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ABSTRACT

A new axisymmetric, free-boundary equilibrium code, FBT, has
been developed and tested. The code allows the computation of arbitra-
rily shaped tokamak equilibria, with external or internal separatrices
and multiple magnetic axes. It is shown that bifurcations can be con-
trolled by an iterative procedure using shape feedback. Three specific
applications are discussed: (1) The problem of shape accuracy, (2) the
calculation of a startup evolution for a highly elongated tokamak, and

(3) methods to control saddle points.



1e INTRODUCTION

Plasna equilibriumn calculations have always been an important
tool for the design of magnetic confinement devices and for the analy-
sis of experimental data. Recently, however, the scope of these calcu-
lations is being considerably expanded as the devices are becoming
more and more camplex. In highly elongated tokamaks, for example, the
shape of the plasma boundary must be accurately controlled, in order
to maintain axisymmetric stability throughout the discharge. It is
therefore important to know how accurately a certain plasma shape can
be produced with a given set of poloidal field coils. In addition, one
would like to know how the coil currents must be changed in order to
produce a predetermined shape modification. In divertor tokamaks, the
question arises how a saddle point can be maintained at a given point
in space while the plasma parameters change. Finally, one is often
confronted with the conflicting requirements of shape accuracy on the
one hand and minimun power dissipation in the poloidal field coils on
the other hand, and one is looking for an optimum compromise.

Most of these questions can be answered by free-boundary equili-
brium calculations, and several numerical codes [1-16] have been
developed for this purpose. These codes can be divided into four
classes, i.e., (a) 2D Eulerian codes [1—7], (b) 2D inverse codes and
variational mament methods [8-9], (c) 2D evolutionary codes, including
1D transport [10-14] and (d) 3D codes [15-16]. In the first group, we
find three codes [1,2,5] which allow the calculation of coil currents
for a predetermined plasma shape. On the other hand , the codes
described in Ref. [3,4,6,11] assume fixed coil currents. This implies

that a trial-and-error method must be used if one wants to compute



equilibria with a given shape. Reference 7 describes a method for
computing coil currents, assuming the coils lie on a rectangular
surface where the flux function is a constant. Inverse codes and
maments methods [8,9,12,15] generally assume nested flux surfaces and
a single magnetic axis, hence they cannot treat cases with arbitrary
magnetic topology such as internal separatrices. In Refs. [5,10] it is
assuned that the plasma shape can be varied by specifying flux values
at the positions of the shaping coils. However, this can lead to
bifurcations, i.e. several different shapes may be obtained for
identical boundary conditions [5].

In this paper, we describe a new code, FBT, which has been
developed with the aim of computing highly elongated and arbitrarily
shaped equilibria, having external or internal separatrices. The code
is especially suited to compute poloidal field coil currents during
the startup phase of shaped tokamaks, when the plasma cross section
undergoes drastic changes on a slow time scale. FBT is in many
respects similar to the codes described in Refs. [1,2], but it has
several new features, not found in other codes: (a) numerical feedback
is used to control the plasma shape as well as the position of magne-
tic axes and saddle points, (b) the shape is determined by specifying
either exact boundary points or approximate boundary points or both,
(c) the linearized Grad-Shafranov equation is solved non-iteratively
by cyclic reduction [17] coupled with tridiagonal matrix inversion and
(d) the code includes a stability test [18] which gives a good appro-
ximation to the ideal MHD growth rate of the most unstable axisym-

metric mode.



2. THE PHYSICAL PROBLEM

Let us consider an axisymmetric toroidal plasma, with boundary
S, surrounded by vacuun. The poloidal field coils are distributed
arbitrarily in the vacuum region. We assume that there is no iron in
the system. For convenience, a computational boundary, C is introduced
in such a way that the plasma is campletely inside C.

