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Abstract :

The 3D ideal magnetohydrodynamic stability code TERPSICHORE has been designed to take
advantage of vector and microtasking capabilities of the latest generation CRAY computers. To
keep the number of operations small most efficient algorithms have was been applied in each
computational step. The program investigates the stability properties of fusion reactor relevant
plasma configurations confined by magnetic fields. For a typical 3D HELIAS configuration that
has been considered we obtain an overall performance in excess of 1 Gflops on an eight processor
CRAY-YMP machine.
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1. Introduction

The advent of powerful vector and multiprocessor supercomputers with large memories like the
Cray-YMP and the Cray-2 has made the investigation of the magnetohydrodynamic (MHD)
stability properties of fully three-dimensional (3D) plasma configurations confined with
magnetic fields feasible. The computer code TERPSICHORE has been developped for this
purpose and has been explicitly designed to take advantage of the vector and microtasking
capabilities of these types of computers.

To successfully tackle the linear stability problem in three dimensions using numerical methods,
the computer program that is devised must be very carefully designed because compared with
the 2D predecessors such as ERATO [1] or PEST [2] the memory and the CPU requirements
can be correspondingly much larger. To become a useful tool, the 3D stability code must also
be very fast in order to have the capability of exploring the larger parameter space associated
with the extra degree of freedom that the third dimension introduces. In the construction of
TERPSICHORE we have greatly benefitted from the accumulated experience developed in the
design and operation of the 2D stability packages ERATO, PEST, PEST2 [3] and the code of
Degtyarev et al. [4]. Thus, double Fourier expansions in the poloidal and toroidal angles and a
finite hybrid element approach [5] are performed to optimally describe the eigensolution. In
order not to include unnecessary modes a special expert-system-like program is used to select
those poloidal and toroidal Fourier terms which contribute to the instability. This leads to
minimum size matrices in the generalized eigenvalue problem. As a consequence, it is no longer
the eigenvalue solver but rather the construction of the matrix elements that becomes the most
expensive computational step. Special care has been taken to compute the double Fourier flux
tube integrals of equilibrium quantities to construct each matrix element in most optimal way.
These features clearly distinguish this code from its 2D predecessors which were developed in
the mid seventies and were partially designed to benefit only from the vector and memory
capabilities of Cray-1 computers that were available at that time. As a result, the
TERPSICHORE code, although intended to be used as a 3D MHD stability package, performs
the 2D stability problem much more efficiently and rapidly than either ERATO or PEST. In
more complicated 3D low magnetic shear stellarator configurations we achieve an overall
performance of over one Gigaflop/s on an eight processor Cray-YMP machine. The
parallelization needed to achieve this high rate was entirely done by autotasking.



2. The physics problem

The 2D stability packages have been employed extensively in the last 10-15 years in the design
of axisymmetric Tokamak devices such as the Joint European Torus (JET) and the Tokamak
Fusion Test Reaction (TFTR) that have already been built and have operated successfully. They
are presently being used to design reactor-like devices such as the International Test
Experimental Reactor (ITER) which is an international collaborative effort to consider the next
step in magnetic fusion energy research. The purpose of the ideal MHD stability codes is to
determine the possible boundaries of operation in the plasma current and in the pressure that can
be confined. As a testament to the sucess of these codes was the extraction of the Troyon limit
[6] from computer simulations which was subsequently verified experimentally. It should be
noted that a substantial fraction of the computational effort in magnetic fusion energy research
realized on Cray computers in the last 10 years has been devoted to the 2D stability problem.
There are strong motivating factors to extend the stability analysis to 3D configurations. First,
the experimental conditions in tokamaks display in many cases highly nonsymmetric internal
magnetic structures. Second, external helical windings are incorporated in many tokamak
designs for disruption control (which is a class of instability described by resistive MHD in the
nonlinear phase rather than by the linear ideal MHD model) that can signiﬁcantly alter the
symmetry properties of the device. In the near term, a modification of the JET machine is
planned to experimentally test this concept. Third, though present devices like JET have 32
toroidal magnetic field coils to minimize the magnetic ripple effects and force the configurations
to be as close to axisymmetric as possible, the accessibility to the plasma and cost
considerations constrain future larger tokamak designs to be built with a reduced number of
toroidal coils that will as a result spoil the symmetry and increase the relevance of 3D
calculations. Finally, a fourth important motivating factor, is the recent interest in - and relative
success of stellarator configurations that employ external coils rather than transformer-induced
plasma currents to generate the confining magnetic fields, and thus offer the attractive potential
of steady state operation. These types of devices, of course, are inherently 3D in character.

