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Abstract

A new way 1s discussed to handle numerically the ion-ion hybrid
resonance appearing in the cold plasma model for plasma heating in the
ion-cyclotron range of frequency (ICRF). It is shown that the
resonance can be resolved without introducing artificial and
unphysical damping outside the resonance damain. This feature is
particularly important for computations in two dimensions. This note

supplements and corrects a recently published conference contribution

[1]-



1. Introduction

In the last few years, a considerable effort has been made to
solve numerically the linear wave equations in the plasma and the
vacuun together with adequate boundary conditions at the interfaces
plasma-vacuum, vacuun-antenna-vacuum and vacuum-conducting shell [1 -
5]. This approach is known as the "global wave approach". For computa-
tions in one dimension both hot and cold plasna models have been
developed whereas in two dimensions only the cold model has been
extensively used up to now. In the cold model a singularity appears in
the equations at the ion—-ion hybrid resonance where, in the hot model,
the mode conversion of the fast wave into the slow wave takes place
[2]). To resolve this resonance one adds a small imaginary part to the
resonant denominator which introduces a damping of the fast wave at
the resonance replacing the mode conversion mechanism. The formulation
of the numerical algorithm can be done in different ways. After
introducing the physical problem, we shall present the two numerical
models used so far and show how they can be modified to eliminate
their defficiencies and yield a faithful numerical picture of the

physical problem.

2. Physical problem

Throughout this paper we shall consider a slab geometry identical
to the one used in Ref. [2] but the considerations made here are
relevant to toroidal geometry as well. We suppose the plasma to be
inhamogeneous along the x-direction and the magnetic field to be

parallel to the z-direction. Assuming an exp(-iwt) time dependence and



neglecting both the displacement current and the mass of electrons the

Maxwell's equations in the c¢old plasma model can be written as

follows :
Vx (VxE) - gE=0 , (1a)
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The summation extends over all ion species %, wpy and wep
being the plasma and ion-cyclotron frequencies. The ion-ion hybrid
resonance, defined by the zero of the denominator of the fast wave
dispersion relation for kg2, is then expressed as :

E_L_kn2=€_|_—kzz=0 .

In toroidal geometry k; becomes a differential operator but the
feature of the resonance and thus the method to resolve it remains the
same as in 1-D geometry [3, 4]. The singularity of the dielectric
tensor, egs. (1b) and (lc), at w = wei does not engender a
singularity of the solution of eq. (1a) as can be seen by inspecting
the dispersion relation for ky?. In this relation both the numerator

and dencminator have the same dependence in (w - wej). Apart from a



condition on the wave polarization one does not expect any special
feature at the point w = wej and in particular no wave damping. The
numerical method should not therefore introduce any artificial damping
outside the ion-ion hybrid resonance domain. We exclude fram our
discussion strongly collisional plasmas where the wave damping peaks

atw = Wei-

3. Numerical model

So far, there have been two ways to get around the resonance :

1) by adding an imaginary part to the mass, m(1+iv), or equivalently
to the frequency, w(1+iv), which corresponds to introducing an
artificial collisional damping [4,5];

2) by adding an imaginary part directly to g , g+ 15, [1 - 3].

To understand the effect of both methods, let us look at the
power deposition density in the plasma Pg = - 1/2 Re (_V_- (E* x §_)),

which can be expressed in the following ways :
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where Ey = B, + iEy is the left-hand component of the field and



E. = Ey - iEy is the right-hand camponent of the field.

Iet us consider the first method. If we analyse Img) and Imeyy

replacing w by w(1+iv) in egs. (1b) and (1c) we remark that :

a) Img; and Imey, are equal at w=wej and of the same order and
sign when v is of the same order as wcji.

b) ‘They are proportional to v for w#wqj and to 1/\, at w=wej.

Remark a) together with eg. (2c) shows that the absorption of
|E.|2 tends to cancel and that of |E4|? tends to add up, a fact which
has been pointed out by Jaeger [6]. Thus Py tends to be proportional
to ‘E.,.lz. As |E+|2 is small outside the ion-ion hybrid resonance
(‘E+|/|E_| ~ (w-wgi)/(wtwci) ) and large at the resonance, so will
be the power deposition profile, which is exactly what we want. Remark
(b) shows that the imaginary parts of ¢, and Exy have a peak at
wei due to the tem 1/(wei’ - w?). Thus in conjunction with an
eventually unprecise numerical approximation of E4=0 at w=wqj it can
lead to an unphysical wave damping localized around wceji. This
artificial peak of Img) and Imeyy is even worse in toroidal current-
carrying plasmas where the ion-ion hybrid resonance intersects with
w=wej [7]. This featwre of the two-dimensional problem makes it
difficult to separate the damping due to mode conversion from the

