obtained by eliminating the term B, - M_2 from the numerator and
the denominator of (28). D vanishes for M2 = p* and M2 = 1- A. When (29)
is satisfied, the coefficients X and Y in (30) are positive. Since the
discriminant X2 - 4YB_2 is always positive, the denominator of (28a) has two
positive roots, corresponding to the speeds of the slow and fast compressional
waves, that we call M2 and M;2. If p* < 1- A, which is certainly true for
tokamaks, then B* < M2 <1-A < M;2. Therefore we find two elliptic regions
for 0< M2 <B* and M2 < M2 < M2, separated by a narrow hyperbolic
region for p* < M,2 <M,2, and a second hyperbolic region for M2 > M;2. It
may be noted that in the small region between M2 and B, both K and the
denominator of (28) are negative, giving an elliptic equilibrium.

The alternance of elliptic and hyperbolic regions that we have obtained
is the same previously found6-8 for MHD. The MHD expression for the
characteristic determinant can be obtained by setting o = X= 148,

p* = B/(1+B) and Y =B = yp/B2 in (30). Thus pressure anisotropy in the fluid
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models only introduces the conditions (29) together with quantitative changes
in the characteristic speeds delimiting the different regions .

Instead, in the GCP model the kinetic function C., appearing in the
expression of K, is well behaved at the sound speed, except for pathological
distribution functions. Therefore K is positive (in a low-beta plasma K = 1)
and the first hyperbolic region is removed.

The ellipticity or hyperbolicity of the equilibrium problem is also studied
in Ref. (16) by means of a local analysis of the linearized equilibrium
equations. It is shown there that in MHD in the first hyperbolic region
(which occurs when K is small and negative) perturbations having zero
frequency in the laboratory frame propagate across the flux surfaces as slow

MHD waves.

IV.B The equation for the mass density

To complete the discussion of the equilibrium system, we analyze the
solubility conditions for Egs. (9c-d). If we take the parallel gradient of (9¢c)
and eliminate dI by using the definition of B, the resulting equation will
form, together with Eq. (14), a system of two linear equations for dp and dB.
The determinant of the coefficients of dp and dB in this system coincides with
the denominator of the characteristic determinant in (30). Therefore, except
at the transitions between the elliptic and hyperbolic regions corresponding
to zeroes of the denominator, there is no additional complication in solving

for p and B. By eliminating dp , we can solve for dB:

2 2
dB .1 {[1.2220V 1PV Ry ar,BedlVyly o,
B D, TBVA TpZy2 P B VYT T g2 vyl

where Dy = (By21 + By2K)/B2. Then, to obtain the explicit variation of the
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mass density along the field lines, we must substitute this expression into Eq.
(14) for dp. However, for flow velocities in the range of the sound speed the
terms proportional to V/v, and (V/v,)2 can be neglected (in the fluid models
this is true far enough from the transition speeds), and the main
modifications with respect to the static case are introduced by the factor t/D,,.
For sub-Alfvénic flows (Mp2 « 1) and usual Tokamak betas (|A | « 1), we
have that t=1 and Dg=1, so that we can assume, for a first comparison
with the experiments, that B is unchanged by the flow and the pressure
anisotropy. As a consequence, the relevant information for the density
distribution on the magnetic surfaces is contained in Eq.(14), with B

considered as a decreasing function of the radius.
V. THE DENSITY ASYMMETRY

In this section we consider the effect of flows and pressure anisotropy on
the poloidal variation of the mass density, for different models of the parallel
dynamics. The expressions (14) and (18) for dp are used and the magnetic
field is taken as a decreasing function of radius. Therefore, the following
analysis only holds for sub-Alfvénic flows (see Sec. IV.B). This is not a severe
restriction for the comparison with experimental results. It should be noted
that the point Mp2 =1-A represents a singularity of the equilibrium
problem in GCP11 as well as MHD, so that the restriction to sub-Alfvénic
velocities appears, indeed, as a necessary choice.