To explore the problem of the linear MHD stability of confined plasmas, a variational form is
constructed from the MHD equations combined with Maxwell's equations that can be expressed
as [5]

SWp + Wy - @2 §Wk =0 (1)

where 8Wp represents the potential energy in the plasma, 8Wy represents the magnetic energy
in the vacuum region that surrounds the plasma, 8Wk represents the kinetic energy and w2
corresponds to the eigenvalue of the system.

In 2D, it is straight forward to rigourously demonstrate that the MHD equilibrium consists of
nested magnetic flux surfaces. A similar proof does not exist in 3D. Consequently, as a first



step, we have imposed the condition of flux surface nestedness in the underlying 3D
equilibrium state we wish to investigate. We thus exclude cases with magnetic islands and
internal separatrices. The potential energy can then be described as

W, = -;—///d:;:c [Cz+7p|v°ﬂ2—D|€- Vs|2] )

where & represents the perturbed displacement vector,

B - JxVs = 3)
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B is the equilibrium magnetic field, j = V x B is the equilibrium current density, p is the
equilibrium pressure and 7 is the adiabatic index. The radial variable s labels the magnetic flux
surfaces within the plasma domain 0 < s £ 1 from the magnetic axis to the plasma-vacuum
interface. The vacuum energy is described as :

awv=%///d3x(VxA )2 (5)

where A is the perturbed vector potential. There are two methods to treat this part of the
problem. One is to employ a Green's function technique and the other is to consider the vacuum
as a pseudoplasma and in such case the structure of the resulting matrix equation is virtually
identical to that inside the plasma. The applications discussed in this paper are limited to internal
plasma instabilities to which Wy does not contribute, thus further details about the vacuum
treatment are omitted.

A convenient form to represent the perturbed displacement vector is

(B ;2VS) + [Q’{g}gzq_p] B ()

where O and ¢ are the poloidal and toroidal angles, respectively, of the Boozer magnetic flux

€= ./36VIx V¢ +n

coordinate system which we have chosen for the stability analysis. This particular choice of
coordinate system is optimal for the stability calculations because in its representation two very
important conditions are satisfied. First, that the magnetic field lines are straight which allows a
compact and efficient determination of the B - V operator and thus an accurate description of
the resonant surfaces. Second, it allows the most precise description of the parallel current
(which is an important driving mechanism of instabilities in 3D systems) because the poloidal
and toroidal magnetic fields in the covariant representation are current fluxes. The radial,



binormal and parallel components of the perturbation vector are given by &S, and u,
respectively. The Jacobian of the transformation from cylindrical to Boozer coordinates is
denoted by \('g- , J(s) is the toroidal current flux function, ®(s) is the toroidal magnetic flux
function and prime(’) indicates the derivative of a flux surface quantity with respect to the

radial variable s.
Noting that the perturbation component 1 appears only in the term V - € of 8 Wp, we impose the

incompressibility constraint to eliminate it algebraically from the problem. This, however,
implies that correct instability growth rates can no longer be computed, but the points of
marginal stability are unaffected. Although we abandon the determination of growth rates, this
procedure offers the advantage of reducing the size of the stability problem because only two
instead of three components of the perturbation have to be calculated. This leads in addition to a
reduction of coupling effects and the advantage of increased accuracy in the determination of
marginal stability points because the continuous spectrum becomes displaced. This allows the
application of interpolation rather than extrapolation techniques in the calculation. This approach
was previously adopted in the development of the PEST2 code [3] which considerably speeded
up and improved the accuracy of marginal stability computations compared with the 2D PEST
stability package [2].

We apply a Fourier series decompostion of the perturbation components &S and | given by

£S(s,8,0) = > _ A/ X(s)sin(m/B-njg+A) (7)
1

and
M (5.0.0) =) _Yi(s)cos(mB-njg+A) (8)
1

where [ is an index that labels the mode number pair (my, n]), A is a phase factor, and the
exponent q/ =0 for mj# 1 or q/ = 1 for mj= 1. Then to satisfy regularity conditions at the
origin, we have X(0) = 0. We employ a finite hybrid clefnent radial discretisation because
radial derivatives act only on X]. As result, the energy principle described in Eq. (1) reduces in
the weak form to an eigenvalue problem of the form

