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ABSTRACT

We present experiments which test the applicability of the Hamiltonian single particle
theory to wave-particle interactions. This theory describes the chaotic acceleration of
plasmas ions by electrostatic waves. The Hamiltonian description gives predictions about
the threshold, fast time scale, details of the distribution function and conservation of three
integrals of the motion while some of the integrals have been broken by the overlap of
resonances.

Both electrostatic ion cyclotron and Bernstein waves are launched from antennae at
the plasma boundary. Ion motions are observed by Laser Induced Fluorecence (LIF) and
optical tagging.The linear response of the ion to the wave is distinguished from the
chaotic response.

Several predictions of the single particle theory are observed in the experiments. In
addition, evidence of self-consistent effects have been observed.



INTRODUCTION

The interaction between waves and charged particles is of fundamental
importance in plasma physics. Here we will consider the particular case of
ions interacting with electrostatic waves in a magnetic field. That magnetized
ions may become stochastic with the application a of single propagating
electrostatic wave has been shown theoretically. Stochastic motion results
when particles are in a region of phase space where the trapping regions of at
least two resonances are wide enough (considered separately) that they
overlapl-4,

Stochasticity has been proposed as an explanation for tokamak ion
heating in the presence of lower hybrid waves3.3, ion Bernstein waves6 and
drift Alfven waves’. Stochasticity has also been proposed as an ion heating
mechanism in the magnetosphere8. The experimental observation of
stochastic electron heating in a standing plasma wave has been reported by
Doveil®. We have observed stochastic ion heating due to neutralized ion
Bemstein waves10,

In this paper, Vlasov theory of a hot plasma is used to describe linear
waves in a magnetized plasma. The particle response consists of a linear part
{the dielectric response) and of non-linear effects such as intrinsic
stochasticity. By intrinsic stochasticity we mean the apparently chaotic
trajectories of particles subject to purely deterministic forces. The interaction
between a single charged particle and an electrostatic wave is described by a
Hamiltonian. Classical Hamiltonian stochasticity has a recognized
importance in the study of many systems!l. Under certain circumstances
intrinsic stochasticity may resemble a classical stochastic process12. In
plasma wave-particle interactions, phase decorrelation between a particle and
- a wave frequently results in similar particle energy gains in the plasma frame,
whether the decorrelation is brought about by intrinsic or extrinsic (e.g.
collisional) process. Heating due to intrinsic stochasticity can be distinguised
by a threshold , by a fast time scale and by details in the particle distribution
function . In addition, a Hamiltonian description of wave particle interaction
generally contains symmetries (conservation laws) which would not be
present for a competing classically stochastic process. These symmetries
imply restrictions on the transport, in phase space, of chaotic trajectories!3.



This paper reports the results of experiments, in both an argon plasma
and a barium Q-machine plasma, where the conditions necessary for
stochastic ion motion are created by externally excited electrostatic ion
cyclotron waves and neutralized ion Bernstein waves. Both the linear and
non-linear response of the plasma ions is detected using laser induced
fluorescence (LIF) and optical tagging. In addition to electric probes, the
linear dielectric response provides information on the waves14.15,

In several respects the experimental results agree with single particle
theory. However, they indicate also the presence of self consistent effects
due to the modification of the particle distribution function by the waves.

XPERIMENT T-UP AND LIF I

Experimental observations of wave particle interactions are performed in
the LMP devicel6 using argon gas discharge plasma or barium Q-plasma. In
both cases the plasma can be up to 475 cm long and S ¢cm in diameter in a
uniform magnetic field B<0.3T (AB/B< 0.3 %) . In the discharge
(respectively Q-plasma) temperature of Te ~ 10€V and Tj ~ 0.4 eV (Te ~ T
~ 0.15 eV ) and densities of ne ~ 1011 cm-3 (ne ~ 109 cm-3 ) are typical.
Low density barium Q-plasmas are ideal for studies of collisionless plasma
physics being suitable for laser induced fluorescence (LIF) and optical
tagging.

The Laser Induced Fluorescence (LIF) technique is based on laser
excitation of transitions between quantum states of ions (or neutral atoms) in
a plasmal7. This method is able to measure ion densities, velocities (Doppler
shift), temperatures (Doppler broadening), electron temperature (density of
states), and magnetic fields (Zeeman splitting). Indirectly, even weak electric
fields can be measured14.18,

A variant of LIF is optical tagging 19. A long lived metastable state is
selectively populated by laser excitation of an ionic transition. This
population is created in the volume defined by the intersection of the laser
beam with the plasma. Having the same mass and charge as other ions, the
metastable ions may be used as test particles. A search laser is used to detect
the appearance of test particles at various positions in the plasma volume. In



addition to positional information, tagging can also determine the velocity-
space motion of a particular group of ions with a given initial velocity.

