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1.  INTRODUCTION

In this paper, we review some recent develomments in the ideal
MHD equilibrium and stability theory of axisymmetric plasmas with
flow. In tokamaks heated by neutral beams, such as ISX—B,1 ppx? and
more recently, TFTR® and JET,"* plasma rotation of the order of the
sound speed has been observed. The reported data pertains to purely
toroidal rotation. However, when neutral beams are co-injected in
TFTR, there are indications that poloidal flows can occur.? It has
also been recently suggested that strong electric fields can drive
poloidal flows in the outer regions of tokamaks such as PDX and ASDEX,
and that these flows can play an important role in detemining the
characteristics of the H-mode observed in these devices.5'’

Apart fram the experimental observations cited above, motivation
for some of the stulies reported in this paper has come from the
Second Regime Experiment (SRX) jointly proposed by olutbia University
and Gruuman (]orporation.8 pPlasna rotation has been proposed as a
possible technique for access to the second regime of stabilityg'10 in
SRX.

Oar understanding of plasmas with flows is far from complete,
inspite of the fact that there exists an extensive literature on
different aspects of this problem in astrophysics, fusion and space
plasma physics. In the present review,‘we will concentrate on axisym-

metric plasmas, with emphasis on tokamaks.

2. AXISYMMETRIC TOROIDAL EQUILIBRIA

The ideal MHD equations are

p(dv/ot) =JxB-Vp- p VeV , (1)
dp/ot = -V « (pv) . (2)
ds/ot =-v ¢ Vs, (3)



oB/dt =-V x E , (4)
E =-vxB, (5)
vxB =7, VveB=0, (6)
P = 5(s) pY, (7)

where p is the mass density, v, the flow velocity, B, the magnetic
field, J, the current density, p, the plasma pressure and s, the en-
tropy per unit mass. We have assumed that the plasma is an ideal gas,
obeying the adiabatic law (7) in which S(s) is a known function of s
and y is the ratio of the specific heats.

In the equilibrium state, the 1left-hand sides of equations
(1)-(4) vanish. Then, equation (4) implies E = V¢g, where ¢g is a
(single-valued) function of position. Fram equation (5), we then get
v x B = V¢, which, in turn, implies that

B.V¢E=X.V¢E=0' (8)

which means that both B- and v- lines lie on surfaces of constant
¢g. We can then invoke the theorem by Hopf invoked by Kruskal and
Kulsrud'! to assert that surfaces of constant ¢p are topologically
toroidal and nested. (For the formulation of a Hamilton's principle
for toroidal equilibria with flow, the reader is referred to Greene
and Karlson.!?)

In the presence of a symmetry direction, the equilibrium equa-
tions can be reduced to a partial differential equation (P.D.E.) ana-
logous to the Grad-Shafranov equation for static equilibria.”"16 We
use cylindrical coordinates (r,¢,z), where ¢ is the direction of sym-
metry. The magnetic field B is represented as

B=VoxV¥ +Byg, (9)

where Y(r,z) is the poloidal flux function and By is the toroidal
field. Since B « VY = 0, equation (8) implies that ¢g = ¢p(¥). We



define Q(¥) such that V¢gp = Q(¥)V¥. It follows, fram equation (8)

and V- (pv) = 0, that the velocity field v can be represented as!®

v = (@(¥)/p) B + ra(¥)¢ (10)

If® # 0, v+ Vs =0 implies that s = s(¥). If & = 0, there need be no
constraint on s, However, for specificity, we shall keep the con-
straint s = s(¥) even if & = 0.

The ¢~camponent of equation (1), at equilibrium, gives
(J =@ V x v) « V¥ = 0, which can be manipulated into the fomm
B+ V[rB¢(1—M2) - r’0] = 0, where M? = ®%/p is the square of the
Mach nunber of the poloidal flow with respect to the poloidal magnetic
field. We therefore define

I(¥) = rBy(1 - M) - r¥ea . (11)

If ¢ = 0, i.e., the rotation is purely toroidal, I(Y¥) = By, as in
the case of static equilibria.

Taking the scalar product of equation (1) with B, we get
B « VH = 0, where

H(Y) = (8%/20%)B% - R%Q%/2 + (y/y-1)S pY~! . (12)
BEquation (18) is the Bernoulli law for plasmas with flows.
Finally, projecting equation (1) along V¥, we get,

v e [(1-4%) (v¥/x?)] + (By/RIT' + pH' - (pY/y-1)S' + ¥*B &'
+ VR' = 0, (13)

where prime designates derivation. Bgquation (13) is the analog of the
Grad-Shafranov equation, and contains five functions I(¥), H(Y), S(¥),
&(¥Y) and Q(¥), which are subject to the subsidiary relations (7),
(10), (11) and (12). It is easy to see why there are five functions,
instead of two in the case of static equilibria. The flow v introduces



two additional functions. The remaining function can be accounted for
by noting that in the static problem both the density and the entropy
enter the equilibrium only through the pressure. In the presence of
flows, this no longer holds, and density enters the equilibrium prob-
lem on the same footing as the pressure.