Ax = ABx ©

where x = (X], Y]), the eigenvalue is A = @2, the matrix A is symmetric and block diagonal. As
a result of imposing the incompressibility constraint, it is convenient to choose the matrix B that
represents 8Wk to be the unit matrix. The Fourier decomposition of the perturbation
components S and N leads to the appearance in the matrix elements of A of what we referred to
in the introduction as double Fourier flux tube integrals. Extensive algebraic manipulations were
performed to reduce the number of these integrals to a total of seven as they can represent a



significant fraction of the computational effort for realistic configurations. Typically, they are of
the form

Cik(2)(s) = 2Lg¢/4w2 / / d6 d¢ Vg sin(m/B-nj¢+A) sin(mk6-nkd+A)
Cik(3)(s) = 2Lg/4n2 / / de do (gss/Vg) sin(myB-njo+A) sin(mgB-nkd+A) (10)
Cic(4)(s) = 2Lg/4n2 / / d do (gs6/Ng) sin(mB-njo+A) sin(mkO-nkd+A)

where the limits of integration are given by 0<0<2r and 0<¢<2n/Ls and Lg corresponds to the

number of periods of the instability structure in one toroidal transit. For most cases of interest,
Ls = 1. The quantities ggs and ggsp are lower metric elements.



3. The organization of TERPSICHORE
The stability code TERPSICHORE consists of 6 basic modules, categorised as
(a) Interface to the MHD equilibrium
(b) Reconstruction of the MHD equilibrium
(c) Mapping thg MHD equilibrium
(d) Construction of the stability matrix elements
(e) Eigenvalue solver
(f) Analysis and diagnostics of the results

The philosophy that underlies the construction of the routine that interfaces TERPSICHORE
with an MHD equilibrium code is to rely on the minimum amount of information that is
necessary and then subsequently reconstruct the equilibrium. This information consists
basically of the geometry as well as the poloidal and toroidal magnetic fluxes. Thus, from the
3D MHD equilibrium code VMEC [9], which we have used exclusively so far as the source of
3D equilibria with nested flux surfaces, we obtain the Fourier amplitudes of the inverse
coordinates R (the distance from the major axis) and Z (the distance from the midplane) to
specify the geometry of the configuration. We also obtain from it @'(s) and y '(s) which are the
radial derivatives of the toroidal and poloidal magnetic flux functions, respectively. The
computational effort in the interface is negligible. The reconstruction of the MHD equilibrium,
on the other hand, constitutes a large fraction of the computer time that is spent. The Jacobian
and metric elements in the original coordinates of the MHD equilibrium code are developed. The
periodic poloidal angle renormalisation function [9] is computed in each flux tube by solving a
linear elliptic partial differential equation that results from the condition j - Vs = 0O using Fourier
techniques. The current densities are calculated and the accuracy of the reconstructed
equilibrium is tested. The coordinate system that is optimal for the computation of 3D MHD
equilibria using inverse Fourier methods consists of that in which the spectrum of modes
required to obtain the equilibrium to a specified accuracy is minimized. It does not, in general,
coincide with the Boozer coordinate system which, as we have discussed earlier, is optimal for
the stability analysis of 3D systems. Thus, we have to perform a mapping from the coordinates
of the equilibrium to the Boozer coordinates. From the expansion of the magnetic field in the
covariant representation in the equilibrium coordinates, we obtain an auxiliary function that is



required for the mapping procedure [10]. We then calculate the Fourier amplitudes of Boozer
coordinate quantities (i.e. R, Z, B2, etc.) directly from information in the real space equilibrium
grid. Further details about the mapping procedure we have implemented can be found in Ref. 7.
We then calculate the Jacobian and the metric elements that correspond to Boozer coordinates in
real space, we test the accuracy of the equilibrium we have constructed in Boozer coordinates
and develop additional quantities that are required for the stability analysis. This part usually
constitutes a moderate fraction of the computational requisites.

We proceed next to the fourth step, which is the computation of the elements of the matrices A
and B. We first read in a table of instability modes that are selected for the calculation. As
mentioned earlier, the matrix B is unity and therefore trivial to construct. We separate out the
seven double Fourier flux tube integrals that appear in the elements of A to design a routine that
is highly vectorizable and parallelizable as this can represent a dominant fraction of the overall
computational time if this part is not carefully treated. The eigenvalue solver inverts the matrix A
to determine the eigenvalue and the eigenvectors using an inverse vector iteration method. This
solver has been very carefully designed so that it uses only a very small portion of the computer
time. Finally, in the analysis and diagnostic sections, the kinetic and potential energies are
reconstructed, the eigenvalue is tested, the parallel component of the displacement vector is
calculated and the components of the perturbation in real space are determined. The
computational effort here is negligible.



