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Abstract:  The ideal stability of cylindrical plasma with mass flows is investigated
using the guiding centre plasma (GCP) model of Grad. For rotating plasmas, the kinetic
treatment of the parallel motion in GCP gives significantly different results than fluid
models, where the pressures are obtained from equations of state. In particular, GCP
removes the resonance with slow magnetoacoustic waves and the loss of stability that
results in magnetohydrodynamics (MHD) for near-sonic flows. Because of the strong
kinetic damping of the sound waves in an isothermal plasma, the slow waves have little
influence on plasma stability in GCP at low B. In the large aspect ratio, low-P tokamak
ordering, Alfvénic flows are needed to change the ideal GCP stability significantly. At
lowest order in the inverse aspect ratio, flow can be favorable or unfavorable for stability
of local modes depending on the profiles, but external kinks are always destabilized by
flow if the velocity vanishes at the edge. For high-f, reversed field pinch equilibria,
numerical computations show that flow can be stabilizing for local modes, but external
modes are destabilized by flow. It is shown that in three dimensions, the MHD
equilibrium problem becomes hyperbolic for arbitrarily small flows across the magnetic

field, whereas in GCP the equilibrium equation remains elliptic for sub-Alfvénic flows.



I. Introduction

In contrast with static plasma equilibria, where a detailed picture has been
established for the the macroscopic stability of various devices, little is known at present
about the stability of equilibria with mass flows. Nevertheless, the stability of rotating
plasmas has become a question of practical importance in fusion research because of the
substantial neutral beam power in recent tokamak cxperimcnts,1'3 available not only to
heat the plasma, but also to produce mass flows. Naturally, plasma flows frequently
play important roles in astrophysical and geophysical contexts.4-)

In this paper, we investigate the ideal linear stability of cylindrical equilibria with
arbitrary profiles of magnetic fields and mass flow. Previous studies6-8 based on
magnetohydrodynamics (MHD) predicted that flows of the order of the sound speed lead
to complete loss of stability because of resonance with slow magneto-acoustic waves.
However, there is experimental evidence that the sound speed does not present a stability
limit, e.g., from the F-II device in Stockholm.9 In addition, it is well known10 that the
MHD equations poorly describe the slow magneto-acoustic and ion-sound waves by
assuming an equation of state, p o< p¥. A semi-macroscopic theory better suited for the
description of rotating plasmas is the guiding centre plasma (GCP) model of Grad.l1
The GCP model is identical to MHD for plasma motion across the magnetic field, but
uses kinetic theory to describe the motion of particles along the field lines. It introduces
Landau damping of the sound waves, which strongly reduces their effect on plasma
stability, and indeed removes the MHD stability limit at the sound speed.

In Sec. II, we derive the second order radial eigenvalue problem, including the
effects of mass flow for several different models: GCP, MHD (including parallel
viscosity) and the double adiabatic theory of Chew, Goldberger and Low12 (CGL) .
The difference between these descriptions lies in three coefficients, expressing the
response in plasma density and perpendicular pressure to perturbations of the parallel
magnetic field and to radial displacements. In the inviscid fluid models, the plasma
response shows a resonance when the parallel phase speed of the mode in the local centre

of mass frame equals the sound speed. This resonance is removed in GCP by the kinetic



treatment of the parallel motion, and the influence of the magneto-acoustic wave on the
stability of rotating plasmas is much reduced. As a consequence, the sound speed does
not set a stability limit in GCP. The resonance is also removed by adding parallel
viscosity in the MHD equations, as was done in a recent calculation by Gimblett.13
However, for frequencies larger than the ion-ion collision frequency, the response of the
viscous MHD plasma is quite different from that of GCP. An interesting result is that at
marginal stability and in the absence of flow, the response of the guiding centre model
for a plasma in local thermodynamic equilibrium is identical to that of inviscid MHD with
the adiabatic index ¥ set to unity, and differs from the double-adiabatic approximation.
Thus, for static equilibria, MHD and GCP predict the same marginal points, whereas
CGL is more optimistic.

In Sec. III, we consider the stability of local modes and find that whenever the
flow has shear, the GCP description leads to a complex Suydam parameter. This implies
that the infinite sequences of unstable modes occurring in MHD when the Suydam
criterion is violated do not exist in GCP with sheared flows (although they do occur for
static equilibria, as shown by Paol4). For an equilibrium of reversed field pinch (RFP)
type, we find numerically that flow is stabilizing for the local modes, apparently due to
the kinetic damping in GCP. However, in the limit of low-p, large aspect ratio
tokamaks, the flow must be Alfvénic to give an O(1) contribution to the Suydam index.
This contribution can be stabilizing if the pitch of the flow is opposite to that of the
magnetic field.

In Sec. IV, we consider global modes, in particular external kinks, and use the
"straight tokamak" or lowest order reduced-MHD ordering to study the effects of
Alfvénic flows. In lowest order, the slow waves are eliminated completely in GCP. An
integral expression, analogous to W, is derived for modes locked to resistive walls.
This expression shows that any flow that vanishes at the plasma surface is destabilizing
for wall-locked external kinks. Numerical computations confirm this conclusion also for
RFP equilibria and for internal kink modes.

In Sec. V, we discuss properties of equilibria with flow by applying the linearized

eigenvalue problem to perturbations with zero frequency in the laboratory frame. As is



well known,15 the MHD Grad-Shafranov equation can become hyperbolic because of
mass flow, and there exists a "first hyperbolic region" where the poloidal flow is close to
the poloidal sound-speed. We show that in three dimensions, the introduction of
arbitrarily small flows perpendicular to the magnetic field makes the MHD equilibrium
equation hyperbolic. However, the guiding centre plasma has very different properties,
and the equilibrium equation remains elliptic for sub-Alfvénic flows. This difference was
noted for axisymmetric equilibria in a guiding centre calculation by Dobrott and
Greene.16 The absence of the "first hyperbolic region" in the GCP equilibrium problem
as well as the absence of pronounced degradation of stability for sonic flows are both due

to the near-elimination of the slow magneto-acoustic wave in a kinetic description.
II. The radial eigenvalue problem

It is well known10 that MHD does not properly describe slow magneto-acoustic
waves in collisionless, isothermal plasma, and that the equation of state, p o< pY, can
only be justified in the limit of large collisionality, vj; >> |Zlo|, where @ stands for the
wave frequency in the local center of mass frame. The double adiabatic theory of Chew,
Goldberger and Low12 lacks another important piece of physics by ignoring the heat
flow along the field lines, and only holds in the limit of large phase velocity, Igl >>
max(k I VihesVii)- Similar to MHD, it fails to produce damping of the ion-sound waves.
As ion-sound waves play a prominent role for the MHD stability of rotating plasmas,7 a
more adequate model for the flow problem is the guiding centre plasma (GCP) model of
Grad.11 GCP uses kinetic theory for the motion along the field lines and assumes no
ordering of the parallel phase velocity with respect to the thermal velocities. The slow
magnetosonic wave has very different properties in MHD and GCP, 10 and in the kinetic
description, the magnetosonic wave is almost eliminated in isothermal plasma. Here, we
show that this modification of the slow wave physics has significant consequences for
the stability of plasmas with sheared flows, viz., the MHD instability induced by
resonance with slow waves/ is removed and, with it, the unconditional instability for

near-sonic flows.