As pointed out by Grad,!” the P.D.E. (13) is not always ellip-
tic. The boundary conditions necessary to make the problem well-
posed18 (in the sense of Hadamard, i.e., a unique solution exists and
depends continuously on the boundary data) depend crucially on the
type of the P.D.E. (13), which can be cast in the form!5'16119420

a(d%v/ar?) + 2b(d%¥/araz) + c(029/522) +d = 0. (14)

The determinant A = ac-b? determines the type of the P.D.E. If
A > 0(< 0), the characteristics are camplex (real), and equation (14)
is elliptic (hyperbolic). For the P.D.E. (13), A is given by

A= =M% (1 - Me/p)
M'/Bp - M°/8 + 1

’ (15)

where B =|B|, By = |B - B;¢|' B = o/ (yp+B?) and Bp = yp/Bp.
For 0 < M < B, we obtain the first elliptic region. This region en-

compasses purely toroidal flow for which equation (13) is always
elliptic, like the Grad-shafranov equation for static equilibria.

For simplicity, we now wuse the tokamak orc]erinc_;21
Bp/BQ, ~ p/B¢2 = 0(6), where 6§ = a/R is a small parameter, and a
and R are the minor and major radii of the tokamak. We obtain the
first hyperbolic region for g < M? < M52 where Ms2 = B(1+52/5p)
and Mg is the Mach number of the slow magneto-acoustic wave with

respect to the poloidal Alfvén speed. We obtain the second elliptic
region for Ms2 < M < Mfz, where Mf2 Bp/B and Mg is the
Mach number corresponding to the fast magneto-acoustic wave with re-

[

spect to the poloidal Alfvén speed. Finally, for Mfz < Mz' we obtain
the second hyperbolic region. The case of Alfvénic flows, M2 = 1,

occurs in the second elliptic region, but is not a transition point of
the P.D.E. (13). For fusion plasmas, the regime M? » 1, in which po—-



loidal rotational kinetic energy is much larger than poloidal magnetic
field energy, is not interesting. Experimental values of M2, even when
serious attempts are made to measure them,22 are estimated to be 0(p).

We note that the hyperbolic region separating the first elliptic
and second elliptic regions is very narrow.1?'20 on the Mz—scale, the
width of the first hyperbolic region ismsz-ﬁ = 63/Bp = 0(6"). It
is perhaps not too surprising that discrete-particle effects,
incorporated through a guiding-center model,?3 have been shown to
eliminate this narrow region in a low-g 1limit.2?* fhis has the
important consequence that for all practical purposes, limits on
equilibrium flows in tokamak plasmas will be set, not by equilibrium,
but by stability considerations.

In recent years, several computer codes have been developed to
calculate axisymmetric toroidal equilibria in the first elliptic re-
1942042527 g of these equilibrium codes are benchmarked with
the analytical solutions for purely toroidal flow given in Ref. 28.

gion.

One of the distinguishing features of equilibria with flow is
that the plasma density generally exhibits poloidal asymmetry on a
flux surface.?? a strong asymmetry can be produced by purely toroidal
rotation of the order of the sound speed, but the presence of even a
small poloidal rotation can induce the same degree of asymmetry at
much lower values of toroidal rotation. Figures 1(a) and 1(b) from the
Lausanne code CLIO'? show the flux and isobaric surfaces, and the den-
sity and pressure profiles, respectively, for a purely toroidal rota-
tion profile with a peak value of the order of the sound speed and a
peaked temperature profile. We note that the constant~density and con-
stant-pressure surfaces are centrifugally separated from each other,
and fram flux surfaces. The density profile peaks more towards the
outer edge than does the pressure profile. On some intermediate flux
surfaces, which lie between the maxima of the pressure and density
profiles, the gradients in pressure and density actually oppose each
other. This has a subtle consequence for the problem of ballooning
stability in the presence of toroidal rotation, to which we shall
return later.
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3. LINEAR STABILITY OF EQUILIBRIA WITH FLOWS

The linear stability problem of MHD equilibria with flows is for-
mulated by Frieman and ]Ratenburg.:‘]0 We will restrict ourselves to a
plasma bounded by a perfectly conducting wall, on which the boundary
conditions arefi» B=nx E=1N » v = 0, where n is the normal to the
boundary. The perturbed gquantities are most conveniently calculated by
introducing a Lagrangian displacement vecter £ about the equilibrium

trajectory. Linearising equations (1) - (7), we get, after standard

manipulations, the equation3?