The free-boundary equilibrium problem can be divided into four
steps, (a) the calculation of coil currents, subject to a number of
constraints and optimization criteria, (b) the calculation of flux
values on the camputational boundary, using known coil currents and a
fixed plasma current distribution, (c¢) the solution of the Grad-
shafranov equation inside C, with given flux values on C and a fixed
plasma current, and (d) the calculation of the plasma current distri-
bution, using given source functions. Of course, all four steps have
to be solved simultaneously, in a self-consistent way, and this is
usually done by an iterative procedure as will be discussed in the
next section. The physical issues involved in steps (b), (c) and (d)
have been amply discussed in the literature and will not be presented
here. The treatment of step (a), however, is not at all obvious and

merits special attention.
2,1 Constraints
Let us first express each coil current, Cj, as a sum of a

fixed current, Vj ¢, and a number of current maments, Vj n,

multiplied by scaling factors Xp,
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The current moments, Vj  can either represent physical connections
between different coils, or they can be specified in such a way as to
produce particular flux patterns (vertical field, radial field, etc).

Bquation (1) implies that the coil positions are fixed and inde-
pendent of the parameters X,. (bnsequently, the fluxes and magnetic
fields produced by the external coils are linear functions of the
Xn's. This allows the use of standard optimization techniques and
guarantees a unique solution. If, on the other hand, the coil posi-
tions are functions of the X,'s, the problem becames highly non-
linear, and there may not be a unique solution.

In camputing the unknown scaling factors X,, various con-

straints may be imposed. We consider the following three options:

2.1.1 Exact plasma boundary points

The condition that the plasma boundary, defined by ¥ = ¥jipm,
must contain a number of fixed points in the (R,Z) plane, can be

expressed in the fomm
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where the first and second sums represent the contributions of the

external coils and the plasma, respectively. The summation over coils



is hidden in the quantity G, ,n, i.e.
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where G;,i is the Green's function connecting the i-th coil with the
v—-the boundary point. (G\’,'i is the flux at the v-th boundary point,
produced by a unit current in the i-th coil.) The second sum in
eq. (2) extends over all plasma current elements, i.e.
No = NR*N; where N and N; are the numbers of radial and
axial mesh points, respectively. G,,x is the Green's function
connecting the k-th plasma current element with the v-th boundary
point. These Green's functions are, of course, functions of four
variables, i.e. the coordinates of the source point and the coordi-
nates of the target point in the R,Z plane. It should be noted that,
in, eq. (2), the contribution of the fixed current mcment, Vi,1, has
been included in the summation by setting X; = 1. Furthermore, the

limiter flux , ¢1jn, is considered as an unknown, and we write

$lim = XNg+1-

2.1.2 Points with vanishing radial or axial field

The condition that the radial or axial component of the magnetic

field vanish at particular points in space, is written as
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respectively. The D's and E's are spatial derivatives of Green's
functions or linear cambinations of such derivatives. E),k, for
example, is the Z-component of the magnetic field at the point A,
produced by a unit current at the position k. 2gain, the summation

over coils is hidden in the quantities E;, and E) n.

2.1.3 Volt-sec constraint

It is often useful to prescribe the vacuum flux produced by the
sun of all currents in the poloidal field coils at a particular point

within the plasma. This condition can be expressed as

Ny
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where Gp,n is again a linear cambination of Green's functions and
Yp is a fixed constant. The point F may be chosen anywhere in the
(R,2) plane, for example Rp = Ry, 2Zp = 0, where R; is the major
radius.

The constraints listed above are all optional in the sense that
they may be introduced if their total number does not exceed the
nunber of free parameters (Xp). However, the constraints are not

necessary, as we shall see below.



2.2 Optimization

It is well known that if one fixes the plasma shape very pre-
cisely, e.g. by specifying a large number of exact boundary points
(eq. 2), the coil currents tend to assume very large values. These
large currents often appear in the form of dipoles, i.e. positive and
negative currents in adjacent coils. In practice, one is looking for a
solution which offers the best possible shape accuracy without exces-
sively large coil currents. T achieve this, we first introduce

approximate boundary points, with flux errors &,

N,

/9
k=1

The number of approximate boundary points, Np, is arbitrary and is
in no way related to the number of exact boundary points, Ng.
We then calculate the total resistive power dissipation in the

poloidal field coils,

P = Zﬂ‘ Za( (l/ z\/ )( (7)

where the d's are proportional to the coil radius and inversely pro-
portional to the coil cross section.
In addition, we express the sun of the squares of the current

differences in adjacent coils as
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where the weighting coefficients gj are assumed as
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and Rj, 2Zi are the coordinates of the i-th coil. The choice of
gji reflects the fact current differences in coils which lie close
together are much more severe than current differences in coils which
lie far apart.

