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ABSTRACT

A new equilibrium reconstruction procedure using magnetic,
line-integrated electron density and Faraday rotation measurements has
been developed. The method has been applied to a number of elongated
tokamak equilibria which were computed by using a free-boundary MHD
equilibriufn code. Typical errors in four global plasma parameters (Bp, i, o
and qqo) are evaluated as functions of the measurement errors and the
number of source function parameters. Assuming realistic random
perturbations in the measurements, the method allows the reconstruction
of source functions with up to six independent parameters. It is shown that,
when electron density and Faraday rotation measurements are included, the
accuracy in the determination of q, is increased by at least a factor 2, as
compared to cases without Faraday rotation data. The effects of adding a
diamagnetic probe and of varying the plasma elongation are also

investigated.



1. INTRODUCTION

The problem of reconstructing tokamak equilibria, based on external
measurements, is becoming increasingly important in view of the recent
~evolution towards highly elongated and shaped plasmas. The problem
consists of finding a solution to the Grad-Shafranov equation, with
arbitrary source functions, such that the measurements are reproduced as
well as possible. Two circumstances complicate the solution of this
problem: (a) it is mathematically ill-posed and (b) all measurements are
subject to errors. Consequently, there is no rigorously accurate and no

unique solution.

Equilibrium reconstruction methods can be divided in two groups, i.e..
those which do and those which do not solve the Grad-Shafranov equation.
We only consider the first group here. The methods in this group [1 - 8]
differ from one another in the numerical algorithms and the type of
measurements which are uséd. All methods use magnetic measurements (y
and B) close to the vessel wall and, in addition, some methods use pressure
profiles [3], diamagnetic signals [7], soft x-ray measurements [6] or the
value of the safety factor on axis, qq [1], for reconstructing the
equilibrium. In several of these studies it has been shown that the use of
additional measurements (other than y and B) allows a more accurate
solution to be found, in the sense that the number of source function

parameters that can be reliably determined is increased.

In this paper we propose to use line-integrated electron density and
Faraday rotation measurements [9] together with the standard magnetic

measurements, to improve the accuracy of equilibrium reconstructions.



2. EQUILIBRIUM RECONSTRUCTION USING FARADAY
ROTATION MEASUREMENTS

When one tries to reconstruct tokamak equilibria with arbitrary source
functions, using magnetic measurements, one soon encounters a
fundamental problem: The toroidal plasma current density must be split
into two parts, one being proportional to FlpI and the other to TTV/R, where
R is the major radius, p is the plasma pressure, T = RB;,, and the prime
denotes differentiation with respect to y. The relative importance of these
two terms can, in principle, be determined thanks to the difference in their
R-dependence. The accuracy of the decomposition, however, depends on the
radial extent of the flux surface under consideration. For the outer flux
surfaces, the decomposition can be performed quite accurately but as one.
approaches the magnetic axis, the accuracy decreases rapidly. On axis,
- where the radial extent of the flux surface shrinks to zero, it becomes
impossible to compute pI and TTI separately. In fact, the values of pI and
TT! on axis are generally obtained by extrapolation from the outer regions.
The validity of this extrapolation depends essentially on the size of the
measurement errors and on the type of measurements being used. Faraday
rotation measurements can provide additional information on the poloidal
magnetic field inside the plasma. We expect, therefore, that the accuracy of
an equilibrium reconstruction should be considerably improved by using

such measurements.

Let us assume that, in the reconstructed equilibrium, source functions

and electron density can be expressed in terms of the poloidal flux,
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where ap, by, ¢y, are constants to be determined, Un(9), Vi, (4), W, (¢) are

arbitrary basis functions and ¢ = (v - w|im)/ (¥ax - ¥iim)- Viim and yax are

the values of the poloidal flux function at the limiter and on the magnetic
axis, respectively. It should be noted that eq. (3) is not always a good
approximation. In cases with high toroidal rotation velocity, for example, .
the radial density profile is shifted with respect to the wy-profile and Ng is
no longer a single-valued function of y. These cases are not considered

here.

The basis functions, U, Vp, and Wy, can be specified arbitrarily. For

the purpose of this study we assume
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The equilibrium reconstruction problem, being intrinsically non-linear,

is solved by an iterative procedure [1-8]. The method which has been used in
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the present study consists of the following steps:

(A) A rough approximation to the plasma current distribution is found by
using one of the fast, magnetostatic methods, e.g. [10].