To quantify in a simple way the poloidal asymmetry of the equilibrium
quantities, we introduce for any given quantity f an asymmetry factor A,
defined as the normalized radial derivative of f at the radius r, of the

magnetic axis, i.e.

of
'1:'&_ (ra,\lfa) ’ (32)

fa or

Ag
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where v, is the value of y at the magnetic axis and f, = f(r, ,y,). The density
asymmetry A, vanishes for a static MHD equilibrium. Experimental results
where A, is of order of unity have been reported for the density profile on PDX
in a strongly beam-heated discharge with large toroidal rotation.5

The mass density can be computed explicitly for an MHD equilibrium
with purely toroidal flow, both for adiabatic and isothermal equations of state.
In the case of an isothermal plasma with temperature T = T(y), Eq. (9d) with
v =0 and W = T'lnp gives the well known result

2
_ oA r2 ¢ig (y)
p = Ply) exp (—2 R ), (33)

where p(y) = exp [Hy,(y)/ T(y)]. It follows from (33) that A, =V,2/T,, showing
that in order to have A, ~ 1, the velocity must be close to the sound speed .
In the following we will see how this conclusion is modified by the

introduction of pressure anisotropy and poloidal flow .
V.A Toroidal flow and pressure anisotropy

We first consider equilibria with purely toroidal flow and anisotropic
pressure. In the fluid models B, are positive quantities, so that the
coefficient of dV/V in (14) is positive, corresponding to a centrifugal shift
(note that dV/V = dr/r). However, we now have an additional term, the sign
of which depends on the relative values of B, and B,. The outward shift of the
density is increased (decreased) if By< L ( Bi> pL). The effect of the two
terms is comparable when B, - B, = (V/ v,)2.

Similar results can also be obtained for GCP. When the flow is purely
toroidal, we can take distribution functions which are even about the average
parallel velocity. If, moreover, the ff are monotonically decreasing functions

of H%, it follows from (26) that the functions C,, C, are negative definite.
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Therefore the corresponding B, and B, are positive and GCP gives the same
conclusions as the fluid models.

To be more specific, we consider the case of two-temperature
Maxwellian distribution functions. Then "macroscopic" equations of state

are obtained from the guiding centre description:

= pT(v), =pT,B,y) = pT,—B__ | (34)
=P hlv p,=pT P "B'gru

where 6 = 6(y) measures the ratio (T,-T\)/T and T, = T; has been assumed
for simplicity. For this model B,,,= p,,/B2 = T,,/va2 and the kinetic
functions Cs«, C, and C, are negative definite, as can easily be verified using
Table 1. We observe for completeness that the ellipticity conditions (29)
become B2 +2p, > 2p,2/p, and 1-A> 0, which are certainly satisfied for
the beta values attainable in tokamaks. The model (84) is characterized by a

simple closed expression for p as a function of B, r and v

2
= B L exp (22 92 W)

where p(y) = exp [Hy(y)/ T, (w)]. This comes about as a natural generalization
of the MHD result (33), which is recovered by taking T = T = T(y). The
asymmetry factor corresponding to (35) is

v?2

A e @
WAy + g (36)

T
T

Ap = (1-

Ila

Therefore, if p,> p;, the amount of toroidal flow needed to produce a given
asymmetry of the density profile can be strongly reduced, compared to the

isotropic case. This is in agreement with the experimental situation
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described in Ref. 5, where nearly perpendicular injection was used and the
measured toroidal velocities were significantly lower than the sound speed.
In fact, when the injection is perpendicular to the magnetic field, most of the
particles are trapped on the outside of the torus, contributing to the outward
shift of the density profile.

On the other hand, Eq. (36) also indicates that, in the case of parallel
injection, the density asymmetry can be reverted, particularly for moderate
toroidal flows.

The model (34) is well suited for analytic investigations. In the appendix
we solve explicitly the generalized Grad-Shafranov equation for this model,
in the limit of small beta and small ratio of poloidal to toroidal magnetic field.
For small flows and pressure anisotropy, the resulting Shafranov shift & of

the magnetic axis, defined as § = (r, - ry)/a, is found to be

T, o-T
d= (M§+M)], @7

I ER —
where r, is distance of the geometric center of the plasma from the main
axis, € = a/ry is the usual inverse aspect ratio, M2 = (r ¢¢)2/ T is the Mach
number relative to the parallel thermal velocity, E is a constant related to the
ellipticity of the flux surfaces and the quantities with subscript 0 are
computed at ry. Eq. (37) shows that the outward shift of the magnetic axis is
increased (if py< p,) ordecreased (if p;> p,) by the pressure anisotropy,
similarly to what happens for the density asymmetry. The contributions to
the shift from rotation and pressure anisotropy can be of the same order.
They can both become of the order of the conventional Shafranov shift due to
finite pressure (although this is taking Eq. (37) somewhat beyond its strict
domain of validity).

