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ABSTRACT

Experiments are presented which demonstrate the conservation of certain
integrals of motion during Hamiltonian chaos where the conservation of
some of the integrals has been broken by the overlap of resonances.
Experimentally, conservation laws are demonstrated through the
observation of restrictions on transport, in phase space, of chaotic
trajectories. Transport of plasma ions during stochastic motion in an
electrostatic wave is followed by means of laser induced fluoresence on

metastable "test particles™ produced by optical pumping.



Chaos, in classical Hamiltonian systems, is a reversible process. However,
it is also true that intrinsic stochasticity may resemble a classical
stochastic process under certain circumstances.! In plasma wave-particle
interactions, phase decorrelation between a particle and a wave frequently
results in very similar particle energy gains (in the plasma frame) whether
the decorrelation is brought about by an intrinsic or extrinsic (e.g.
collosional) process. This similarity is even closer if an average is taken
over an ensemble of particle initial conditions. Nevertheless, intrinsic
stochasticity can be distinguished by a threshold, by a fast timescale, and
by details in the particle distribution function.2  In addition, a Hamiltonian
description of wave particle interaction generally contains symmetries
{conservation laws) which would not be present for a competing classically
stochastic process. However, because of the inevitable self-consistent
effects of chaotic particles on the plasma waves, it is not evident a-priori
that the Hamiltonian picture of single particle motion should correctly
predict the wave induced transport above the stochasticity threshold. This
letter presents measurements of ion motion in phase space, during
stochastic interaction with an electrostatic wave, which suggest the
conservation of three integrals of the motion. Of the six integrals which
exist for low wave amplitudes, three are no longer conserved when the wave

amplitude is sufficient for "resonance overlap".

The Hamiltonian of specific interest to the interaction of a magnetized

particle with an electrostatic wave has been given by Smith and Kaufman3
H = 1/2sz2 + P¢Q + edycos(k,Z + kj R - k) psin{¢+8)) (1N

where, in contrast to reference 3, we are considering a cylindrical wave.

The definition of variables is the same as in ref. 3 with the addition of the
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cylindrical variables R = V(X2 + Y2) and 8 = Tan"1[X/Y] to replace the
cartesian coordinates X, Y of the guiding center. This is a canonical

transformation between the old variables (Y, mQX) and the new variables (9,
1/2mQR2).

Immediately it can be seen that H itself is a constant of the motion because
dH/ot= 0. This means that the particle energy is constant in a frame of
reference moving with the wave along the magnetic field (Eq. 1 is expressed
in this frame). In addition, it is evident that oH/d¢ = dH/9®. This is because
the waveform is circularly symmetric. The particle angular momentum
about the wave-axis 1/2mQ(R2—p2) is therefor conserved (Note: Pq, =
1/2m£2p2). So long as p«R, i.e. the Larmor radius is small compared to the
radial coordinate of the guiding center, then R will be constant during the

motion. From the canonical equation for @,
d0/ot = (k_l_/k“) (1/mQR)aP /ot (2)

we see that, in the same limit (R constant), motion of the guiding center in
the 0 direction is linked to acceleration along the magnetic field. Stated
otherwise, the symmetries of the wave-particle Hamiltonian will restrict
{for p«R) motion of the particle guiding center to the E x B = 0 direction, and

" link this motion to changes in the parallel momentum.

Integration of the dynamical equations which follow from the Hamiltonian
{Eq. 1) indicates the conservation laws clearly. Figure 1 shows results from
this integration. The three pairs of frames in Fig. 1 are Poincaré section
plots {see Ref. 3) demonstrating the behaviour of particle orbits both below
[ a),c),e)] and above [b),d),f)] the threshold for stochastic motion. Below

threshold, subsequent intersections of particle orbits with the plane of



section are very close to the initial conditions and indicate regular motion.
In Fig. 1¢) a series of particles have been started along a vertical chord (in
real space) which is normal to B. This is done for the purpose of comparison
with the experiment. The circle indicates the symmetry axis of the wave
fields.