We now cambine the three optimization criteria into a single

function,

N,
A
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which is to be minimized. The weighting coefficients, Wyr © and vy,
can be chosen arbitrarily. They reflect the degree of shape accuracy
one wishes to achieve in a particular application. For example, it may
be useful to specify the coefficients W, as being inversely propor-
tional to the square of the poloidal magnetic field. This leads to a
uniformm shape error for all boundary points. The poloidal field dis-
tribution on the plasna boundary is, of course, not known at this
stage of the calculation. Approximate values, obtained fram a pre-

viously calculated equilibrium, would have to be used. If one chooses
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all %'s identical, then the flux errors will be uniform, and this

can lead to large shape errors in the vicinity of saddle points, i.e.

in areas of low poloidal field.

3. SOLUTION PROCEDURE

The physical problem, as outlined in the previous section, can
be solved in many different ways. In FBT, we are using a Eulerian
coordinate system, because our aim is to campute equilibria with arbi-
trary topology, having internal saddle points and multiple magnetic
axes., Inverse methods [8,12,15], using the flux surfaces as coordi-
nates, as well as moments methods [9], are rather inconvenient in such
cases.

Since the free-boundary problem is intrinsically non—linear, it
is solved by an iterative procedure [1,2]. The method used in FBT

consists of the following steps.

3.1 Plasma current initialization

An initial estimate for the plasma current distribution is
necessary in order to start the iteration procedure. If this initial
estimate is very different fram the desired final solution, the
iteration may converge to an unwanted or unphysical solution. In FBT,
we construct the initial current estimate by using the coordinates of
the specified boundary points (both exact and approximate), assuming a
parabolic current profile inside the plasma region. The current dis-
tribution is then nommalized such that the total plasma current agrees

with the prescribed value.
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3.2 Calculation of coil currents

If the plasma current, Jx, is known, the constraints, egs.

(2)=-(5), can be written in the form
M,

+ F =0 =1....N 11
Z Ao(/h Xh+:l l'( ) L an
h=1

where Ay n is a known matrix, Hy a known vector, and Ny, is. the
total number of constraints, N, = Ng + Ng + Np + Np, Np

being either 1 or 0, depending on whether a Volt-sec constraint is

applied or not. Remember that X; = 1 and Ng+1 = dlime

The minimization of the function Q (eq. 10), subject to the

constraints (11) is then achieved by introducing a function U,

M

Ny
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and by requiring that

U
axh*L
u

= 0

> (13)
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Aq being the Iagrange multipliers. (13) is a system of N, + Np,
linear equations which can readily be solved for the unknowns X, and

Aq . The coil currents then follow fram (1). The system of equations
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(13) always has a unique solution. Whether this solution is a
physically reasonable one depends on the choice of the constraints
(egs. (2)-(5)), the current moments (Vj,pn) and the weighting

coefficients (W,,c and y). This will be discussed in section 7.

3.3 Flux values on the computational boundary

The boundary fluxes, ¥, are given by

N, Np
= - (14)
% Z 6"4,14 Xh +Z Gm,k jk %‘m
h=1 k=1

where m labels the position on the computational boundary and the G's
are the usual Green's functions. The evaluation of the second sum in
eg. (14) can be extremely time-consuming if it is done in a
straightforward manner, using Green's functions. The use of Lackner's
method[ 1] allows to speed up this calculation considerably. The method
consists of projecting the plasma current onto the boundary C by
solving the Grad-Shafranov equation with ¥ = 0, and then taking the
nomal derivative of ¥ on the boundary. The boundary fluxes ¥, are
then evaluated from the fictitious boundary currents, where care must
be taken in the treatment of the logarithmic divergence of the Green's

function.