4. The test case

As a test case to investigate the performance and capabilities of the TERPSICHORE code, we
have chosen a 4 field period Helias stellarator configuration [11] that has been considered as a
candidate for the Wendelstein VII-X device that is being planned as the next step in stellarator
experiments at the Max Planck Institut fiir Plasma Physik in the Federal Republic of Germany.
As can be seen in the first two figures, the configuration we shall examine represents a
particularly nontrivial test for the TERPSICHORE code. Its stability properties are not amenable
to treatment by the stellarator expansion method because it has a helical magnetic axis, thus a
fully 3D approach must be followed.

The coils that generate the toroidal and poloidal confining magnetic fields in one period of the
device are shown in Fig. 1. One can also perceive the shape of the plasma as it twists within the
coil structure. The cross sectional cut at one end of the field period shown reveals the shape of
the internal flux surfaces. To obtain these, several magnetic field lines at different radial
locations were followed around the torus for a very large number of transits. Each point that
appears in the figure corresponds to the intersection of one of the field lines with the vertical
plane. Each field line that is followed thus yields a series of points on the plane that traces out a
flux surface. The three dimensional character of a flux surface over the entire 4 period toroidal
domain can be more clearly appreciated in Fig. 2.

The 3D MHD Helias equilibrium we investigate was generated with the VMEC code [9]. The
volume averaged beta, which is a measure of the ratio between the plasma pressure and the
confining magnetic field energy density was 8 = 2% for this case with vanishing net toroidal
plasma current within each flux surface. The number of radial intervals was N = 48 and the
number of modes needed to describe the equilibrium state was Ne = 50. In addition to the mode
selection table, we obtain from VMEC the Fourier amplitudes R and Z, as well as ®'(s) and
y'(s) on each flux surface. The number of modes required to reconstruct the equilibrium state in
the Boozer coordinates was Np = 160. Note that the Boozer spectrum is much broader than that
of the original equilibrium coordinates. This demonstrates that the direct computation of the
MHD equilibrium in the Boozer coordinates would be inefficient and possibly unfeasible. To
prepare the computation of the Fourier integrals, the number of intervals in the poloidal angle
variable and in the toroidal angle variable were chosen as Np =72 and Nt = 32, respectively.
The selection table of modes to describe the internal plasma instability structures for this device
was chosen to have Ng = 32 modes. The stability analysis computed with TERPSICHORE
demonstrated that this configuration was weakly unstable. The magnitude of the most unstable
eigenvalue was A = - 1.67 x 10-3. The corresponding eigenmode structure on the toroidal plane
that has ¢ = 0 is shown in Fig. 3. The dominant structure corresponds to an m = 4, n = 3 mode
localized about the surface with rotational transform 1(s) = dy/d® = 0.75. It should be noted
that coupling effects to sidebands represent an important aspect in driving this instability.



5. Performance measurements
5.1. Operation counts

The operation counts for all important time consuming computational steps mentioned in chapter
3 give:

(b) Reconstruction of the MHD equilibrium:
Or =34 N Np Nt Ne + N Np Nt Np (6.5 Np+75) +2 N Np3
(c) Mapping of the MHD equilibrium:
Om = 144 N Np Nt Np
(d) Construction of the stability matrix elements:
Of = 14.5 N Np Nt P N¢2
(e) Eigenvalue solver :
Oe =20 N Ng3+38 N Ng2 Nj¢ |
where
N Number of radial flux tubes
Np  Number of poloidal points for the Fourier integrals
Nt Number of toroidal points for the Fourier integrals
Ne  Number of Fourier terms in equilibrium
Ns  Number of Fourier terms in stability

Nb  Number of Fourier terms to represent equilibrium and geometrical quantities in

Boozer coordinates
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P Number of equilibrium periods

Nijt  Number of inverse iteration steps in the eigenvalue solver

For the practical Helias case ( N=48, Np=72, Nt=32, Ne=50, N5s=32, Np=160, P=4, Nji=11),

the following operation counts are obtained:

Or = 20.0x109
Om= 2.6x109
Of = 6.8x109
Oe = 0.1x109

leading to a total of 29.5x109 operations. The reconstruction of the equilibrium solution which
includes the preparation for the most efficient evaluation of the Fourier integrals takes 68% of
them, the mapping 9%,and the Fourier integrals 23%. The timing of the eigenvalue solver is
negligible.