It is interesting to note that as long as the parallel temperature is

constant along the field lines, the effect of pressure anisotropy on the density
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asymmetry remains qualitatively unchanged from that discussed before, for
any perpendicular equation of state. This is immediately seen from the

parallel component of the force balance (for ¥ = 0)
Tyw)B:Vp = (p-p) bVB, (38)

which shows that the sign of the parallel derivative of the density is
determined by that of p;-p,. Moreover, for perpendicular equations of
state of the form T, = T, (B,y), the expression (36) for the density asymmetry

remains valid and the mass density can be computed explicitly, giving

2
_ - r? 05 W)
p= G(B,y) py) exp ( 2 T oy ), 39)

where G is the solution of dg (InG) |‘|, =B1(1-T,/Ty) and p is the same as in
(35). In the special case T,=T,(y), we have InG =(1-T,/T) InB.

V.B The effect of poloidal flows

Finally, we consider poloidal flow () # 0). The poloidal variation of

the density in the MHD model is given by

-

dp

2 v2
M2dB , Y dr] (40)
p B-M [ P B * Vz r]

2
P
which is obtained from (14) by putting Bii= pL = B = yp/B2. (The effect of the
pressure anisotropy is similar to that discussed in the previous subsection
and it will not be further investigated.) Equation (40) shows that in MHD: a)

the effects on the density asymmetry of the poloidal flow and of the rotation

induced by the electric field are additive; b) even small poloidal flows can
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produce a large shift of the density: the two terms in the square bracket are
comparable for v,2 =(B,2/B2) V2,

The sign of the asymmetry is determined by the coefficent in front of the
square bracket, which is positive in the first elliptic region (giving an
outward shift of the density), diverges at the sound speed and then becomes
negative (giving rise to an inward shift). [These conclusions are somewhat
modified if we take into account the true expression for dB, Eq. (31). Then the
term § - M2 in (40) is replaced by (M2 - M,,2) (M2 - M,2), the denominator
of the characteristic determinant in (30). Therefore, a first resonance and
change of sign of the asymmetry occurs at the slow wave speed instead of the
sound speed (M2 =M,2 =B/(1 + BB¢2/B2 ), instead of B). Another resonance
appears at the fast wave speed (M2 = M;2). For velocities in this range the
full expression (31) should be used.]

In the guiding centre model the distribution functions must be even
about q = VB,/B, in the trapping region, but asymmetric outsidell in order to
produce a net poloidal flow. To simplify, we restrict the analysis to the case
of field aligned flow, so that only the coefficient of dB in the expression (18) for
dp needs to be considered and seek to determine the sign of the asymmetry as
a function of the flow. Here we consider a single ion species and denote ions
and electrons by * respectively. We take a specific model distribution that is
Maxwellian ft = exp(- f* Ht) in one direction of the parallel velocity (say q < 0).

In the opposite direction we choose:

exp(- BtH*) uB + ¢, (e/m)r < H* < Hyt (regionI)
ft = exp(- ptHyt) Hf < Ht < Hi+d (regionI) (41)
exp(p8) exp(- Bt Ht) H* > Hi*+8 (region III)
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Here H;* =pn 8t + §*, with the constants ¥, § chosen in such a way that
Bt + ¢t >max[ pB + ¢,B)(e/m)* ] for all B and ¢, on the flux surface, to
ensure that the trapping region is inside the region I (note that the left
extreme of this region corresponds to q = 0). The distributions (41) are
sketched in Fig. 1 as functions of Ht, at a given u value. The positive constant
8, which determines the width of the region II, measures the magnitude of
the poloidal flow (for 6 = 0 Maxwellian distributions with p* = 1/T,* (y) are
recovered).

Observing that oft /0H* vanishes in the region II and is equal to - Btft

outside, Cgtand C;* become
t + t 1
Co = -B [p-p"T", Ci=-8[p, -pIT, “2)

where p and p, are the total density and perpendicular pressure,
respectively, and the quantities with superscript II are integrated over the
region II. As pointed out in Sec. IIL.B, both Cy*and C,* are negative definite,
irrespective of the value of the poloidal flow.

To make more explicit the dependence from the flow, we write

p* = py+p"E-R,

+ * n+ .=
P, =p,+p, -P, (43)
* + o +
R = [p(I)I- pHI + p(])II] ’ P = [P_]Eo'pfl"'p_ljl_lo] ’

where the quantities with index 0 are computed using the Maxwellian
distributions (in the static limit § = 0, we find p* = pst and p,* = p,¢t).