002E/0t? + 20v » VOE/ot - F{£} = 0 , (16)
where the operator E{Q } is given in the laboratory frame by

F{E} = V(YPVE + E-Tp - B+Q) + B-VQ + Q-VB + V+(pEV WV = pw+VE), (17)

with 9 = Vv x (£ x B). We consider normal-mode solutions of the form
E(x,t) = g(r)exp(-int), whereupon equation (16) becomes

—wzp_g_ + 2iwpvevg - E{é} =0. (18)

Both the operators ipv+V and F are Hermitian with respect to the inner
product <f,g> = [dr f*.g, where the integral is taken over the plasma
volume. However, the presence of the second term containing w in equa-
tion (18) makes the total operator non-Hemmitian in general and does
not permit a necessary and sufficient condition for stability analogus
to the ideal MHD Energy Principle.:"l Thus, w? is camplex in general.
However, if

6W = =[dr £*.F{E} > 0, (19)

w is real and the system is stable. Bquation (19), in other words,
gives a sufficient condition for stability.

For several reasons, one of which is the absence of a camprehen-
sive stability theory such as the Energy Principle3!, results on the
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stability problem with flows are neccessarily pieceme
be learned by analysis of the linearized equations in geametries
simple enough to be analytically tractable but containing physical
effects essential to more camplex geametries. In the next section, we

38439

give an example of such an analysis , relevant for tokamaks.

4. LOCAL STABILITY OF A CYLINDRICAL PLASMA

We consider axisymmetric equilibria in a straight cylinder. We
use cylindrical polar co-ordinates (r,9,z) and assume that all equili-
briun quantities depend only on the radius r. The magnetic field is
given by B = 895 + Bz, and the velocity field, by X=ve3+vz§.
In the stationary state (p + 82/2)' + Bez/r— pV92/r = 0, where
prime denotes radial derivative. Though v, does not enter the equi-
librium condition, it enters the stability analysis through the Dopp-
ler-shifted eigenfrequency. We assume that all perturbed quantities
can be Fourier-analysed as exp[i(wt+me-kz)]. Following Ref. 42, equa-
tion (18) can be cast as the second-order, radial eigenvalue problem

AS (fEy)'/r = CiEr = by (20)
AS p' = C3Er - C1Px (21)
where p, = - § < Vp - yp V ¢« £ + B « Q. The coefficients in equa-
tions (20) and (21) are given by A = pﬁz - F2, S = (Bzwp)p$2 - YP F?,
where &2 = w + k ¢ v is the local Doppler-shifted frequency, F =k ¢ B

= kyB = mBg/r - kB, and c}, ¢c; and c3 are known functions of
r. Byuations (20) and (21) have the same form as the analogus equa-
tions in the static problem“?, except that equilibrium flows modify
the coefficients. As in the static case, the radial eigenvalue problem
has singularities when A = 0 or S = 0, which can occur only when w is

real. When A = 0, we obtain the Alfvén continua
w = =k'v % kyva = Qp(r) where vp = B/pl/ 2 is the Alfvén
speed. When S = o, we obtain the slow-wave continua

w = -kev * kyvg = Qg(r) where vg = VAﬁl/z.
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In the static problem, w? is always real. This makes the region
in the vicinity of the marginal point w = 0 interesting from the point
of view of instabilities. The stability criterion for local modes at
the resonant surface r = ry where ke«B = 0 is given by Suydam”. The
generalisation of the Suydam criterion®®/3% can be obtained from a
local analysis of equations (20) and (21) near the resonant surface,
where A and S vanish quadratically with X = r-r; when w(rg) = 0.
Instability is indicated when the solution for £, is oscillatory.
The general form of the criterion is given in Ref. 39; we quote here
the instablity condition for purely axial flow,

. B2 |
D, = (q"!Bz)Z :M?‘ (- % * _s_%zz_ ;g-) >% ! (22)

where M = pl/%w’/F° is the Alfvén Mach number, q = rBy/RBg and
2 nR is the periodicity length of the cylinder. It is clear that as
M2+B fram below, there is instability independent of the pressure gra—
dient. Similarly, if M%»1 from below, there is also instability. In
tokamaks, where vsz/vA2 = B is gmall, the threshold M2 = B is met
more readily the threshold M?> = 1. We note that if we take the incom-
pressible limit y+», these two thresholds coalesce to M2 = 1. The
assumption of incampressibility may lead to a more optimistic stabili-
“¥. It should be noted that whereas incompres—
sibility is a strict consequence of the linearized equations for sta-

ty picture in some cases

tic equilibria (with non-~zero shear) at marginal stability, it is not
generally so in the presence of equilibrium flows.