3.4 Solution of the Grad-Shafranov equation

The Grad-Shafranov equation,

Y J [1 d¥] _
5z R IR [R S TR
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where p is the toroidal current density, 1is written in

finite-difference form as

+¥ +a % . +6 Y .+e.&//..=f4.j (16)
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Here, the index k, used in previous sections, has been replaced by the
indices i and j, where i labels the radial and j the axial position in
the computational grid.

Huation (16) is solved by a fast, non-iterative algorithm,
using cyclic reduction coupled with tridiagonal matrix inversion. This
method is as fast as the conventional double cyclic reduction algo-
rithm [17] and it has the advantage that the number of grid points in

the radial direction does not have to be a power of 2.

3.5 Calculation of plasma current density

The toroidal plasma current density is given by

ju. / 1 /
e R g T )
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where AR, AZ are the mesh sizes, p(¥) and T(Y¥) are the usual source
functions, the prime denotes derivation with respect to ¥ and the
superscript u stands for "unnormalized". The nommalized current, Jk s

is then obtained fram

jk:J/c(I/’/ijk) (18)

where Ip is the total plasma current.

At this point, the calculation switches back to step 3.2 and the
steps 3.2 throuwh 3.5 are repeated until a suitable convergence
criterion is satisfied. We nommally require that the maximum change
between successive iterations in any flux value must be less than 10~/
times the difference between the flux on the magnetic axis and the

limiter flux, i.e. € = 10~/.

4. QODE VALIDATION

4.1 Comparison with an analytic solution

The accuracy of the finite difference approximation (16) can be
tested by comparing the numerical solution with an analytic solution.
Since the discretization of the second derivative with respect to Z is
obvious, 62\1’/622 = (‘I’j+1 - 2‘Ifj + ‘l'j_1)/AZZ, we consider a case
which contains only radial derivatives, i.e. an equilibrium which is
infinitely long in the Z direction.

Iet us assume that the plasma is bounded by the cylindrical sur-

faces R = 1 and R = 2, and that the toroidal current distribution is
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given by

f(R):(—2+3R~R2)/ﬁo (19)

An analytic solution of the Grad-Shafranov equation (15), assuming

32y/822 = 0, ¥(1) = 0 and ¥(2) = 0, is then readily obtained as

[

fe:.g_.__g_tf_z_:”__f_-lg_z 1
YR)= - 3R +5R - 22+ L

We now solve eq. (15) numerically, using two different discretization
schemes. The first scheme is the one given in eg. (16). The second
scheme [2] uses partial derivatives, which leads to slightly different

coefficients, i.e.,

x _ A7 )Z Roi-—’/z

% AR r.
,6* = (_A_Z__)l E’ill_ (21)
4 AR R.

A

1

We campare analytical and numerical solutions and evaluate the maximum
error as a function of the number of grid points (Fig. 1). We note
that the convergence is strictly quadratic and that the finite differ-
ence scheme (16) is slightly more accurate than the one using the

coefficients (21).
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4.2 Comparison with Lackner's code

In order to test the FBT code as a whole, we compare its results
with those obtained fram Lackner's code [1]. For this purpose, we
campute identical equilibria with both codes. lackner's code was run
at the Max-Planck-Institut fir  Plasmaphysik, Garching, in
collaboration with Dr. K. Lackner [19]. The FBT code is run at EPFL,

Lausanne. Identical source functions are used in both codes,

N

pl=e,[t-(1-9)"

-

TT:CT_i'(i'(f) > (22)

(F: ((‘U’%/'m)/(t/zxi.(‘—%/hﬂ) /

where cp and or are constants. We also use the same coil positions
and mesh size (65x65) in the two calculations. The FBT equilibria are
computed with three exact boundary points and two current moments. The
first mament produces a predaminantly vertical field. It consists of -
eight identical currents (Iy), four positive ones in the inner coils
and four negative ones in the outer coils. The second mament produces
a radial field which is necessary for adjusting the vertical position
of the plasma. In the converged solution, this second moment has a
negligibly small coefficient, since we have chosen configurations
which are exactly up-down symmetric.