Using (42) and (43), we find
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t

Zim_____l_[pn_p_.,.gp]i
c B*pi-R*
1+ = 0 , (44)
P y mt p”
oy 4t
B po'R

where we have taken (py/B)Xt = p,¢t , which corresponds to an isotropic static
equilibrium. Note that, for § = 0, R* = P* = plI* = 0 and the coefficient
vanishes. As the quantities (pI - R)*, (py - R)* are positive, the sign of the
density asymmetry is determined by the sign of the quantities P+, which,
following the definitions (43), are given by:

2 ©0 H1+8 _ H 00 _ H
P = B” duu{ dH—i———- (eBS-l) dH—e—-—B—}
H H-H* Hy+s VH-HY
1 1

where H*t =B + ¢,(e/m)t. By simple manipulations we obtain

B2 [ ol age-BH( 1 1
P =21 dup| dHe B - ) (45)
ﬁfo le {VH—H* VH—H*+8}

which is a positive definite function of 6. Therefore dp/dB is positive, giving
rise to an inward shift of the density profile. Comparing with (40), we see
that, for sub-sonic flows, this is opposite to the MHD result.

A similar behaviour is obtained in Ref. (16) for the response of the plasma
density to magnetic field perturbations in cylindrical geometry. Due to the
elimination of the slow magneto-acoustic waves in the guiding centre model,
squeezing a flux tube leads to an increase of the plasma density. In the
equilibrium problem this corresponds to saying that, following a fluid
element, the density of the plasma increases when the section of the tube

decreases. Notably, in the subsonic region MHD predicts that the density
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decreases when the flux tube is squeezed, due to the presence of sound waves.

Finally, we note that the other kinetic integral C,, is negative definite
for any distribution with non-positive Jf/0H. Therefore, the second term on
the right hand side of (18), representing a toroidal flow, always gives an

outward centrifugal shift of the density.

VI. CONCLUSION

The MHD theory of axisymmetric equilibria with flows has been
extended to include pressure anisotropy. The equilibrium equations reduce
to a second order quasi-linear partial differential equation for the magnetic
flux, similar to the Grad-Shafranov equation of static MHD, coupled with six
algebraic constraints expressing conservation laws. Our analysis applies for
a general functional form of the pressures, which includes the
double-adiabatic model, but also allows for different equations of state, such
as, for example, isothermal.

The expressions for the pressures in the guiding centre modelll,12 can
be cast in the same form as in the fluid models by a simple variable
transformation. Then the difference between the fluid and the guiding centre
approaches lies in three coefficients, expressing derivatives of the pressures
with respect to the mass density and the magnetic field. These coefficients
determine the variation of the pressures and the density in the magnetic
surfaces. In the fluid models, when poloidal flow is present, the density
gradient becomes singular for flows of the order of the poloidal sound speed,
giving rise to the "first hyperbolic region" of the Grad-Shafranov equation.
Furthermore, for small betas, pressure anisotropy does not change
qualitatively the type of the equilibrium system as a function of the flow
speed. In sharp contrast with the fluid models the guiding centre model
predicts that the density gradient is well behaved at the sound speed and
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there is no "first hyperbolic region". We prove that this is true for
distribution functions which are non-increasing functions of the particle
energies. However, resonant hydromagnetic behaviour can occur for
distribution functions that are sufficiently non-monotonic.

For purely toroidal flows, a fully macroscopic, anisotropic, "isothermal”
model has been derived from the guiding centre equations, by using
two-temperature Maxwellian distributions. An approximate solution of the
Grad-Shafranov equation is given for this model in the limit of small beta and
small B,/B. The Shafranov shift and the density distribution on the magnetic
surfaces are explicitly computed. For both of these quantities the outward
centrifugal shift due to the rotation is increased (f pj < pL), or decreased, and
can even be inverted (if p,> p,), by pressure anisotropy.

Finally we have investigated the effect of poloidal flows on the density
profile. In this case the guiding centre results, obtained by using model
distribution functions, are very different from the fluid results. In the
guiding centre model, not only is the resonance at the sound speed removed,
but in addition poloidal flows lead to an inward shift of the density profile.
For subsonic flows, this is opposite to the MHD result. It appears, therefore,
that the equilibrium of high-temperature collisionless plasmas with poloidal
flows can be properly described only by models that treat the parallel

dynamics kinetically.
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Appendix. Generalization of the solution of Maschke and Perrin

In this appendix we give analytic solutions of the Grad-Shafranov
equation for the model (34), in the limit of small beta and small ratio of
poloidal to toroidal magnetic field. Maschke and Perrinl7 obtained analytic
equilibria with flows in axisymmetric geometry using MHD and isothermal
equations of state. Here, we generalize that solution to the case of anisotropic

pressure. For the model (84), W = T}, In(pT\/T,) and we can rewrite (9¢) as:

p“ C )V‘V]= -1 _prZ__J;(eT”)

?v.[1-
B%21-{ r?