We now derive the second order cylindrical eigenvalue problcm17 for GCP,
previously stated in Ref 18. We first treat the fluid part of the calculation, leaving the
pressures unspecified. This allows us to substitute either the MHD, CGL or GCP model
for the parallel motion and compare the results simply by substituting different forms for
three coefficients into the second order radial equation. The same approach is taken in a
companion paper on toroidal equilibrium.19 The reader not interested in details may omit

the derivation in Secs. II.A-B.
II.A Fluid calculation

The linearized MHD equations for equilibria with mass flow were given by
Frieman and Rotenberg.20 We generalize their model by allowing for anisotropic

pressure
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cand ® is the Doppler shifted frequency. In Eq. (5), all information about the parallel
dynamics is contained in 8p, p, and 8c. The perturbed magnetic field has been
eliminated except for the parallel component 8B, appearing in d6. [Derivatives of
equilibrium quantities could be entirely eliminated from (5) by using 3(p L+ B2/2)
instead of p_, but this would make the final eigenvalue equation appear somewhat more

complicated.]

The displacement is decomposed according to

N
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Simple consequences of (3b,c) are
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The equation of motion, written componentwise, reads
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is related to the crossfield flow of the equilibrium. Substituting (9b) in the parallel

momentum equation (13), we can eliminate §” and obtain a relation between the
perturbations in parallel pressure, density and magnetic field
dp OB
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IILB Parallel dynamics

To close the system (11-13), we must express 8p and dp L in terms of 8B and &r.
In the MHD and double adiabatic equations this is accomplished by substituting the
respective equations of state in the parallel equation of motion (15), as shown in

Appendix B. In Grad's guiding centre model, 11 the motion along the field lines is treated

kinetically. All particles are assumed to have the same velocity U = E x B/B2

A
perpendicular to the magnetic field, but each particle has its own velocity V along b =

B/B, satisfying

dv ~ v U2 % oVh
T = %E” +b*V (5= -uB)+ VUs(b+Vb) . (16)



Here, e and m denote the charge and mass of the particle, and W is its magnetic moment,

v J_/B. e/m is regarded as a large parameter, and E I 1s neglected in Faraday's law. The

parallel electric field is determined selfconsistently by demanding that the electrical

current computed from (16) vanish, j, =Z (e /m ) p <V > =0, where 2 denotes the
I Y PV,

different species. Because of the large parameter e/m, this does not imply that
B +VXB is zero, only that it is O((e/m)0).

The kinetic equation for the linearized Eq. (16) can be written, after considerable

algebra,
of
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where V §= V-VO, VO = ybo is the equilibrium mass velocity along the field lines and k

= [Us(B*VB)] 1/B2. The parallel motion is driven primarily by the force on a magnetic

dipole and a fluid force that originates from equilibrium flow perpendicular to the

magnetic field. The curvature term drops out when 8p and &p | are calculated:

.3, -p, 8B/B)= 3 | 8t1,uB) duav .

E " is eliminated by means of the parallel current constraint, j = O((e/m)O), evaluated by

multiplying (17) by e //m, and integrating,
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and

Vv

~
p=-0/k

is the parallel phase velocity in the frame moving with the plasma.

E”, we have
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where the coefficients are given by
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After elimination of

03y

(22)

(23)

In Appendix A we discuss the question of energy conservation in the linearized

GCP system and show that this system has an energy integral when the kinetic damping

vanishes. In Appendix B, we derive the coefficients a; through a, for fluid models with

an equation of state. For these models, the condition for energy conservation can be

formulated as a condition on the partial derivatives of p I and p 1 with respect to p and B.

This condition is, of course, satisfied by both MHD and double adiabatic approximation.
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II.C Plasma response in GCP, MHD and CGL

For a plasma in local thermodynamic equilibrium (p | =P =P:Pe =P; =D/2,

and Maxwellian distributions), the coefficients (22) become

2
(Xe-Xi)
a =- [Xe % - ———1 ,
1= 57 Lt 2(Xe + 1)
(24a)
2y v.
a2=_ M , a4=B a2 N
Xe T X; P
where
~J
[0
x=1+8Z©) , (=-— , (24b)
L, W2vy

and Z is the Fried-Conte plasma dispersion function.21 This form for the coefficients is
assumed for the numerical examples throughout this paper and leads to strong kinetic
damping of the ion sound and slow magneto-acoustic waves. Sound-waves of a
hydrodynamic character can, of course, be recovered if T >>Tj.

It is of interest to compare the plasma responses of the various models GCP (24),
MHD [p, =p, =pand 8(p/pY) = 0], CGL [ 8(p, /pB) = 0 and 8(p,,B2/p3) = 0] and
MHD with a large parallel viscosity. In the case of small phase velocity, IVpl << Vipils
the coefficients are as given in Table 1. Here, it has been assumed that the electron and
ion temperatures are equal, but not isotropic, and the distributions have been taken as
bimaxwellians. For the viscous MHD coefficients, the parallel viscosity has been
assumed infinite, i.e., we consider the response on time-scales much shorter than the
collision time. We note that whereas the CGL equations reproduces the same type of

dependence on p J_/p | as the guiding centre model, the numerical coefficients are

incorrect. This is not surprising since the CGL equations ignore the heat flux along the
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field lines and only apply in the limit of large phase velocity. It is perhaps more

surprising and of more significance that MHD with the adiabatic index 7 set to unity,

exactly reproduces GCP for isotropic equilibria. It follows that for static equilibria (with

finite shear) MHD, but not CGL, gives the same marginal point as GCP. The reason for
the difference is that the CGL equations do not allow the temperatures to equilibrate along
the field lines, contrary to the case of zero phase velocity in GCP and MHD with y=1.
[For static equilibria, only the value of aj is significant at marginal stability, and ay, ay,
and hence v, are immaterial. However, for special types of flow, such as rigid rotation,
where marginal stability also occurs at Vp=0, the coefficients related to compressibility
do influence the marginal point, see Appendix C.]