Figure 1a shows the ionic transitions used in argon plasma. Since all the
transitions starting from the ground state are in the deep UV, where no
tunable lasers are available, we work with the population of the Arll
3d2Gg/, metastable state which is populated by electronic collisions . This
level represents few percent of the ion population. In the case of Ball (figure
1b) the ground state is the 62S12 level which is connected to other levels by
two visible transitions. The two 52D states are long lifetime metastable states
(T = 1S) ,which live longer than the ion confinement time in the machine
(=4mS).

The experimental set up for optical tagging is shown in figure 2. The tag
beam is a pulsed laser ( 10 nS ) in order to have a good temporal resolution.

ELECTROSTATIC WAVES

Since we are interested in wave particle interaction, a brief introduction to
the electrostatic waves involved are presented in this section.

The dispersion relation for electrostatic waves in a magnetized hot plasma
has principally two roots in the ion cyclotron frequency range20. The
electrostatic ion cyclotron ( acoustic ) wave :

w2 2KT
02 ~ |k 2+ k12{Cc2 with C2 ==—=5 (1)
i2 m;
and the ion Bemstein wave :
> 2
n2 . 1 Vthi
In(A}) = 0  withA; (2)
El T (0/Qci)? - n2 T J

I, is the modified Bessel function of order n. The dispersion relation is
shown in figure 3 along with data from an argon gas discharge with B =
2kG . Solid curves represent the dispersion relation, and dashed curves
indicate the level of linear damping. The waves are launched by a series of
plates at the plasma edge which couple capacitively to the plasma column 21,
The parallel wavelength is determined by the size and separation of the plates
along the magnetic field.



In the case of a barium Q-plasma the situation is complicated by two
effects. The window in w/k, where undamped waves can be excited is more
narrow due to the fact that Te = Tj . Secondly, the plasma has a fast parallel
drift introducing a large Doppler shift in the laboratory frame. The second
harmonic branch of the dispersion relation is shown in figure 4a. The
continuous line indicates the EICW and the dotted line the NIBW. The
dashed lines indicate the damping. Figure 4b extends over a wider frequency
range. Triangles are the experimental data and the theory is given by
continnous lines. '

Since our experiments involve a threshold in the electric field of the wave,
a nonperturbative technique for measuring the amplitude of the wave electric
field is essential. We measure wave amplitude through the linear dielectric
response of the ionsl4. This response contains information on the
perpendicular electric field and wave number. More details on this technique
will be presented in a contributed paper of this workshop15.

HAMILTONIAN SYSTEM

In order to describe the wave particle interaction, we use a simple model
which consists of a single charged particle in a homogeneous magnetic field
interacting with a propagating electrostatic wave. This situation can be
conveniently described by a Hamiltonian.

Smith and Kaufmann! and Kamey and Bers3 have shown numerically
that in such a system intrinsic stochasticity may arise.

We are considering a cylindrical wave and therefore we use the pairs of
canonicaly conjugate variables (z,p;), (9.py) and {6,1/2mQR2). Where z is
the direction along the magnetic field, ¢ is the angular position of the particles
around the guiding center and 0 and R are the cylindrical coordinates of the
guiding center. We will assume that the magnetic field B is along the z
direction.

In the reference frame moving along the magnetic field with the wave we
have :

2
H =2 4pgpQci + ¢ @osin (kzz+kL R -k Lpi sin(0+0)  (3)



1
with pj = (é_ﬂp_%) 2 being the particle gyroradius and @ is the wave
potential.

Although the particle energy is conserved in the wave frame, the onset of
stochasticity usually results in a change in particle energy in the laboratory
frame.

The Hamilton's equations are derived from the above Hamiltonian. Time
is normalized to the ion cyclotron frequency €:; ,length to parallel wave
number k; and impulsion to kz/mQ¢j. Numerical time integration of the
Hamilton equations is performed. A Poincaré section is taken by sampling
the particle position each time the particle has completed a revolution around
the field lines (¢ =n2m).

Figures 5 and 6 present respectively a Poincaré section plot for 64
particles in the pz-z plane and pz-p plane for different values of the
stochasticity parameter :

€ = kz2 (¥ q)o

m Q¢j2

In the plane pz-p the initial conditions are close to the experimental
conditions. In the first graph ( € = 0.0314 ) particles remain close to their
initial conditions.