Conservation of H during chaotic motion is illustrated in Fig. 1b. The arc
1/2m PZ2 + 172 m£22p2 corresponds to the particle kinetic energy in the
wave frame. A finite width is observed to this arc because of the
contribution of the potential energy of the wave. An important consequence
of the conservation of H is that, in the lab frame, chaos will change P,
primarily in the direction of wave travel provided that the particle initial
perpendicular velocity is less than the wave parallel phase velocity. In the
velocity plane, particle motion is restricted to lie on arcs centered on the

wave parallel phase velocity.

| tor a group of particles with the initial conditions shown in Fig. 1c),
conservation of R{angular momentum) results in the formation of a ring in
physical space. We note that for particles off the wave axis, if the
wave-particle interaction causes p to increase, R increases only slightly.
The link between guiding center motion in the Jé X é =  direction and
parallel acceleration implied by equation {2) is shown in Fig. 1f). Note that
in Fig. 1, we plot the particle position (y, r) which differs slightly from the
guiding center position {0, R), but is what we measure experimentally. £ach
of the three conservation laws of the wave particle Hamiltonian has the
effect of constraining the phase-space excursion of particles even during

chaotic motion.



Experimental observation of wave-particle interactions, of the type
described above, are performed in the LMP Q-machine using barium plasma
and capacitively coupled electrostatic ion cyclotron waves.4 The plasma is
a 475 cm length, 5cm diameter cylinder in a uniform magnetic field B<.3T.
Temperatures of Ty ~T; ~.15eV and densities of ng ~109¢m-3 are typical.
Low density barium Q-plasmas are ideal for studies of collisionless plasma
physics because the ionic spectrum permits extensive use of laser induced

fluoresence diagnostics on the ions with visible radiation.d

The experimental set-up and ionic transitions used are shown in Fig. 2.
Laser induced fluoresence yields a measure of the ion velocity distribution
function, along the laser beam, which is resolved in space and time.6 The
distribution function parallel to the magnetic field is measured by
introducing the laser beam through a fine mesh at the end plate. Because
barium ions have long lived (~1 sec) metastable states, "test particles” can
be created by selective optical pumping. An ion in a metastable state (C in
Fig. 2 a)), though it has the same charge and mass, is easily distinguished
because it will fluoresce on different transitions than will an ion in the
ground state. The creation of metastable test particles by optical pumping
provides a way to follow ion trajectories in phase space.7 For these
experimemnts, a pulse laser is used to quickly (~10 nsec) create metastable
particles along a vertical chord at a given axial position, and a cw laser
beam on a movable carriage is used to detect test particles as a function of

position, time, and velocity (Fig. 2b).

Propagating electrostatic ion cyclotron waves are launched from insulated
capacitor plate antennae.4 The dispersion relation is measured with probes
as well as through laser measurements of the linear perturbation of the ion

distribution function.8 Stochastic heating of plasma ions is observed when
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the wave amplitude is sufficient to exceed the stochasticity threshold.3 In
earlier experiments, measurements were made of the ion velocity

~distribution functions perpendicular to the magnetic field.2

Measurement of the ion distribution function in barium plasma (Fig. 3)
indicate the threshold of Smith and Kaufman for accelerations of plasma
ions parallel to the magnetic field.4 Broadening of the perpendicular
distribution functions is seen at a slightly lower wave amplitude. In Fig. 3 b
there is evidence for the conservation of the first of the three integrals
mentioned above; the particle energy in the wave frame (H). Parallel to B,
particles are accelerated primarily in the direction of wave travel (-z).
Furthermore, particle aoceleration along arcs in velocity space centered on
the wave parallel phase velocity (~1.8 x 105 cm/sec) is consistent with the

range of energies observed in Fig. 3b) (€ < 4.5 eV).

Information on the spatial excursions of particles is necessary in order to
test the conservation of R. Using a pulsed dye laser to create an off-axis
vertical chord of test particles, the distribution of subsequent particle
positions is investigated with a cw search laser. The volume interrogated
by the search laser, defined by the intersection of the search beam and the
viewing volume of the detector telescope, is scanned along a horizontal
chord which passes through the plasma symmetry axis (which is also the
wave symmetry axis). Figure 4 shows the results from such a scan both
below and above the stochasticity threshold. Below threshold, particles
move along the straight field lines. The large-dash curve in Fig. 4 is the
plasma electron density profile. Short dashes are used on the same figure to
indicate the excess metastable density profile at a distance of 27 cm
(sensitivity x10) produced by the pump laser in the presence of a low

amplitude wave. At a wave amplitude which exceeds the threshold for



angular momentum.