In general when the equilibrium has mass flows, the parallel phase velocity is
nonzero. In the inviscid fluid models, the coefficients ay through ay have singularities
when the phase velocity equals the sound speed. These singularities are smeared out in
GCP, and the GCP coefficients have large imaginary parts due to wave-particle
resonance around the thermal speed, which introduce damping in the macroscopic
system. To emphasize the difference between GCP, MHD and CGL, Fig. 1 shows
1+a2(Vp), which gives the density response to a perturbation in the parallel magnetic
field. We note (a) the unphysical resonances and the absence of imaginary part in the
fluid models, (b) that CGL deviates from GCP already in the static case Vp =0, and (c)
that for small but finite phase velocity, the MHD coefficient not only ignores the
dominant imaginary part, but also gives the opposite sign as GCP for the real part. It is

obvious that fluid models can give spurious results for equilibria with mass flows, in

particular, when the phase velocity of a mode is near the ion thermal speed.
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IL.D The radial eigenvalue problem

Given the expressions (21) for dp and 8p | We can now close the system (11-13)
and derive a pair of first order equations for ér and p *.17 We first substitute the

expression (21) for dp i into the definition of p, and obtain

p, =KBJB +H§I/r , (25)
where
2p_L
K=1+ ET‘ +a1 .
2 2 (26)
H = csBe-pv9 -2y pX2

According to (25), K may be interpreted as the perturbation in total perpendicular

pressure p | + B2/2 due to a unit perturbation in magnetic pressure B2/2. An equation for
d€ /dr is obtained directly from (25) using (9a) for 8B and (12) for & | »and dp_/dris
computed from the radial equation of motion (11) [substituting (15) , (21) and (25)]

1d
THEEY =C & -Cyp, )

27)
dp,,
T =& -Cip,
The coefficients in (27) are given by
1 2IBE 2 gy
C1= I'BZ (- A +Be +K) , (283.)

1 1
C2=§Z('K+'K) ’ (28b)
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2
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Equations (26-28) give the MHD,7 viscous MHD,13 CGL, and GCP18 eigenvalue
problems by substitution of the appropriate coefficients aj, ay and a4 from (22), (B2) or
(B5). The system is manifestly Hamiltonian in rE_,r and p_. This property would be lost
if the symmetry ay =2z (22) [for the fluid models, condition (B1)] was violated. The
Hamiltonian character of (26-28) has certain mathematical advantages, such as allowing a
strong variational form as we exploit in Sec. IV A.

The information concerning the parallel dynamics is contained in K, H and a 40
and we reiterate that in the fluid models, these show unphysical resonances at the sound
speed. The resonances do not lead to singularity of the radial equation, because of
interrelations between the coefficients (B2). However, true singularities occur at the
zeroes of K, corresponding to the slow wave continua. In the inviscid fluid models the

zeroes of K occur for real frequencies; e.g.,

with Vs2 =vp/p and B = 7p/BZ, has zeroes at sz = vsz/(1+[3) close to its poles at Vp2
= VSZ. The important difference between the fluid models and GCP is that with the

kinetic description of the parallel motion, the poles of a; and the zeroes of K lie in the

stable halfplane, if the distribution function is locally stable. Hence, for real o, KGCP

is uniformly 1 + O(B).
In Sec. V, we discuss the problem of equilibrium in two and three dimensions

and show that the question of ellipticity for the equilibrium equation can be answered by
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inspection of the radial eigenvalue problem (27). The "first hyperbolic region" in MHD
occurs when K is negative and near zero. This hyperbolic region is completely removed
in GCP by the near-elimination of the slow wave.

We have seen that the slow waves behave very differently in GCP and fluid

. . . . . 2
theories. However, the Alfvén continuum remains essentially unchanged; A = pa; -

Gcmontains no kinetic integral, neither is it affected by parallel viscosity. Thus, the

continuum frequencies are real, and at an Alfvén resonance r=r A (where A=0andF #

0), &r and p,, are both proportional to log(r-r A)’ independent of the model used for the

parallel dynamics. However, the discrete Alfvén eigenmodes become weakly damped in
GCP.

III. Local stability
III.LA The Suydam index

In MHD, the stability to modes localized at the resonant surfaces can be examined
by means of an indicial equation analysis. Proceeding along this line, we expand (27-28)
around the resonant surface, r = I where F =0, with '(T)(ro) =0, and set

G=%x" P, =px*! X=r-To

The characteristic exponent can be written as

When DO is real, as in MHD or CGL, DO > 1/4 implies the existence of an infinite
sequence of unstable eigenmodes,14 and Dy < 1/4 is a necessary condition for stability,
as shown by Suydam.22 The Suydam index for the generalized system (27-28) is given
by |
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B2
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DO o-_MZ (q BZ) { I'Be q

2 2 a
S rdp —5 (V- MBg (29)

B
0
1 . , 2.2 2) 2 2
+ ;Z[-r(p”+pL)+H/KB9-(o+M B9+2(V-MB9) 1},

where prime denotes differentiation with respect tor. In Eq. (29),

Vp d/dr(key)

M=‘/p?}l)'/F'=W , (30)

is the differential Mach number. Furthermore, we have introduced
V=V vg : (31)

and the usual safety factor q = rB,/RBg, where R is an assumed major radius. The

phase velocity

Vp =-Mv, , (32)
entering the arguments of the Z-function, is real. The MHD expression’ for D is
recovered after some algebra by substituting Eq. (B2) for ay through a,. In Appendix C
we compare the Suydam criteria of the three models in the case of non-sheared flow
M=0. Asis well known,23 the CGL condition is more optimistic than MHD, but MHD
with ¥ = 1 reproduces the isotropic GCP condition exactly in the absence of sheared
- flow. We also show that the Suydam criterion for MHD with infinite parallel viscosity is
more optimistic than its CGL counterpart.