In Table 1, we compare the results of the two codes. All cur-
rents have been nomalized to the plasma current. The first equili-

briun is roughly circular and has a high beta value (Bp = 1.5). The



-17 -

second equilibrium is characterized by a double-null divertor, with
divertor currents equal to 70% of the plasma current. We note that the
results of the two calculations differ by less than 0.1%. In Figs 2
and 3, we compare the corresponding fluw surface plots. They are

practically indistinguishable.

5. BIFURCATIONS

The free-boundary equilibrium problem, as described in Sec~
tion 2, is, of course, highly non-linear. Several solutions may exist
for given initial conditions., We show here three examples of bifurca-
tions which arise frequently in plasma shaping studies.

First, we oonsider a plasma with elliptical cross-section
(Fig. 4). We define two fixed boundary points on the mid-plane
(2 = 0). The fluxes at these two points are equalized by an adjustable
vertical field. The elongation (b/a) is given by a fixed quadrupole
field. We compute a series of equilibria with increasing quadrupole
field. It is seen that, as the elongation grows, the convergence be-
cames slower. Figure 5 shows the number of iteration cycles necessary
to reduce the maximum error in ¥ to 10‘7, as a function of the elonga-
tion, x. Por ¢ > 1.5, there is a slight vertical drift of the plasma
as the iteration proceeds. Figure 6 shows the displacement of the mag-
netic axis as a function of the cycle number, for two values of k. For
k > 1.75, a converged solution can no longer be obtained. This pheno-
menon can be avoided in several ways. One method consists of fixing
the z-position of the magnetic axis by specifying B = 0 somewhere

on the mid-plane (e.g. at R = Ry). Another method relies on intro-



- 18 -

ducing additional boundary points on top and bottom of the plasma. In
both cases we need additional free parameters (i.e. variable current
moments) to satisfy the new constraints. It is then possible to obtain
converged solutions for elliptical equilibria with « > 1.75.

However, when the elongation becames very large, another
instability appears. Let us consider a racetrack-shaped equilibrium
withk = 3.6 (Fig. 7). If we try to campute this equilibrium with four
fixed boundary points (two on the mid-plane and one each on top and
bottom) , we observe that the magnetic axis drifts slowly in the verti-
cal direction and that the displacement grows exponentially with the
number of iteration cycles. At the same time, the plasma shape is gra-
dually distorted fram the original racetrack into a pear-shape. The
instability can again be suppressed by using additional boundary
points (Fig. 8).

A third instability can be observed when the boundary points are
placed diagnonally. We again consider the racetrack equilibrium with
k = 3.6 (Fig. 7). The boundary points are now placed in the four cor-
ners where the tangent to the flux surface forms an angle of 60°’ with
the horizontal axis. In this case, the iteration is highly unstable,
leading first to a doublet shaped plasma with an internal separatrix
and two magnetic axes, and finally to a camplete breakup of the plasma
into two droplet-shaped configurations (Fig. 9). This mode is easily
stabilized by introducing two additional boundary points, lying on the
mid-plane.

It is interesting to note that all three numerical instabilities
discussed above have their analogue among the physical instabilities

of elongated tokamaks [ 20,21].
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6. GROWIH RATES OF AXISYMMETRIC MODES

A free-boundary equilibrium code, such as FBT, lends itself
readily for computing global axisymmetric instabilities of tokamak
plasmas. The method has been described in detail in Ref. [18]. The
basic concept is as follows: We first compute an initial equilibrium
and a number of neighbouring equilibria with slight changes in plasma
position, shape and source function parameters. We then construct
linear cambinations of these neighbouring equilibria in order to find
displacement vectors which are compatible with ideal MHD constraints.
The growth rate of the axisymmetric .vertical instability can then be
obtained fram the radial magnetic field which is necessary to keep the
displaced plasma in equilibrium. Results obtained for up-down symmet-
ric configurations have been shown to aree with ERATO calculations
[18].