Finally, the excursions of the guiding centers in the 6 direction should be
linked to changes in parallel velocity. Thus, a change in 0 of = radians should

be correlated with a change in P, given approximately by:

A nearly linear relationship is seen in Fig. 1f) which agrees with this
formula. Experimentally, this correlation is most easily seen through
changes in the time of flight of test particles as they move between the
pump and search laser beams. Although the motion is chaotic, the parallel
velocity is not unbounded and, given the net A Pz for a particle, the change

in time of flight can be approximated by:
At~ AZNp - AZ/(Vp + 1/2AP4/m)

where Vpy is the nominal parallel drift of the Q-pla-sma.5 Using A8=x, one
obtains At ~ 20u sec. Figure 5 shows two time-of-flight spectra at
diametrically opposed points on the horizontal chord. Those which remain at
¥~0 have a longer time of flight, on the average, than those which have
been transported to W~=x. The peaks of these spectra are separated by the 20

usec predicted above.

£ach of the three measurements presentéd above argue for the conservation
of H, Rand P, -(k”/k 1)mQR6 respectively. Despite the broadening of the
distribution function which results from exceeding the stochasticity
threshold, the individual particle motions continue to observe the basic

symmetries of the wave-particle interaction Hamiltonian. Chaos during



wave-particle interaction is seen to produce rapid, though constrained,
transport of particles in coordinate space as well as in velocity space.

We express our appreciation to Dr. H. Van den Bergh of the EPFL and to
Spectra Physics for lending laser components. This work was partially
funded by the Swiss National Science Foundation under grants Nos
2.868-0.85 and 2.869-0.85, and by the US National Science Foundation under
Grant INT-840.5076.

a) Permanent address : University of California, lrvine, CA92717.

b) Permanent address : University of Colorado, Boulder, CO80309.



References

1.

A. J. Lichtenberg and M.A. Lieberman, Regular and Stochastic Motion
{Springer-Verlag, New York, 1983) p. 300.

F. Skiff, F. Anderegg, and M.Q. Tran, Phys Rev. Lett. 58, 1430 (1987).
G.R. Smith and A.N. Kaufman, Phys. Res. Lett 34, 1613 (1975).

F.Skiff, F. Anderegg, M.Q. Tran, P.J. Paris, T.N. Good, R.A. Stern, and
N.Rynn, Proceedings of the 1987 International Conference on Plasma
Physics (naukova Dumka, Kiev, 1987) Vol. 1 p. 55 and Proceedings of

the Invited Papers (World Scientific, Singapore, 1987) Vol. 1 p. 441.

D.N. Hill, S. Fornaca, and M.G. Wickham, Rev. Sci. Instrum. 54, 309
(1983).

R.A. Stern and J.A. Johnson, ill, Phys. Rev. Lett. 34, 1548 (1975).

R.A. Stern, D.N. Hill, and N. Rynn, Phys. Lett. 93A, 127 (1983).

f. Skiff and F. Anderegg, Phys. Rev. Lett 59, 896 (1987).



10

Figure captions:

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Calculated ion motion for wave amplitude below a),c),e) and above

b)d)f) threshold. Poincaré sections are shown in momentum space a)
b) configuration space c), d), and mixed e), f). y is the azimuthal
angle subtended by the particle about the wave symmetry axis,

it differs -slightly from the guiding center coordinate 9. Mass,

length and time are normalized to m, k1 and a1

Experimental configuration

a) fluorescence may be performed on the ground state (transition
A4 - By) and on the metastable (transition C - B2). The former
maybe used to populate the metastable, the latter to detect it.
The wavelengths in A are : Ay = 4934, A, = 6497, A3 = 5854, 1,

= 4554.

b) A pump beam is used to create metastable test particles and

a search beam, on a movable carriage, is used to detect them.

lon distribution functions as a function of wave amplitude.

a) perpendicular to the magnetic field (B).
‘b) parallel to B. 1.5 A corresponds to k“2e<b/m Q%~ 2,

Density profiles on a horizontal chord. Large dash indicates electron
density. Test particle density (x10) is given by small dash (below

threshold) and solid curve (above threshoid).
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Fig. 5 Time of flight spectra (ensemble average) at R=1.5 cm and y=0

{solid curve) y=r (dashed curve).
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