When the flow is has shear, the guiding centre result differs from its fluid
counterparts in two essential ways. First, in MHD, D has a singularity due to

resonance with the slow magnetoacoustic waves’
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2 .22
[(V-MBe)Z + M4B 9-V2)]
MHD 2 1+
D' = (=
w 4B, (1-M3 rZBé B-M2(1+B)

In GCP the resonance is broadened kinetically. The slow wave continuum still appears

through the terms o< K-1 in C1 to C3, but the zeroes of K now correspond to oscillations
that are damped in time. Since K-1=1+ O(P) for all real phase velocities in GCP, we
can assert that the term in D%CP representing the interaction with the slow magneto-
acoustic wave is small in a low-P plasma with sub-Alfvénic flows. The same conclusion
could have been drawn with less effort if we had crudely added an imaginary part of
order P to the resonant denominator, p — M2(14f), in Dl\gg).

The other modification, perhaps more of theoretical interest, is that the Suydam
parameter in GCP becomes complex whenever M is nonzero. As a consequence, the
infinite sequences of unstable eigenmodes occurring in MHD when Dg > 1/4 no longer
exist. An asymptotic analysis similar to that in Ref. 7 now predicts that the growth-rates
lie on spirals in the complex plane, I, = i‘c\lon(ro) =Ty exp(-nn/s), n = 1,2,.., with s =
(Dg - 1/4) 172 complex. The spiral will eventually cross the real w-axis and the higher
modes will be damped. (When the sequence reappears on the unstable side, it is on an
unphysical Riemann sheet, corresponding to an integration path in the complex r-plane
that cannot be deformed to the real axis, and so must be discarded.) Thus, when DO is
complex, no truly asymptotic statement can be made concerning the existence of unstable
modes. Evidently, the complex Suydam parameter of GCP does not have as clear an

interpretation as its realvalued MHD counterpart.
III. B Discrete slow modes

The MHD Suydam criterion predicts unconditional instability when M2
approaches B/(1+f) from below. As we have shown, this loss of stability does not
occur in GCP. MHD theory” also predicts that as M2 is increased just above B/(1+p),

the subsonic instabilities transform into infinite sequences of unstable discrete slow
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modes, accumulating at the edge of the slow wave continuum, where K has a quadratic
zero inr.

In the guiding centre description, the slow wave continuum, K = 0, lies in the
stable halfplane (except at k = 0, where it touches the real axis) and infinite sequences
of unstable slow modes cannot exist, for several reasons. First, as in the Suydam case,
the D parameter, determining the characteristic exponent, is complex in GCP, and
consequently the sequences can only be finite. Secondly, if an infinite sequence does
exist, its accumulation frequency will lie in the stable halfplane. We may expect that in
most cases, even the low order discrete slow modes that are potentially unstable in
MHD,7 are stable in GCP, if they exist at all. (Of course, if a locally unstable particle
distribution is chosen, K can have zeroes in the unstable halfplane, giving rise to an
unstable slow wave continuum.) Thirdly, as KGCP 5 complex, the equilibrium profiles
for which it has a quadratic zero for any o, is a set of measure zero. Stated differently,
the complex slow wave continua in GCP do not have "edges".

We conclude that the guiding centre spectrum is genuinely different from that of
MHD with respect to anything related to the slow waves, and for non-zero M, these

differences have important consequences for stability.

III. C  Numerical results

To see numerically the effects of flows on the local modes, we have computed the
growth-rate of the most unstable mode for an RFP equilibrium varying the pressure and

axial flow. The equilibrium has minor radius a = 1 and

By =J,(\n) , B, =J(An) [1 - 2P0(ry-0)] 172
2
p=1-092 , p =Py Jg () o(ryT) :
(34)
vg =0 ) VZ=VZO(1-r2) ,

kro = 2.40483 (= first zero of J 0) , A=28
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where o now denotes the Heaviside step-function. The mode has m = 1 and k = 2.4.
The result is shown as plots of constant growth-rate in Figs. 2a (GCP) and 2b (MHD).
As noted in Ref. 7, MHD gives very pessimistic predictions for marginal stability
when the flow is about sonic. However, Fig. 2b shows that the growth-rate of the flow
driven instability can be extremely small and clearly outside the region where ideal MHD
is reliable. By contrast, GCP predicts that the flow somewhat increases the pressure
gradient stable to local modes. It also makes the marginal stability boundary more
sharply defined at finite flow speed as is seen from the piling up of the contours of with
increasing v, in Fig. 2a. The main difference between the stability diagrams 2a and 2b is
that the region around the sound speed, that is weakly unstable even for small pressure
gradients in MHD, becomes stable in the guiding centre description. However, also at a

more robust growth-rate, 10'2, GCP and MHD give opposite results with respect to the
influence of flow on the allowable pressure gradient. In GCP, sheared flow can be

favorable for local stability, due, in part, to the kinetic damping.

IIL. D Large aspect ratio limit

For toroidal devices, the Suydam criterion must be replaced by the Mercier
criterion, which still remains to be worked out in the presence of mass flow. However,
certain information relevant to tokamaks can be obtained from the Suydam criterion (29)
by considering a large aspect ratio ordering, 8 = O(e2), Bg/B, = O(¢). It is seen directly
from the GCP expression for DO that sonic flows [i.e., we assume that M, V/Be =0(e)]
only give 0(82) contributions to D, which must be discarded because of the ordering.
Notably, the same conclusion cannot be drawn in the inviscid fluid models, because of
the unphysical resonance with the slow magneto-acoustic wave. However, for Alfvénic

flows [M, V/Bg = O(1)], D, will be order unity also in GCP and consequently relevant

information can be extracted. [It must be remembered, however, that the assumed

ordering implies pvi/Bg = O(1), and that in a toroidal system, such flows can cause

ballooning instability because of the toroidal curvature. Moreover, it is necessary to
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assume B = O(e) to avoid equilibria with pathological density distribution within the

magnetic surfaces.] In the lowest order, only the three first terms in (29) contribute

(O)= 1 q 2 _ B .I.q'.
DY, =YY (rq.Be) [- 2MVBg 1

(35a)

2+ a
PG - v MBg]

The second term in square brackets is essentially that which determines the stability of an
unmagnetized fluid between two rotating cylinders, where the angular frequency volt
must increase outward for ideal stability.24 From the properties of the Z-function [or by
using the fluid equivalent (B2)], we see that ay =- p/p for M2 << B and ay ~ p/B2M2
when M2 >> B. Thus, the term involving a4 can be discarded, except when M2 < B and
the crossfield flow V - MBe is O(e). In this case, the real part of a4 1s negative, hence
the a, term is destabilizing. (In the opposite case, M2 >> B, the term is stabilizing but

"small".) If B is ordered as €, the a4 term can always be neglected to lowest order, and

(35a) can be written in a more transparent form

-(a/q'By)? 2B
©) _ 2 0 \
DO = r(l—M2) (pve + Bz Pvgv, ) . (35b)