(B) The Grad-Shafranov equation is solved, using the measured flux values
as the boundary condition. The flux surface defining the plasma
boundary is then determined by searching for the limiter or X-point
with the highest flux value.

(C) The profile parameters (ap, by, c) are computed such as to obtain the
best fit to the measurements, assuming ¥(R,Z) fixed.

(D) The toroidal plasma current density, j=RpI + (Ru,)‘1TT|, is computed
using the expressions (1) and (2). |

N‘(E) Steps B, C and D are repeated until a suitable convergence criterion is

satisfied.

This procedure is fairly straightforward except for step C which is
described below. We assume that the line-integrated electron density and

the Faraday rotation angle are measured along a number of vertical chords,

N. = f n, d 2 (5)
L,

F - f n, B d7 (6)
-

J
It should be noted that the two sets of chords, L; and L;, may, but do not
have to coincide. Using eq. (3), the reconstructed line densities, Ni*, are

written as
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where Gi,n is a known matrix depending on ¥(R,Z). Optimum values of the

density profile parameters, c,, are found by minimizing the quantity

S Z W - »/*)2 @

using the singular value decompos:tlon method [11]. AN; is the typical RMS

error associated with the measurement Ni-

The source function parameters, a, and b,, can now be computed .
analogously since, with fixed values c,, the nonlinearity of eq. (6) has been
eliminated. Let the measurements of flux, magnetic field, Faraday rotation
angle, plasma current and diamagnetic flux be given by the vectors and
scalars ‘\F_B’T:’Ip and pu, respectively. The corresponding reconstructed

(starred) quantities can be written

CP*=/\ I+A2Y )

F*@ = £, T, + X > (9
* —_—

L* - &%

/A* = &, X J

where_i:; contains the measured currents in poloidal field coils and vacuum
vessel, X is composed of the elements a,, b, and the matrices Aq, Ap, Ag,
A4, E1 and E» contain Green's functions and their spatial derivatives. The

matrices A, A4, E4 and Ep, as well as the vectors -61 and -ﬁé, depend on y
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(R, Z). They therefore have to be recomputed at every iteration. In addition,

the matrices Eq and Ep are functions of the density profile parameters, c.

We now combine all measurements (except N;j) into a single vector M -
and the corresponding reconstructed quantities into 'M*. The elements of the

vector X are then determined by minimizing the function

-m¥a2
S - E ("'A‘ ”4‘> (10)
z A M, ’
‘.’ A

where AM; is the RMS error associated with the measurement M;, again
using the singular value decomposition procedure [11]. It should be noted
that, in computing the measurement errors AM;, the errors inT; must also

be taken into account.

3. EFFECT OF MEASUREMENT ERRORS

In order to evaluate the effect of measurement errors on the
parameters of the reconstructed equilibrium, let us first consider a
specific example, i.e. the reconstruction of a D-shaped equilibrium as
~shown in Fig. 1. The equilibrium was computed [12] in such a way that the
pressure and qg-profiles closely agree with experimental profiles, measured
in the JET tokamak (pulse 10363) [13]. This was achieved by using the

source functions,

. Ny
/a’;- C/,,I:i,z+0.85'(i"¢)z r’l-”(i"‘“g J
>(11)

TT= CT/AoRf [i-o‘?(iﬂb) - 1.?5(1*45)"’“ 1. 5(1—4’);:’ )



with cp/cT=0.25. The electron density profile, ng(¢), was also obtained
from the JET measurements [13].

In reconstructing this equilibrium, we proceed in exactly the same way
as if we were dealing with experimental data: The only information
available to the reconstruction algorithm is a number of simulated
measurements, obtained from the output of the equilibrium code. We
assume 44 flux loops, 44 magnetic field probes, oriented parallel to the
wall, and 10 vertical chords for line-integrated electron density and
Faraday-rotation measurements. The diamagnetic probe is not used in this
example. Probe positions and chords are indicated in Fig. 1. Here, the
line-density chords coincide with the Faraday rotation chords, as is the
case in most experiments [9]. It should be noted, however, that as far as the .
accuracy of the equilibrium reconstruction is concerned, it is completely
irrelevant whether the two sets of chords coincide or not. The basis
functions are assumed as specified in eq. (4), with Np=2, N1=1, N,=3. We
further impose the condition, u0802a0+bo=0, which ensures that the

. current density, averaged over the plasma boundary (¢=0), is close to zero.