(4)

In order to have a more complete picture of particle evolution in the pz-z
plane, particles have been initially distributed along the pz axis .

All phase space plots represent the evolution of the particle trajectory
during a time of 4000 Qci'l .

Since the Hamiltonian in the wave frame is a constant for each particle,
the quality of the numerical integration can be checked to identify numerical
noise in the particle trajectories. AH/ H has been kept below 10-7.

Figure 6¢ indicates the presence of particle acceleration in the laboratory
frame if € is above threshold. The experiments also indicate particle
acceleration. Figure 7a and 7b are perpendicular and parallel ion distribution
functions for a wave amplitude which exceeds the threshold value in barium
plasma.

Figure 8 indicates experimental evidence of a threshold in the dependence
of ion temperature on rf antenna current. Observation of the dielectric



responsel4.15 allows an absolute measurement of the wave potential g and
the wave vector which are used to determine the experimental value of the
wave stochasticity parameter.

The numerical and the experimental threshold are in good agreement for
ion Bernstein wave. This comparison has to be made with the threshold
given by Kamey3 for perpendicular propagation :

1

E Q¢ VL

oL 1%l 13 @ 3104 [em/sec] (5)
® k)

E
Experimentally, ¢ -géz 3 x 104 [cm/sec] as measured through the

dielectric response

Above the threshold, broadening of the distribution function occurs very
quickly as indicated in figure 9. The heating is clearly much faster than any
ion collision time and therefore cannot be attributed to a collisional
mechanism.

By taking measurements synchronously with the wave, we can insure

-that the particle acceleration ( broadening of the distribution function ) is not
due to the linear response of the ions to the wave field (coherent oscillation of
the distribution function at the wave frequency) .

CONSERVATION LAWS

The above Hamiltonian (Eq. 3) contains symmetries. Immediately it can

be seen that H itself is a constant of motion because

oH
-a—t-=0 (6)

This implies, as mentioned above, that particle energy is a constant of
motion in the wave frame. In other words, H has a translational invariance in
time. In addition, the Hamiltonian is translationally invariant in the two
directions perpendicular to the wave vector k. This invariance results in
conservation of the momenta pg and Pn ,where n = kxkxB. In a magnetic
field B=(0,0, By) we have :

pg =12mQ(R2-p2) =Cy (7)



k”mQRG - k_Lpz
S =C2 (8)

(8 ) is strictly valid only in the limit R2 » p2

The contants C and Cp depend on the particle initial conditions. If the
Larmor radius is small compared to the guiding center coordinate R, then R
is nearly constant during the motion i.e. the particle guiding center will not
move along the direction defined by k.

The conservation law py = Cp is valid provided that RZ»p2.
Conservation of py implies a displacement which is linked to acceleration
along the magnetic field .

Each of the three conservation laws of the wave particle Hamiltonian has
the effect of constraining the phase-space excursion of particles even during
stochastic motion.

We will be considering particles which are several gyroradii away from
the axis which, therefore, satisfy the above relation. Integration of the
dynamical equations which follow from the Hamiltonian (Eq. 3) indicates
the conservation laws clearly. Figures 6, 10 and 11 show results from this
integration. The three pairs of frames are Poincaré section plots
demonstrating the behaviour of particle orbits both below {6a,10a,11a] and
above {6¢, 10b, 11b] the threshold for stochastic motion. Below threshold,
subsequent intersections of particle orbits with the plane of section are very
close to the initial conditions and indicate regular motion.

Conservation of H during stochastic motion is illustrated in Fig. 6¢ The
arc 1/2m p,2 + 1/2mQ2p2 corresponds to the particle kinetic energy in the
wave frame. A finite width is observed to this arc because of the contribution
of the potential energy of the wave. An important consequence of the
conservation of H is that, in the 1ab frame, stochasticity will change p,
primarily in the direction of wave travel provided that the particle initial
perpendicular velocity is less than the wave parallel phase velocity. In the
velocity plane, particle motion is restricted to lie on arcs centered on the wave
parallel phase velocity. Experiment does indicate an asymmetry in the particle
acceleration in the direction of propagation of the wave (-z) (figure 7b).



Furthermore, particle acceleration along arcs in velocity space centered on the
wave parallel phase velocity (= 1.8 - 105 cm/sec) is consistent with the range
of energies observed (€ <4.5eV).