, (A1)
, I_z_ﬁ’ r I'2¢E
[ oniy GE) 1 exp (5

where

2
H 2 ¢
n o= W = Tyexp (3M) = p,(1-Dexp (-L %),
Ty 2 T,
Lo T
B T,

For T, =T, (ie.{=0),Eq.(Al) reduces to Eq. (4.6) of Ref. 17.

Now we assume small beta, where Eq. (9¢) gives I = Iy(y), and small
By/B, sothat B = Ur = Iy/r. We choose 6(y) such that 6T, = const. Then the
anisotropy term in the operator on the lL.h.s. of (Al) is negligible. Therefore,

using the expression (35) for the density, we obtain

2
Vey= I L - [ - (q’i) ] r’ (r ¢E (A2)
T, Ty
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with V¥=r9d, (r19,) + 92, . This equation contains four arbitrary functions
of y: Iy, M, Ty, . We now introduce the Mach number M 2 = (r ¢¢")2/ T),
relative to the parallel thermal velocity . The source term in (A2) can be made

a function of r only, with the following choices of the free functions:
0g2/ Ty =const. =M 2/r2 = M2=M2r2/rg,
n=@®rt)w-w) Iv=I2+2()/r?)(y-w),

where the subscript 0 indicates the value at the radius r , which is for the

moment undetermined. Using these profiles, Eq. (A2) finally becomes
~2 M 2
V*\y: -—J—-L—————r exp(—o?z), (A3)

where the normalized coordinates (¥,z) = (r,z)/r ; have been introduced.

The problem still contains an arbitrary function of y (only the ratio
¢E'2/T" has been fixed), which can be chosen to be the parallel temperature,
or the electric potential, deduced by the measured rotation velocity.

Following Maschke,17 we look for a solution of (A3) of the form y(,z) =

h(¥,z) + g(¥), where g(¥) is a particular solution of

2

~2
~d ldg = . T MO ~2
rdi*'(r_d?) Pl_CO?exp( 5 T ), (A4)

and the function h, which is solution of V*h + J/ry2 =0, is given by

~2
b@D = CPF* - 122 4 BED 222 L) oy

4
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where C, E and vy, are constants (here E is a constant related to the
ellipticity of the magnetic surfaces and not the electric field). In general,
(A4) must be solved numerically (unless {y = 0, which gives the MHD case
treated by Maschke). However, in the limit of small flow and pressure
anisotropy (M o2, {o << 1), the equation can be solved by expansion. The

solution for y (for J =0) reads

H"P—"’s = C¥° + (E-l)%2 (22-%%) - fsi( 1+8¢7+1 MoFE).  (AB)
From Eq. (A5) we can compute the shift of the magnetic axis due to the flow
and the pressure anisotropy. In order to do that, we fix the horizontal
position of the plasma by giving the two points (f=1t¢, Z = 0) where the
plasma boundary crosses the r-axis (here r, is taken as the geometric center
and € = a/ry is the usual inverse aspect ratio). The constant C and the value
vy, of the magnetic flux at the plasma boundary are then determined by the
system y(1 £ e,0) = vy, and the position r, of the magnetic axis can be
computed from 9, y(r, 0) = 0. The resulting Shafranov shift of the magnetic
axis is given in Eq. (37) in Sec. V. By comparing with the numerical results
obtained by Maschke (Fig. 3 in the Ref. 17), we can see that, for small values
of E, in spite of the approximations done the expression (37) for the shift is
very accurate for sound Mach numbers up to 0.5-0.6, and even at sound speed

(M ¢ = 1) the difference with the numerical values is less than 10%.
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TABLE 1
GCP CGL MHD
», S, R
( a) )B’w C* p
p
p
2 3
(% )B T M12> £ =
ap A p C, Y
(Pr) | 2.+Ce Cyp+C, P 0
oB Y B C, B B

Table 1. Values of the coefficients characterizing the parallel

dynamics for GCP, CGL and MHD.
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Fig. 1 Distribution functions for ions and electrons as a function of
H, at given i. The solid (dashed) line gives the distributions
for q>0 (q <0). The two coincide in the region I.