Measurement errors are taken into account by adding random
perturbations to the values obtained from the equilibrium code. For each
type of measurement, the maximum amplitude of these random errors is
assumed to be constant and equal to a certain percentage of the highest
measured signal. In order to demonstrate the effect of these errors on the
parameters of the reconstructed equilibrium, we consider two cases, with
error levels of +2% and +4%, respectively. For each case, we compute ten
reconstructions with different initialization of the random number

generator.



9

The résults are summarized in Table 1. By computing the error of the
mean value as well as the RMS error, we can distinguish between
systematic errors, due to the truncation of the polynomial expansions
(eagns. (1) - (4)), and pure random errors caused by the perturbation of the
measurements. If there were no systematic errors, the error of the mean
value should be of the order of one third of the RMS error. If, on the other
'hand, the error of the mean value is much larger than the RMS error, a
systematic error must be involved. We note from Table 1. that systematic
errors are generally insignificant, indicating that the number of source
function parameters was sufficiently large in this particular case. The
choice of optimum values of Np and Nt will be discussed in the next
section. We also note that the largest relative RMS errors appear in ppax.
Bp and Bt. This is partly due to the small absolute value of Bp. It should be .
pointed out, on the other hand, that the maximum total error in do, is only
5% in the case with +2% random errors. In Fig. 2. we compare the source
functions and density profiles of the original equilibrium with those

obtained from one of the reconstructions discussed above.

4. OPTIMUM NUMBER OF SOURCE FUNCTION PARAMETERS

The error analysis presented in the previous section allows us to get
an estimate of the optimum number of source function parameters to be
used in a particular application. Figure 3 shows the results of 270
reconstructions of a D-shaped equilibrium, similar to the one shown in
Fig.1. Errors in four global plasma parameters (Bp,f’i,u,qo) are analyzed as a
function of the numbers of source function parameters, with and without
Faraday rotation measurements. Each data point in Fig. 3 is obtained from a

statistical analysis of ten reconstruction calculations. Errors are shown in
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absolute value.

We note that, in general, the error of the mean value decreases and the
RMS error increases with increasing numbers of source functioh
parameters. Optimum values of Np and N1 are found by searching for the
minimum total error. Without Faraday rotation measurements (Case A),
values of Ny>2 or NT>2 must be avoided because this leads to a very large
uncertainty in qg. The addition of line-integrated electron density and
Faraday rotation data (Cases B and C) allows the determination of up to six
independent source function parameters. Figure 4 shows original and
reconstructed source functions corresponding to Case C of Fig. 3, with

Np=3 ’ NT=3.

The method for finding optimum values of Np and N7, as outlined above,
is not restricted to the analysis of computed equilibria. It can also be used
in the case of a reconstruction based on experimental measurements, if the
accuracy of these measurements is known. In this case one would look for
convergence of the mean values as the number of parameters is increased,
"~ and one would chose those values of Np and Ny which give the converged

mean values with minimum RMS error.

5. DETERMINATION OF q,,

It is weil known [1] that, using equilibrium reconstruction procedures
based on magnetic measurements alone, it is very difficult to reproduce the
value of the safety factor on axis (qy) with good accuracy. In order to
demonstrate the gain in accuracy due to the inclusion of line-integrated

electron density and Faraday rotation measurements, we have done a large
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number of reconstruction calculations, with and without Faraday rotation
data. Table 2 shows typical errors in q, for a variety of equilibria, covering
wide ranges in parameter space. The total error is defined here as the sum
of the error of the mean value of ten reconstructions and the RMS error. It
is seen that the error in qq4 is reduced considerably, i.e. by factors between

2 and 4, by using the Faraday rotation measurements.

6. DIAMAGNETIC PROBE

It has been pointed out [7] that the use of a diamagnetic signal can
considerably improve the accuracy of equilibrium reconstructions. In the
procedure presented here, the diamagnetic probe is available as an option, .

~and the question arises how accurate this probe should be in order to have a

significant effect on the reconstruction. Figure 3, Case A, shows that the

typical error in the plasma diamagnetism, without using a diamagnetic
probe and without Faraday rotation measurements, is ~ 5 %. We therefore
expect that under these circumstances, a diamagnetic probe would have to
have an accuracy of the order of 5% if it is to make a significant
contribution. This conjecture is verified in Fig. 5, where we show
equilibrium reconstructions with and without diamagnetic probe. Case A of
Fig. 5 is identical with Case A of Fig. 3, assuming Np =2,Nt=1. Cases B
and C of Fig. 5 include the diamagnetic probe with + 4% and + 2% error
levels, respectively. It is seen that the use of the diamagnetic signal
reduces the RMS error on the plasma diamagnetism considerably, as
expected. It also reduces the RMS error on Bp. The parameters £ and do>
however, are practically unaffected. It should be noted that, from an
experimental point of view, it is extremely difficult to obtain a

diamagnetic signal with 4% accuracy, and 2% accuracy is probably beyond
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the current state of the art [14].