For definiteness, we assume that Bg and B, and v, are positive and the flow profile is
monotonic with v, vanishing at the edge, so that v, <0. According to (35b), this
implies that azimuthal flow in the range -2Bgpv,/p'B, < vg < 0 is stabilizing. Thus,
the flow must be Alfvénic and have the opposite pitch as the magnetic field to give an
O(1) stabilizing contribution to Dy We note that the normal inward density gradient is

destabilizing in the presence of azimuthal flow.
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IV. Global modes
IV. A Boundary conditions and energy integral

For free boundary modes, the solution of (27) must be matched to a vacuum (or
cold plasma) solution with Q = V¢, p | =P =0. The boundary condition for (27) is
continuity of Q. and &p | +B3B at the surface, giving

2 2
P, = & { £ (OB - pvg), - (B - pve)y]-F Vo 36)

PVa/a

where subscript p and v refer to plasma and vacuum respectively. Equation (36) allows

for discontinuities at the surface and also for finite flow of the edge plasma. Integrating
d/dr(p *rir) from the centre to r = a using (27) and (36), we obtain

ad (aCl - 1) }
a

€2 { (OB -pv2). - (B> - pvo).]-
a o PYel - Bo~ PVl Tpfy 505 - T

(37a)
2 2
- Jreg? vg e
0
with
2
r I'C -1 I‘Cl 1

=% —TZ(T)-rcs T, I (370)

which corresponds to the energy integral W in the static case. The second order radial

equation corresponding to the Hain-Liist equation25 in the static case,

(&) -g&=0 :
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together with the boundary condition (36) are variational derivatives of (37) with respect
to €.

As the system with flow is nonselfadjoint, the integral (37) is not as useful as dW
for the static problem. However, for a certain class of modes, namely, those locked to
resistive walls, Eq. (37) gives valuable information. Such external modes, whose

magnetic field has time to diffuse through a resistive wall, have growth-rates of the order
of the resistive decay time T, (=L/R) of the wall, which is typically much longer than the

Alfvén time. Therefore, the frequency of a wall-locked non-resonant mode (i.e., one that
does not have a resonant surface in the plasma) can be considered as zero inside the
plasma. Thus, Eq. (37) with ® =0 in f and g may be regarded as an expression for
®(0¢/ar)-1 which determines the growth-rate of the resistive wall modes by controlling
A' at the wall.26

IV. B Tokamak ordering

We now apply the analysis of Sec. IV.A in the large aspect ratio, low-p tokamak
ordering already discussed for the Suydam criterion, assuming |3=O(£2), Bg/B, = O(¢),
2 2
pVG/Be = 0(), pvi/B% = O(1). For simplicity, we once again discard the term
proportional to a4, which is correct if the flow is supersonic. (If this term were kept, it

would be destabilizing for subsonic flows, as in the case of local modes.) Within the
large aspect ratio ordering, the vacuum field is represented as Q = Vy x /z\, and ¢/¢' is
translated as rQe/imQr = (r2/rn2) Y'Ay. For equilibria that are continuous at the surface

r=a, the long-thin approximation of (37) with B, (r) = constant becomes

2 2 2
& [a3F2 Ay +By (m2 - n2q2)- pvem2 + paZ(w-kv )2 1,

@
= [(1g2+gEldr = 3W, (38)
0
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where
£=1YF2- pa) ,
g=rm?- DE-po) + 12 & [plokvp)l  ,  (39)
F = (Bg/)(m-ng) A=V,

Equations (38-39) are the standard, "straight tokamak",27»28 or lowest order reduced-
MHD?29 ordering of the linear stability problem for equilibria with Alfvénic flows.

For the wall-locked modes, we must set @ =0 in fand g. If the wall is modeled
as a thin finitely conducting shell, located at r = b, the logarithmic derivative of W

depends on the frequency according 1030

Ay +p Ay () i 2l
Ay (@) = L4 1er\lf , p=Ww[1'(%) : |
(40)
0 =-2 ooy — . Il 1+ (@/p)2im
A\I/ T a ’ A\|, = T ey

Equation (40) shows that the growth rate of a resistive wall mode increases with

decreasing A\If' As a consequence, flow inside the plasma is destabilizing for two

reasons, which can be seen from Eqs. (38-39). First, the effect of the field bending F2
is reduced by the inertial contribution p'(\;’)2 (In the present discussion we assume that
pa;Q < F2, otherwise it would be necessary to consider coupling to the continua.’)
Furthermore, if the axial flow speed decreases toward the edge, the contribution
r2k2(pv§)' to g is also negative, i.e., destabilizing. The only possibility of stabilization
by mass flow is if the flow speed is finite at the edge. It is clear from (38) that finite

azimuthal flow at the edge is stabilizing. Unfortunately, such profiles appear difficult to
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achieve in practice.
IV. C Numerical results

In this section, we give numerical results for global modes obtained from the full
system (27) with the boundary condition (36). Figure 3 shows the effect on an m=2,
n=1 external kink mode of adding a flow v, = V0(l- 2) to a tokamak-like equilibrium
with R/a = 10, q, = 1.86 and qo = 1.05. The wall is located at r=b=1.15a and its time-
constant is T, = 1041 A- The mode is unstable already in the absence of flow, and Fig.
3 shows that the growth-rate is increased by the flow. The curves are labeled: (a) no
azimuthal flow, (b) Vo=V, kt/m, giving kev = 0, and (c) vg =- v,ki/m. Curve (b), for
the case of vanishing Doppler shift, shows destabilization by the outward decrease in vg.
The destabilization by inertia is also evident, since (c) is the most unstable case. In
addition, curve (c) suggests that the instability changes character at a certain flow speed.
This is better seen in Fig. 4, where the growth-rates of case (c) in Fig. 3 are shown for
three different wall-times: (a) T, =103 74, (b) 7, = 1047, and (c) T, = 105 1. The
transition at v, = 0.4 corresponds to the onset of instability with an ideal wall. An
interesting feature in Fig. 4 is that for this profile, the growth-rate of the ideal mode
shows a minimum when the flow is about Alfvénic.