In figure 10 a series of particles have been started along a vertical chord
(in real space) which is normal to B. This is done for the purpose of
comparison with the experiment. The circle indicates the symmetry axis of
the wave fields and the plasma size. For a group of particles with the initial
conditions shown in figure 10a, conservation of pg results in the formation of
a ring in physical space (figure 10b). R is nearly constant for off axis
particles. If the wave-particle interaction causes p to increase (figure 6¢) R
will increase slightly. Experimentally, optical tagging provides a way of
following ions in phase space . For these experiments, a pulse laser is used
to quickly (=10nsec) create metastable particles along a vertical chord at a
given axial position, and a cw laser beam on a movable carriage?2 is used to
detect test particles as a function of position, time, and velocity (figure 2).
Figure 12 shows the results from such a scan both below and above the
stochasticity threshold. Below threshold, particles move along the straight
field lines. The large-dash curve in figure 12 is the plasma electron density
profile. Short dashes are used on the same figure to indicate the excess
metastable density profile at a distance of 27 cm (sensitivity x10) produced
by the pump laser in the presence of a wave below the threshold. At a wave
amplitude which exceeds the threshold for parallel accelarations, metastable
particles are also found at the symmetric point about the wave axis on the
horizontal chord. Thus, we infer that the test particles are forming a ring in
configuration space which intersects the horizontal scan in two places. This
ring formation is what one would expect{figure 10b) from the conservation
of pg -

The link between guiding center motion in the k x B = § direction and
parallel acceleration implied by conservation of py, is shown in figure 11b.
Note that in figure 11 we plot the particle position (y, r) which differs slightly
from the guiding center position {8, R), but is what we measure
experimentally. Experimentally, this correlation is most easily seen through
changes in the time of flight of test particles as they move between the pump
and search laser beams. Although the motion is chaotic, the parallel velocity



is not unbounded and, given the net Ap, for a particle, the change in time of
flight can be approximated by:

At ~ Azvp - Az/(vp + 1/2Apz/m) (9)

where Vp is the nominal parallel drift of the Q-plasma. Using A@=r and (
Egq. 8) one obtains At = 20 psec. Figure 13 shows two time-of-flight spectra
at diametrically opposed points on the horizontal chord. Those which remain
at ‘¥'=0 have a longer time of flight, on the average, than those which have
been transported to ‘F'=r. The peaks of these spectra are separated by the 20
psec predicted above.

The three measurements presented above argue for the conservation of H,
g and pr, respectively. Despite the broadening of the distribution function
which results from exceeding the stochasticity threshold, the individual
particle motions continue to observe the basic symmetries of the wave-
particle interaction Hamiltonian. Chaos during wave-particle interaction is
seen to produce rapid, though constrained, transport of particles in
coordinate space as well as in velocity space.

E- T FE

The linear wave theory gives a satisfying description even when the
particle distribution is strongly modified by stochastic particle acceleration.
Nevertheless three evidences of self-consistent effects are observed.

Because the wave vector, particulary of the NIBW, is sensitive to ion
temperature, the perpendicular wavelength is observed to change (increase)

- with increased ion temperature. Therefore the threshold increases with ion
temperature which may tend to saturate the process as observed in figure 9.
Wave coupling may also change with the ion distribution function.

Another complication occurs when the parallel distribution is broadened.
Given the heated distribution (figure 7b), the waves should continue to be
strongly (linear Landau) damped even after they have decayed to a level
below the threshold.

Figure 14a shows the temporal ion temperature evolution after the
electrostatic wave has been excited above threshold. Figure 14b presents the
in-phase component of the dielectric response indicating that the observed



ion temperature transient effects are associated with wave amplitude
oscillations.

CONCLUSION

Several points of agreement exist, therefore between these experiments
and the predictions of the single particle stochasticity theory. The threshold,
the time required, the form of the distribution function, the conservation of
three constants of motion all seem to agree with single particle theory.

The linear wave theory appears to hold throughout. Despite the self
consistent effects, the linear dielectric response is still visible on top of
secular changes in the distribution function.
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Density profiles on a horizontal chord. Large dash indicates electron
density. Test particle density (x10) is given by small dashes (below
threshold) and a solid curve (above threshold)
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Figure 13
Time of flight spectra at R = 1.5 ¢m and v=0 (solide curve) V=n
(dashed curve)



W)
cmls

T
C
TR
C x
o+
O
&
]
O
¢o
(o}
L
Q.
Ll
& < i ' i &
0 1 2 3 4 5 6 0 1 2 3 4 5 6
number of cyclotron orbits number of cyclotron orbits
Figure 14a Figure 14b
Time development of barium ion Time development of the in-phase
temperature for pulsed rf above component of the dielectric velocity

threshold (amplitude of the wave)