As an example, we show here the results of a stability study of
elongated racetrack and D-shaped plasmas in a rectangular conducting
shell. Figure 10 shows the values of qgy/q, for marginal stability,
as a function of elongation, for two different values of the plasmna-
wall distance, A. When the plasma elongation is varied, the size of
the shell remains fixed, and the plasma is always placed within the
shell in such a way that the minimum plasma-wall distance on the top
is the same as that on the two sides, For each of the four curves
shown in Fig. 10, the stable damain is below and the unstabale domain
above the curve. We note that, fram the point of view of maximum
allowable (da/%) values, the D-shaped plasmas are considerably

more stable against axisymmetric modes than the racetracks.
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7.  APPLICATIONS

The FBT code has been applied to the camputation of a wide
variety of tokamak equilibria. Typical examples are presented in the

following paragraphs.

7.1 Shape accuracy

In order to illustrate the conflicting requirements of shape
accuracy and low power dissipation in the poloidal field coils, we
consider a triangular equilibrium (Fig. 11). The plasma shape is de-
fined by twenty approximate boundary points. Three of these points lie
on the corners of the triangle, whereas the others are distributed
evenly along the sides. Sixteen poloidal field coils are used to gene-
rate these equilibria, and the moments matrix (Vi,n) is assumed
strictly diagonal. The weighting coefficients (Bg. 10) are defined as
follows: The boundary points all have the same weight, W, = 1. The
weight of the power dissipation, P, is varied by assuming three diffe-
rent valuves of o (0.1, 0.001, 0.0). The dipole term is not used
(y =0).

| The results (Fig. 11) show that, as o becomes smaller and smal-
ler, the plasma shape approaches the prescribed triangular shape, but
the coil currents increase dramatically. Of course, even with ¢ = 0,
the shape cannot be an exact triangle because the number of poloidal

field coils is relatively small.
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7.2 Startup Evolution

Startup scenarios for non-circular tokamaks usually begin with a
circular plasma which is then stretched and deformed until it reaches
the desired final shape. The plasma current is ramped up simultaneéus—-
ly, such that the g-value remains approximately constant during the
evolution. In order to implement such a scenario in a tokamak, one
needs to know the shaping currents as functions of time. These can be
obtained by camputing a number of free-boundary equilibria, simulating
the desired shape evolution. 2n example of such a calculation is shown
in Fig. 12. Thirty equilibria were camputed to describe the transfor-
mation of a circular plasma into a bean-shaped one (Fig. 12 shows only
every third equilibrium). Sixteen approximate boundary points were
used to define the shape of each equilibrium. In the first equili-
brium, the sixteen boundary points lie on a perfect circle, whereas in
the last one, they are evenly distributed around the circumference of
a bean shape. The intermediate equilibria are then defined by assuming
that each boundary point follows a linear trajectory and that this
trajectory is divided into thirty equal steps. Twenty-four shaping
coils and sixteen independent current maments were used to generate
the equilibria shown in Fig. 12. The plasna current is assumed to
scale with elongation as I, ~ («2+1)c%.3% [22]. The weighting
coefficients (Bg. 10) are taken as W, =1, ¢ = 0.001, vy = 0. Bquili-
briun source functions are identical with the ones used in Ref. [21].
The resulting coil currents are plotted as functions of the step
number in Fig. 13.

In contrast to previous studies of shape programming [23], the

plasna evolution considered here is assumed to take place on a very
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slow time scale. Therefore, magnetic fluxes are not conserved in going
fraom one equilibrium to the next. We also note that the evolution is
asymmetric with respect to the mid-plane (Fig. 12). This is done in
order to take advantage of the stabilizing effect of the top wall. At
the end of the evolution, however, the equilibrium becames exactly
up-down symmetric and, hence, the coil currents which lie symmetric
with respect to the mid-plane became identical (Fig. 13).

When we compare the actual and the prescribed plasma shapes, we
find that they are practically the same, yet the coil currents are not
excessively large. This is possible because the equilibria considered
here do not contain very high order maments, in contrast to the trian-

gular equilibria discussed previously.