Figure 5 shows the growth-rate of an internal m=1 kink for a similar equilibrium
with g =0.95 and vg =V, kr/m. Figure 6 shows the growth-rate of an m=1 external
mode for the RFP equilibrium (34) with P( = 0.03 and purely axial flow. In this case,

= - 0.6, the wall is located at b=1.1a and its time constant is 104 © A

Itis evident from Figs. 3-6 that mass flow increases the growth rates of the global
modes. This is in agreement with the large aspect ratio theory for resistive wall modes in
section IV.B. The numerics also shows that flow is destabilizing for the cylindrical
internal kink and external modes in RFP:s. The curves in Figs. 3-6 only show growth-
rates of modes that are unstable in the absence of flow, but we also find that flow tends
to reduce the region of stability. Thus, the marginal qp for the external kink in Fig. 3 is

decreased, and that for the internal kink in Fig. 5 is increased by the flow.
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V. Equilibrium problem in two and three dimensions

The calculations presented in Sec. II show many similarities with the GCP
calculation of toroidal equilibrium by Dobrott and Greene,16 and in this section we
discuss some important consequences of the linear system (27) for the equilibrium
problem in two and three dimensions. In particular, we note that the hyperbolic and
elliptic regions for the equilibrium problem depend only on the local properties of the
linearized equilibrium equation. This equation is a special case of the linear eigenvalue
problem for perturbations having zero frequency in the laboratory frame @ (however,
their Doppler shifted frequency is non-zero because of the flow). As the information
required is local, we can use the cylindrical eigenvalue problem (27), take the limit of m

and k large, keeping only the leading terms

1 B2 1
dar T BZ ( A K )Py >
(41)
dp,,
T =A% ’
From (41) we obtain a radial wave number in the WKB sense,
2 1 A
k= g7 (g - E) : (42)

which is simply the dispersion relation for the slow and fast magneto-acoustic waves.
(As usual, the Alfvén wave, A=0, decouples from this dispersion relation. Note that the
r-direction is singled out as that which is perpendicular to both B( and v;.)

Since, for w = 0, K depends on m/r and k only through the ratio m/kr, Eq. (42)
shows that GCP is non-dispersive in the short wave-length limit, exactly as MHD and
CGL. Thus, if the dispersion relation (42) has solutions with k., k and m/r nonzero and

all real, the real-space form of the linear equation (41) has real characteristics, along
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which discontinuities may be propagated, and the equation is of hyperbolic type. In
other words, the equilibrium problem is hyperbolic if kl.2 given by (42) is positive for
any real m and k. The equilibrium problem is elliptic if kr2 is negative for all real m and
k with k2 + m2/2 > 0.

For the moment, we consider explicitly the axisymmetric case and set k = 0 in

(42). Then, the MHD equilibrium equation is elliptic when

2 2
(1-Mp) B - M)

2

B
— > - — , (43)
B- Mp(1+P) B

where B = yp/B2 and Mp =+ pvg/Bg is the poloidal Mach number. [Note that Eq. (43)
is the well-known ellipticity condition for the MHD Grad-Shafranov e:quat:ion15 and that
the first hyperbolic region is narrow in tokamaks, for MP2 between B/(1+p) and
approximately B/(1+BBZ2/B2).] The present derivation shows that the first hyperbolic
region in MHD occurs because, in a narrow range of Doppler frequency due to the flow,
perturbations that have zero frequency in the laboratory frame, can propagate radially as
slow MHD waves. This occurs when K is small and negative.

If the restriction to axisymmetry is abandoned, we must consider wave vectors k
in the plane spanned by B and y, making arbitrary angles g and 6, with respect to B
and v [related of course by cos(GB - Gv) = Bev/Bv]. In terms of the Alfvén Mach
number My = Vpv/B, or p = M A2 coszev (not to be confused with the magnetic

moment), the MHD ellipticity condition can be written as

(cos26B -n) (B 00329B - W
B coszeB - (1+B)u

> -sin20g (44)

for all O between 0 and n/2. This condition will be violated when p is close to

BCOSZGB/( 1+f), which is satisfied for a suitable direction of k when the flow is
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supersonic, M A2 > B/(1+B). Moreover, by taking Op close to /2, the ellipticity
condition (B4) can be violated for arbitrarily small p and, hence, for arbitrarily small
flow, unless the flow is field-aligned. Thus, in the three-dimensional case, only field

aligned flow gives a finite threshold for hyperbolicity in MHD:

(1 - M3)(B - M3)
— <0 . (45)
B - (1+B)My

In this case, the equilibrium equation is hyperbolic when B/(1+p) < Mi< Bor Mi > 1.

However, the MHD system without restriction to axisymmetry is hyperbolic for
any non-zero flow across the field lines. Thus, calculations of stellarator equilibria with

mass flows require GCP theory (or any other theory that eliminates the slow wave).

The guiding centre result for equilibria with mass flow is entirely different in that
K = 1in a low-[ plasma, and slow magneto-acoustic waves do not exist, except in cases
with pathological particle distributions. In Fig. 7, we plot Re(kr2) as a function of Mp
for MHD and GCP. Although the equilibrium has high B, p/B2 = 0.1, and small aspect
ratio, 1/R = 0.3, the first hyperbolic region is narrow in MHD. More importantly, it is
completely removed in GCP. It may be noted that he absence of the first hyperbolic
region in the GCP equilibrium problem16 is connected with the nonvanishing of the real
and not the imaginary part of K since, in toroidal equilibria, the distribution functions
must be symmetric in the trapped region (cf. Ref. 16, where the real-valued integral C *
corresponds to our aq). Itis easy to see that if we make the low- approximation K = 1,
which is uniformly valid with respect to the flow speed in GCP, then k2 < 0 for all M 4 2
< 1 even in the general three-dimensional case, i.e., the GCP equilibrium equation

remains elliptic as long as the flow is sub-Alfvénic.
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VI. Conclusion

The guiding centre plasma model, which treats the motion of the particles along
the magnetic field kinetically, gives significantly different results than MHD when the
equilibrium has sheared mass flow. In particular, GCP removes the complete loss of
stability that occurs in MHD for near-sonic flows. In the present paper, we have applied
GCP theory to investigate the ideal stability of cylindrical equilibria.

In the “straight tokamak* ordering, sonic flows have little influence on stability,
and the flows must be Alfvénic to have a strong effect in GCP. The leading order
contribution to the Suydam criterion is given by Eq. (35). Flows, whose axial
component decays monotonically toward the edge, can be stabilizing for the local modes
only if the flow has the opposite pitch as the magnetic field. We find numerically for
high-B RFP equilibria that flow can be stabilizing for the local modes, apparently due to
the kinetic damping of the slow waves.