unphysical damping at w=wci [8]-

The second method takes care of this last problem as it
introduces a constant imaginary part 6 in g; and none in eyy [8]. In
this case, however, a problem of convergence and smoothness of the
solution arises because § must be taken very small compared to the

nunber of points [1] for physical reasons : with a larger &



most of the power is absorbed by the fast wave outside the resonance,
wvhich is again unphysical. This is due to the fact that, with Imexy
=0 and eq. (2c), Py is proportional to (|E+|2 + IE_lz). As seen

before, |E:_|2 is much larger than |E+|2 outside the resonance and much

more power is absorbed there than in the first method.

This last point cambined with eq. (2b) shows us how to correct
the second method. We have to add an imaginary part to exy as well,

so that :

that is to replace exy by exy + 16 as we did for g, . Let us notice
that In ¢, and Im eyy have now the same relation as in the first
method (remark (a)). In this way Pq is exactly proportional to
|E+|2 over the whole plasma and hence is small outside the ion-ion

hybrid resonance. It has no artificial structure around w=wgi. This
corresponds to the physical solution we wanted and yields a good
nunerical model of the resonance. We shall see in the next section
that we can considerably enhance the value of § and thus have much

better smoothness and convergence properties.

4, Results

It has already been shown in Ref. [8] that the artificial
structure at w=wcj, occuring in the first method, can be eliminated
by using constant imaginary parts in g. We shall therefore campare our
new method only with the results obtained using the second method

[1]. We shall use the same parameters as in Ref. [1].



Let us first look at the power deposition versus frequency
obtained by means of the second method, that is Img, = & and mexy =
0, and using hybrid elements for the finite element method of
discretizing the variational problem (Fig. 1, dotted line). We see
that the curve is not samooth at all and that numerical and unphysical
peaks appear. This curve was obtained using a &, normalized by w?/c?,
of 1. The continuwous line is the result obtained using the hot plasma
model wvhich can be taken as a reference. This is dramatically improved
with the new method, that is Img = Imeyy = 6, as can be seen in
Fig. 2. There are no numerical and unphysical peaks and the curve is
very smooth. Moreover the curve matches well the results of the hot
plasma model, showing that the cold model gives now the right physical
description of the mode conversion mechanism. This result was obtained
using a value of & of 40 which is, as expected, a much larger value
than in the other method. This improvement can also be seen in the
convergence study (Fig. 3). With the second method (dotted line) it
barely seems to converge while with the new method (continuwous line)
it converges well for N larger than 500 points. However, in two
dimensions we are so far unable to take more than about 400 points
across the plasma cross-section using also hybrid elements. We cannot
therefore have a well converged solution. Nevertheless the solution is
still much smoother with the new method as can be seen in Fig. 4 where
we plot the power deposition versus the wave frequency. The dotted
line shows the results obtained by means of the second method while
the continuwous line shows those obtained using the new method. The
result is more credible and the multitude of fine-structure peaks
(dotted line) have been identified as being of purely numerical

origin.



5. Conclusion

We have discussed the advantages and the main defficiencies of
the numerical methods used so far to resolve the ion-ion hybrid
resonance. We have devised a new method which combines their
advantages and eliminates their defficiencies. We have shown how this

method dramatically improves the smoothness of the numerical solution.

In two dimensional plasmas, it has eliminated resonances with the

modes of numerical origin and allows us to analyse better the mode

conversion mechanism using the cold plasma model.
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Figure captions

Fig. 1 :

Fig. 2 :

Fig. 3 :

Fig. 4 :

Power deposition versus frequency as obtained using the cold
plasma model in 1-D geometry on a coarse equidistant mesh
with N=512 points and with the second method : Imexy=0,
Ime, =5 with 8c?/w?=1 (dotted line). The continuous reference

line is obtained using the hot plasma model.

Power deposition versus frequency as in Fig. 1 but with the
new method of modelling the cold ion-ion hybrid resonance :
Ime yo=Ime; =5 with 6c%/w?=40 (dotted line). The continuous

reference line is the same as in Fig. 1.

Convergence behaviour of the power deposition versus mesh
size N for the second method (dotted line) and the new method
(continuous line), the other parameters being the same as in

Fig. 1 and 2 respectively.

Power deposition versus frequency as obtained using the cold
plasma model in 2-D geometry on a NyxNpo) = 160x80 mesh.
The dotted 1line corresponds to the second method (with
6c2/w?=2.5) and the continuwous line to the new method (with

62 /w?=60) .
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