7.3 Saddle Point Control

In many tokamaks, the plasma boundary is defined by a saddle
point of the poloidal flux function ¥(R,2). The position of this
saddle point must be actively controlled throughout the discharge in
order to avoid excessive heat loads on the divertor plates [24]. Using
the FBT code, we can easily compute the coil currents which are neces-
sary to produce a saddle point anywhere on the plasma boundary. For
this purpose, we impose the conditions (2), (3) and (4) at the desired
point in the (R,Z) plane., Figure 14 shows examples of divertor equili-
bria obtained in this way. In this sequence, the Z-coordinate of the
saddle point is left constant, whereas the R-coordinate is increased
by 0.04m between successive equilibria (R, = 0.88m). It should be
noted that none of the poloidal field coils can easily be identified

as the "divertor coil". The saddle point is produced by the cambined
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action of several coils.
An example of an internal saddle point is shown in Fig. 15. Here,
the change in shape produces a separatrix inside the plasma region,

which leads to a configuration with two magnetic axes.

8. DISCUSSION

Free-boundary MHD equilibrium calculations for circular or near-
circular plasmas are relatively easy to perform and pose no particular
convergence problems. However, when the plasna shapes became more
complicated, various numerical instabilities appear. We have shown
that these instabilities can be suppressed by feedback control of the
plasma shape. The algorithm used in FBT continuwously adjusts the coil
currents in order to maintain a certain number of flux values on the
plasna boundary equal to the limiter flux. FBT does not need compli-
cated current initialization procedures or fictitious coils inside the
plasma [25] to obtain a particular solution branch.

The combination of approximate and exact boundary points, which
remain fixed throughout the iteration, has proven to be a very useful
tool for creating free-boundary equilibria with a predetermined
shape. In addition, magnetic axes and saddle points can be arbitrarily
specified by imposing a vanishing poloidal magnetic field at a parti-
cular point. The code uses a fast, non-iterative Grad-Shafranov
solver. Typical camputation times are approximately 2 sec on a CRAY-1S
machine, using 65 x 65 mesh points., Finally, an extended version of
the FBT code [18] allows the computation of vertical instability

growth rates of elongated tokamak plasmas.



- 24 -

9. ACKNOWLEDGEMENTS

Fruitful discussions with Professor F. Troyon, Drs. K. Lackner,
S.C. Jardin, R. Gruber and F.B. Marcus are gratefully acknowledged.

This work was partly supported by the Swiss National Science

Foundation.



- 25 =

REFERENCES

[1]

[19]

K. Von Hagenow and K. Lackner, in Numerical Simulation of Plasmas
(Proc. 7th onf. New York, 1975) p. 140; K. Lackner, Comput.
Phys. Commun. 12 (1976) 33.

J.L. Johnson et al., J. Comput. Phys. 32 (1979) 212.

J. Blum, J. le Poll and B. Thooris, Comput. Phys. Commun. 24
(1981) 235.

W. Feneberg, K. lackner, Nucl. Fusion 13 (1973) 549.

M.S. Chu et al., Phys. Fluids 17 (1974) 1183; F.J. Helton and
T.S. Wang, Nucl. Fusion 18 (1978) 1523.

Y. Suzuki, Nucl. Fusion 14 (1974) 345.

G. Cenacchi, R. Galvao, A. Taroni, Nucl. Fusion 16 (1976) 457.

J. DeLucia, S.J. Jardin and A.M.M. Todd, J. Comput. Phys. 37
(1980) 183.

L.L. Lao, Comput. Phys. Commun. 31 (1984) 201.

R.L. Miller, MNucl. Fusion 20 (1980) 133.

S.P. Hirshman and S.C. Jardin, Phys. Fluids 22 (1979) 731.

S.J. Jardin, J. Qomput. Phys. 43 (1981) 31.

J.T. Hogan, Nucl. Fusion 19 (1979) 753.

S.C. Jardin, N. Pomphrey and J. Delucia, J. (omput. Phys. 66
(1986) 481.