5.2. Parallelization procedure

Before attempting procedures that effect the parallelization of the TERPSICHORE code, the
double Fourier flux tube integrals that appear in the subroutines in which the MHD equilibrium
is reconstructed and in the subroutines in which the elements of the stability matrix A are
determined are treated with successive applications of the Cray Research, Inc. mathematical
routine MXM that performs matrix multiplications. Although this entails an increase in the
number of floating point operations and in the storage requirements, the very efficient
vectorization properties of the MXM routine reduces the computational time substantially. The
bulk of the computational effort is concentrated in three subroutines. These calculate the
periodic poloidal angle renormalization function, the mapping of the MHD equilibrium to
Boozer coordinates and the elements of the stability matrix A. The time consumption in these
subroutines is caused by repeated calls to MXM and to routines that evaluate trigonometric
functions. We tried at first to parallelize only these three particular routines, and although
notable improvements in performance were achieved, we deemed these to be unsatisfactory.

The optimal performance realized with the TERPSICHORE code was obtained with the
application of Cray Research autotasking utilities through the activation of options available on
the ¢f77 -Zp compiler to all the subroutines in the program with the exception of the interface to
the MHD equilibrium data. For reasons as yet unknown, the attempt to autotask this routine that
reads in the data caused the code to yield an incorrect eigenvalue. The computational time spent
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in this routine, however, is negligible. Consequently, a successful parallelization of the
interface routine is not expected to improve the performance of the code in a significant way.

The design of TERPSICHORE always envisaged an eventual attempt to parallelize the program.
It was originally our intention to try to multitask the most time consuming subroutines.
However, the high level of parallelism achieved with the autotasking features available on the
latest generation Cray computers reduces considerably the attractiveness of a multitasking
approach because any further performance improvements that could be realized would be of
very limited significance if not, in fact, counterproductive.

5.3. Timings
(a) Cray-2

The Helias case we have described above ( N=48, Np=72, Nt=32, Ne=50, N5s=32, Np=160,
P=4, Njt=11) was run on a 2 processor Cray-2 in unitasking mode. The original version of

TERPSICHORE written purely in Fortran took 228 seconds which corresponds to a rate of 130
Mflop/s.

(b) Eight processor Cray-YMP parallelized

Performance tests of the TERPSICHORE code were also carried out on the sn1001 Cray-
YMP/832 computer. This machine has 8 processors, a 32 Megaword memory and a 6.41 ns
clock period. The TERPSICHORE version used in the previous subsection was run first to
produce the benchmark results. Subsequently, all calculations were performed with the
improved version of the code in which all double Fourier flux tube integrals are treated with
successive applications of the MXM routine. For the Helias case under consideration, the
number of floating point operations increased to approximately 3.49x1010. The machine was
dedicated to these tests. The results and performance of the code are summarized in the table
below:
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[able

Original TERPSICHORE Improved TERPSICHORE
Unitasking Unitasking Microtasking
CPU time ' 157.02" 137.06" 149.85"
Wall clock time . 137.21" 20.44"
Parallelization 1 1 7.35
Gflop/s 0.189 0.255 1.708
Operations 29.6x109 34.9x109 34.9x109

Of the figures shown in the table, we would like to draw particular attention to the high level of
parallelization of 7.35 in an eight processor machine achieved with the Cray Research
autotasking utilities and to the 1.708 Gflop/s performance obtained.

Noting that the number of operations in the improved version of the code was increased relative
to the original version, we can define an effective performance of 1.708x29.6/34.9=1.449
Gflop/s. On a YMP/8 machine with a cycle time of 6 ns instead of 6.41 ns, one expects 1.825
Gflop/s instead of 1.708 Gflop/s.
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Fig. 1. The magnetic field coil structure and the plasma shape in one field period of a 4 field
period Helias stellarator configuration. The cross sectional cut shows the shape of the
internal flux surfaces in the plasma obtained by puncture plots left by the intersection

of magnetic field lines traced over many toroidal transits across the plane defined by
the cut.
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Fig. 2. The full 3D structure of a flux surface corresponding to a 4 field period Helias
stellarator configuration.
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Fig. 3. The flow pattern corresponding to the most unstable eigenmode structure at the toroidal
plane with Boozer coordinate toroidal angle ¢ =0 in a 4 field period Helias stellarator
configuration. The structure is dominated by an m = 4, n = 3 mode concentrated about
the 1 = 0.75 surface. The configuration has a plasma = 2% and zero net toroidal
plasma current within each flux surface.
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