For external modes locked to resistive walls, we have shown analytically in the
large aspect ratio tokamak limit that flow is destabilizing if the velocity goes to zero at the
edge (38-39). Numerical evidence supports this conclusion also for RFP:s. Despite
numerous attempts, we have not been able to find any flow profile, vanishing at the
edge, that improves the stability of the external modes. It is noteworthy, however, that
stabilization can be obtained if the edge plasma (r > a) rotates in the poloidal direction.

It should be mentioned that weak flows can be stabilizing for global resistive
modes when the plasma column has finitely conducting walls. As shown in Refs. 26
and 30, resistive walls can stabilize tearing modes if the Doppler shift due to plasma
rotation is large compared with both resistive growth-rates and the inverse of the wall-
time. Under these circumstances, the mode cannot diffuse through both the resistive
layer and the wall and therefore either the resonant surface or the wall must behave
"ideally". Thus, resistive modes can be stabilized by rotation if the plasma is surrounded

by walls of finite conductivity. However, sheared flows can also destabilize tearing

modes by influencing the dynamics inside the resistive layer.31
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For the problem of toroidal equilibrium, Dobrott and Greenel6 showed that the
guiding centre plasma behaves very differently than the MHD fluid, and that the
hyperbolic region for poloidal flows comparable to the poloidal sound speed is removed
in GCP. We have shown that this "first hyperbolic region" is due to the propagation of
slow MHD waves, that are practically eliminated in GCP. For three-dimensional
equilibria, the difference between the kinetic and fluid models is even more dramatic; the
MHD equilibrium equation becomes hyperbolic for arbitrarily small flows across the
magnetic field, whereas the GCP equilibrium problem remains elliptic as long as the flow

is sub-Alfvénic.

Our study has shown that a kinetic description of the parallel dynamics is needed
to understand equilibrium and stability of plasma with mass flow. An irievitable, but
unfortunate, consequence is that the two-dimensional stability problem in toroidal
geometry becomes considerably more difficult than in the static case, as the kinetic
equation is non-local along the field lines. (This is, fortunately, easy to deal with in the
cylindrical analysis). It appears that an understanding of the stability for rotating
plasmas, comparable to the detailed picture that has emerged for static equilibria, will
present significant difficulties and remains a major challenge to plasma theory. The
cylindrical results indicate that although it is possible to improve on local stability by
adding mass flow, depending on details of the profiles, flow is always destabilizing for

external kink modes.
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Appendix A. Energy relations

It is worthwhile to discuss energy conservation in systems with anisotropic
pressure, which we show is related to the symmetry aj = a3 in Eq. (22). The linear

equation of motion (1) has the form

Pt .

J
P35z +2p vV 3¢ = E[81+GIdp,,8 ] . (AD)

The energy balance equation is obtained by dotting (A1) with £(r,t) [or, if exp(iot)
dependence is assumed, by taking the real part of the scalar product with -i®*E*] and
integrating. The convection term on the left-hand side of (A1) is an antisymmetric
operator acting on 9£/dt, and does not affect the energy balance. For fluid models,
where dp | and Sp” are expressed in terms of £ by an equation of state, energy
conservation is equivalent to the condition that F+G is selfadjoint in terms of . (Thus, if
v =0, the gigenvalue problem for such a model is selfadjoint if the system is energy-
conserving, but selfadjointness is clearly lost when mass flow is added, whether F+G is
energy-conserving or not.) A necessary condition for conservation of energy within the
linear system (A1) is that F+G be Hermitean for real m.

In the GCP formalism, F;” cannot be treated as a virtual displacement on the same
footing as . and & |- Rather, §” has to be determined, together with 3p, Sp | and 8p T
from & and § | (or more conveniently, &, and 8B) at an assumed value of ®. We
consider the system to be energy conserving if F+G in (1) is Hermitean when the
frequency is real. Dotting (5) with §* to produce a quadratic form, we find that one piece
is not automatically Hermitean, namely

OB*
B

gt _ 5B

3, + ( - —5~) (8p, -ABSB) (A2)

1

which gives the parallel and perpendicular contributions to the product of plasma

compression and pressure perturbation. By substituting Sp  from (15), and dp and dp L
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from (21), we find that F+G is Hermitean if a5 = a3* and a; and a4 are real for real .
The symmetry a = a3 in (22) therefore means that the linear GCP system has an energy
integral when the a-coefficients are real, i.e., when the kinetic damping vanishes. Wave-
particle resonance introduces damping in the macroscopic system, which corresponds to
irreversible conversion of kinetic energy into heat. In the inviscid fluid models, where all
the coefficients a through a4 are real, energy conservation becomes equivalent to ay =
a3. In Appendix B, we show that this can be formulated as a condition on the partial
derivatives of the pressures with respect to p and B. The condition is, of course,

satisfied by the MHD and CGL equations.
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Appendix B. Parallel dynamics in MHD and CGL

In this Appendix, we first derive the coefficients ay to a4 describing the parallel
dynamics for fluid models with an equation of state p =P J_(p,B) Py =P (p,B) and
give the condition for energy conservation, that corresponds to the relation a, = ay for
GCP. By differentiating the equation of state, Op | may be expressed in terms of 8p and
OB and parallel equation of motion (15) then gives 8p in terms of 8B and &r pX2/r, and
thus ag and a4. Then, a; and a, are obtained by differentiating p =P _L(p,B). In the
inviscid fluid models, all coefficients are real and the condition for energy conservation
becomes a, = a3, which can be written as a condition on the partial derivatives of the

pressures (see also the companion paper19 on toroidal equilibrium):

a(P“/P) a[(P” - p_]_ )/p]

5— = P = : (B1)

We note that both the MHD and double adiabatic equations satisfy this condition. Other
models may be introduced which have the same property, for instance the isothermal
model discussed in Ref. 19. When condition (B1) is satisfied, the coefficients

corresponding to (22) are given by

2p, dp, dp;

P
al+m—=m+$§2’(l+az) .
(B2)
! . 1
2= 5 Y=,

where Vp =-/ k| | is the parallel phase velocity in the plasma frame.
It is also possible to derive the coefficients a;-a4 for MHD with parallel viscosity
as used in a recent calculation by Gimblett.13 This model is valid in the opposite limit as

the collisionless guiding centre model, namely, when the Doppler frequency is small
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compared with the ion-ion collision time. The pressure is nearly isotropic, but a small

anisotropy results from anisotropic compression,32
Sp_L =8p+u”s , 8p" =8p”-2u”s . (B3)

Here H | = 0.96pt;; is the parallel viscosity, and

op

s=b V@) - wbvh - gV =ia (B-22) ®4)
p

using (3) and (9). It can be shown, using the expressions obtained by Braginskii,32 that
for a cylindrical equilibrium, the parallel viscosity does not contribute to the linear

perturbation in the isotropic pressure p. Thus, we substitute (B3-4) with 8p = (yp/p) Sp
into the parallel equation of motion (15) and obtain the coefficients aj-ay!