R. Chodura and A. Schliiter, J. Comput. Phys. 41 (1981) 68.

A. Schliiter and U. Schwenn, Comput. Phys. Commun. 24 (1981) 263.
O. Buneman, SUIPR Report No 294 (Stanford, 1969)

F.‘ Hofmann, F.B. Marcus and A.D. Turnbull, Plasma bhys. and
Controlled Fusion 28 (1986) 705.

K. Lackner, private cammunication (1982)



- 26 -

[20] J.K. ILee, Muclear Fusion 26 (1986) 955.

[21] F. Bofmann, A.D. Turnbull, F.B. Marcus, Nuclear Fusion 27 (1987)
743.

[22] F. Hofinann, S.C. Jardin, F.B. Marcus, A. Perez and A.D. Turnbull
in Fusion Technology 1986 (Proc. 14th Symposium on Fusion Techno-
logy, Avignon, 1986) Vol. I, p. 687 (Pergamon Press 1986),

[23] J.A. Holmes, Y.-K.M. Peng and S.J. Iynch, J. Gomput. Phys. 36
(1980) 35.

[24] R. Parker et al. in Qontrolled Fusion and Plasma Physics (Proc.
14th Europ. Qonf., Madrid 1987) Vol. 11D, Part I, European Physi-
cal Society (1987) 301.

[25] T.S. Wang and F.J. Helton, Comput. Phys. Comm. 24 (1981) 255.



- 27 -

Table 1

Comparison between results of Lackner's code and FBT code

Byuilibrium 1 Bquilibrium 2
high beta, circular double-null divertor
Lackner's code FBT Lackner's code FBT
KAL 326-4 C131a KAL 331-1 C138
Iv/Ip 0.16598 0.1661 0. 12492 0.1250
¥v_ (Vs) 0.9268x 102 0.9265x10~2 0.7770x10~2 0.7776x10~2
Rax(m) 0.6700 0.6701 0.6250 0.6249
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FIGURE CAPTIONS

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Maximun relative error of numerical solutions for a one-
dimensional equilibrium, as a function of the number of radial

mesh points (NR). A: eq(16), B: eq(21).

Flux surface plots for a near-circular, high-beta equilibrium.
(A): Lackner's code, (B): FBT code. Poloidal field ooils are
indicated by open circles or crosses. Plasma boundary is shown

as solid line (A) or dotted line (B).

Flx surface plots for a double-null divertor equilibrium. (A):

Lackner's code, (B): FBT code.

Elliptical equilibriumn with two fixed boundary points (open

circles).
Number of iteration cycles for convergence (e = 10'7), as a
function of elongation, x, for elliptical equilibria of the

type shown in Fig. 4.

Displacement of the magnetic axis as a function of the

iteration cycle number, for two values of elongation.

Racetrack-shaped equilibrium with elorngation ¢ = 3.6.



Fig. 8

Fig. 9

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14

Fig. 15
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Displacement of magnetic axis of racetrack equilibrium
(k = 3.6), as a function of iteration cycle number, using four

(open circles) or sixteen (crosses) fixed boundary points.

Numerical instability in racetrack equilibrium calculation,

using four boundary points placed diagonally (open circles).

Ratio of g-values on the surface (g;) and on axis (qq) for
marginal axisymmetric stability, as a function of elorgation
(x), for various D-shaped (D) and racetrack (RT) equilibria. A
is the minimun plasra~-wall distance. Major radius,

R, = 0.88 m.

Triangular equilibria with increasing precision in shape.
c =0.1, 0.001, and 0.0 in cases A, B, and C, respectively. Sum
of absolute values of coil currents, divided by plasma current,

increases from 2.92 (A), to 6.44 (B), to 42.53 (C).

Startup evolution of an elongated tokamak. Profiles of pressure
(dotted line) and current density (solid line), taken at the
height of the magnetic axis, are shown on top of each equili-

brium,

Evolution of plasma current (Ip) and coil currents (1-16) for

shape transformation of Fig. 12.

Equilibria with saddle point at predetermined position.

Transformation of a racetrack equilibrium into a doublet.
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