7. EFFECT OF ELONGATION

Up to this point, we have been considering exclusively D-shaped
equilibria with elongation K=2.0. In this section, we are interested in the
question whether the elongation of the original equilibrium has an influence
on the precision of the reconstructed parameters. For this purpose, we
consider three cases with elongations between 2.0 and 3.0 (Fig. 6). Probe
positions and chords for line-integrated electron density and Faraday
rotation measurements are the same as in Fig. 1. Random errors of + 2% of'
the maximum signal were assumed on all measurements. Typical errors in.
the four reconstructed plasma parameters are shown in Fig. 7. As usual,
each data point is the result of ten reconstruction calculations. We note
that, in the range of plasma elongations considered here, the elongation
does not significantly affect the precision of the reconstruction. It is
known, on the other hand, that for near-circular plasmas (1.0 < K < 1.5), the
elongation can have a decisive influence on the accuracy of the

reconstructed By, and f values [5].

8. CONCLUSION

The equilibrium reconstruction procedure presented in this paper, using
Faraday rotation, electron density and magnetic measurements, allows the
determination of source functions with up to six free parameters. The
optimum number of source function parameters to be used in a particular

application depends on the precision and type of measurements available
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“and on the properties of the equilibrium being analyzed. Typically, the best
compromise between systematic and random errors is obtained with three
to five independent parameters. The analysis of a number of equilibria with
widely varying parameters has shown that the error in q, can be reduced by
factors between 2 and 4 by using electron density and Faraday rotation
measurements. Using a diamagnetic probe can improve the precision in the
determination of pu and ﬁp, if the diamagnetic signal is sufficiently
accurate. In a case with +2% errors in the magnetic measurements, without
using Faraday rotation data, the RMS error in the diamagnetic signal should
be less than ~t4% if the probe is to be useful. Finally, we show that the

method is applicable equally well to plasmas with elongation up to 3.0.
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FIGURE CAPTION

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

D-shaped equilibrium with flux surfaces (solid lines), plasma
boundary (dotted line), flux loops (closed circles), magnetic field
probes (open circles), chords for line-integrated electron density
and Faraday rotation measurements (dashed lines) and external
currents (crosses). Pressure, current and q-profiles, at the height of

the magnetic axis, are also shown.

Original (solid lines) and reconstructed (dashed lines) source‘
functions and electron density vs. normalized flux ¢. Np=2, Nt=1,.

Np=3. Random measurement errors + 2% of maximum signal.

Errors of mean values (open circles) and RMS errors (bars) of four
global plasma parameters. Cases A,B and C have random
measurement errors of + 2%, + 2% and £ 1% respectively. Case A
without, Cases B and C with Faraday rotation measurements.
Numbers of source function parameters are shown at the bottom:

Nn=2, ag=by=0. Source functions see Fig 4.

Original (solid lines) and reconstructed (dashed lines) source
functions vs. normalized flux, ¢. Np=3, N7=3, Nj=2, ag=by=0. Random

measurement errors + 1% of maximum signal.

Errors of mean values (open circles) and RMS errors (bars) in four
plasma parameters. Case A without, Cases B and C with diamagnetic

probe. Faraday rotation measurements are not used. Measurement



Fig. 6

Fig.7
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errors in vy, B and Ip t 2% of maximum signal. Diamagnetic probe
error + 4% and t 2% in cases B and C, respectively. Np=2, Ny=1.

ao=bo=0.

Equilibria with increasing elongation (K):

A: K=2.0, Bp=0.2576, f;=0.6905, u=0.5351, q4=1.05;
B: K=2.5, By=0.2257, [;=0.6024, 1=0.4663, qo=1.05;
C: K=3.0, Bp=0.1997, f=0.5326, u=0.4119, q,=1.05.

Errors of mean values (open circles) and RMS errors (bars) vs.
plasma elongation (K). Measurement errors + 2% of maximum signal,

diamagnetic probe not used. Np=2, Ny=1, N=2, a5=b,=0.
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