2 ) 2 .~ 1.2 .2
a1+§5-= (B2S) 1['Ypr+1wu” (3Vp -3V )l

1,2 2.~ )

ay = 81 (v -5 iou, /p) , ay =51 , (B5)
2 2 4 .~ 2

S =Vp -Vg -7 1cou“/p , vy =Yp/p

Once again, aj = a5, although both are complex, and the parallel viscosity has broadened

the resonance at the sound speed similar to the kinetic effect in GCP. Since the
collisionless models apply for frequencies larger than Vji» it is of interest to extend the

MHD model with parallel viscosity past its region of validity, noting that the coefficients
in (B5) have a well defined limit when (Tyti {7 °o,



(B6)

Now, the sound-wave has been completely removed, but the imaginary parts are still
lacking, and the dependence on the parallel phase velocity is quite different from that in
GCP. Effectively, the plasma has been made more rigid, and only displacements with
isotropic compression, giving dp/p = (3/2)8B/B, are allowed. What used to be the slow
wave continuum, K =1 +a; + 2p/B2 = 0, has moved to larger phase velocity, sz =
4y A2 + 9v82. This is similar to the incompressible case Y = oo, where the "slow wave

continuum" becomes degenerate with the Alfvén continuum at Vp2 =V A2 .
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Appendix C. Suydam criteria in GCP, CGL and MHD for shearless flows

For shearless flows (M=0) the kinetic integrals in the Suydam criterion D < 1/4
are all evaluated at zero phase velocity, and the coefficients a| through a4 can be taken
from Table 1. The Suydam index (29) is split in a natural way as Dgy = Dgiq + Dine
where Dy ,,iq is independent of the kinetic integrals and has the same value in all the

models, while

2 2 4
(Y 1 (B2 g2
Dkln - (rq'BZ ) 2 ( K - B a4 pve ) (Cl)
oB 0
is model dependent. As already noted, MHD with y = 1 gives the same Suydam criterion

as GCP for a distribution in local thermodynamic equilibrium. This was shown in the

static case M=V=0 by Pao.14 To compare the GCP and CGL conditions for anisotropic

pressures, we note the inequalities

) ) 2 2
HCGL _ OBy - pvg(l-p /3p)) < gGCP =By -pvg(l-p /py) .

2 2
2p P, 2p 2p|
1 1
KCGL =1 + - > kGCP =1 + .= ,
BZ 3p, B2 BZ p, B2
CGL GCP
a4 =phBpy < “ag =phy

Consequently, (assuming HOCP 5 0 and KGCP 5 ), each term in Dy, is smaller for

CGL than for GCP, i.e., DCOGL< D((})CP term by term, and the CGL equations are

overly optimistic for isotropic, as well as anisotropic equilibria. This also holds in the
static case, Vg = 0, in agreement with the more general comparison between MHD and
CGL by Bernstein et al23 It appears that the double adiabatic approximation makes the

plasma too "stiff" in the longitudinal direction by not allowing the temperatures to
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equilibrate along the field lines. Isothermal conditions are simply accounted for in MHD
by setting y= 1.
We note that the MHD system with an infinite parallel viscosity is even more stiff

than CGL. In the isotropic case,

2 3 2 2 2 2
MHD(|; —o0) = .2 CGL _ -
H M= )—<5Be 3PV < H = cBe 3PV
MHD,, —on=14 2 PP CGL=14 2 :
K (H”— )"‘1+4§2' > K —1+3—)£2'
MHD CGL
-ay (H||=°°)= 0< -ay =p/3p

so that DN(I)HD(LL” =o0) < DCOGL< DN([)HD(u” =0) = D%CP for plasmas in local

thermodynamic equilibrium.
Finally, we give explicitly the GCP Suydam index for isotropic equilibria with
M=0,

5 ) 4 2
pV9 B2

pev pv
GCP (_q )2 2p LA W
Dy _(q.BZ) {-& +—r2—+;Z[—r2—p rdr(?—)]}, (C2).
8

which shows destabilization by azimuthal flow as well as by an outward decrease in
p(ve/n)?.
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TABLE 1

Table caption

Table 1. Values of the coefficients a1, ap and a4, characterizing the parallel motion,

in the static limit Vp =(), for GCP, CGL and MHD, including the case of infinite

parallel viscosity.
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Figure captions

Figure 1 Density response to perturbations in magnetic field strength,1+a5, as a
function of the parallel phase velocity for different models of the parallel
dynamics: GCP, MHD, and CGL. The solid lines give the real parts and the
dashed lines the imaginary parts (= O for the fluid models).

Figure 2 Contours of equal growth-rate in GCP (2a) and MHD (2b) for the
resonant mode m=1, k=2.4 on the equilibrium (34) with A=2.8. The MHD
description gives rise to a large region of weak instability for near-sonic flows.

This region is completely stable in GCP.

Figure 3. Growth-rates of the m=2, n=1 external kink mode vs. flow speed for a
tokamak-like equilibrium with qo=1.05 and q,=1.86 and a resistive wall at
b=1.15a with time constant Tow = 104 ¢ A The curves are labeled: (a) no

azimuthal flow, (b) vg = ker/m , giving kev=0, and (c) vg=- ker/m .

Figure 4. Growth-rates corresponding to case (c) of Fig. 3 for different wall time
constants (a) T,, = 103 75, (b) 1, = 10* 14, and (c) 1, = 105 7. Forv,( <
04v AO the mode is a resistive wall instability, whereas for v,0°> 04v AO° it is
unstable with an ideal wall.

Figure 5. Growth-rate of the internal m=1 kink mode for a tokamak-like equilibrium
with g = 0.95 and vg = krv,/m.

Figure 6. Growth-rate of the m=1 external mode with k= - 0.6 for the RFP
equilibrium (34) with A = 2.8, Py =0.03 and vg= 0. The resistive shell is
placed at r =b = 1.1a and has the time constant T, =10%1,.

Figure 7. Square of radial wavenumber in the axisymmetric equilibrium problem vs.
poloidal Mach number Mp =+ pvg/Bg in GCP and MHD for an equilibrium with

p/2B2 =0.1 and r/R =0.3. The Grad-Shafranov equation is hyperbolic when
k. >0.
r
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