There are two infinite sequences of eigenfrequencies which con-
verge geometrically to the marginal point ® = 0 at the resonant sur—
face k*B = 0. This can be demonstrated by an asymptotic analys;i.s”'39
similar to that given by Greene"® for the static problem. The
advantage of such an analysis, which is given in detail in Ref. 39, is
that it prepares one for a surprise. Fram the generalised Suydam
criterion (22), it would appear that just above the critical speed
M = B, the plasma is stable to local modes independent of the
pressure gradient. However, we find numerically for a given
equilibriun that one of the unstable Suydan sequences is transformed
into a sequence of unstable discrete modes when the flow is just
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supercritical. This phenamenon of "exchange of instability" can be
understood as follows.

At the threshold M = B, the resonant surface is at the edge of a
slow-wave continuum, dQg/dr = (0. Then a sequence of global slow
modes may appear if the indicial equation for £, has a complex
exponent. This is one of the distinguishing features, introduced in
the stability problem by equilibrium flows, which invalidates the
claim®® that the modified Suydam criterion (22) is necessary and
sufficient for local instability. A local analysis near the edge of
slow wave for purely axial flow indicates instability when

2 B 2B k
o= & I (B -2 R ame]>l, @

It can now be seen easily39 that just above the threshold M2 = B,
whereas Dy is large and negative, Dg is large and positive. Thus,
the stability of the edge of the continuum is exactly opposite to that
of the keB = 0 surface. At the threshold M? = B, where the two sur-
faces coalesce, the sequence (s) of unstable modes are "exchanged". It
should be noted that just above the threshold M’ = g, the limit fre-
quency wo = =kev(rp) will always overlap with a continuum at same
other radial location., This has the physical consequence that "global"
effects strongly influence the stability of "local" modes.

The analytical results presented above have been substantiated by
a detailed numerical study given in Ref. 39. Here we excerpt one illu-
stration fram Ref. 39 which shows the presence of instability both
below and above the threshold M? = g for a certain equilibrium.
Figure 2a shows the growth-rates of the lowest order modes whose
eigenfunctions are localised inside the resonant surface. The instabi-
lity persists above the threshold vz3 = 0.18. Figure 2b shows, on
the other hand, that the modes localised outside the resonant surface
are stabilised for values of vy around the critical speed. We
emphasize that the distinction between "inner" and "outer" sequences
may depend on the equilibrium, but the phenamenon of "exchange of
stability"is generic.
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5.  BALLOONING STABILITY OF A TOROIDAL PLASMA

Ballooning modes, for a toroidal plasma in static equilibrium,
are pressure-driven instabilities localised in the region of bad cur-
vature. In the presence of equilibrium flows, this description of
ballooning modes needs to be broadened to encompass the effects of
flow. These effects can be fairly dramatic. In the following, we
describe some recent results3®/*%,*l  obtained by using the
standard ballooning-mode theory*®—"8 and point to a breakdown of the
conventional theory.

In Section 3, we have seen that in the presence of equilibrium
flows, the Doppler-shifted eigenfrequency @ = w + kev takes the place
of the eigenfrequency w in the static problem. In an axisymmetric
torus, in which v is given by equation (10), this suggests that the
natural coordinate system in which to study ballooning modes, which
are daminantly flute-like with keB ~ 0, is a coordinate system rotat-
ing toroidally. At a given flux surface, we therefore transform to a
coordinate frame rotating in the ¢-direction with angular velocity Qg
i.e., Qg = QOQ. Then, equation (1) transforms to

pOU/dt = -Vp + JxB - pu-Vu - 2p90%x_g + onzr i:, (24)

where u = v - mog. The fourth term on the right in equation (24) is
the (oriolis force and the last term, the centrifugal force. In the
equations (2) - (7), u replaces v. The analysis of Frieman and Foten—
berg3° can be repeated in the rotating frame to obtain equation (18),
where now

KE) = V(£+Vp + YPV+E = BeQ) + B-VQ + Q-VB
+ Ve(pEUsVu - puueVE) + 2Qq2xuve(p) (25)
- 2@z x(UeVE - E+Vu) - Ve(pE)Qq2r T.

We consider large-n modes (where n is the mode number in the
¢-direction) in the ballooning ordering, with long wavelength parallel
and short wavelength perpendicular to the field-lines. We use the
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elegant WKB formalism developed by Dewar and Glasser“?. The displace-
ment £ is represented in the eikonal form

E(r) = E(r,e) exp[iW(r)/e] (26)

where € = 1/n, k = YW = 0(1) and BeVW = 0. The manipulations sketched
in Ref. 49 can be executed to give an equation along a field-line only
if Q(¥) = @y, a constant, but &(¥) can be arbitrary. In other words,
the equilibrium flow in rotating coordinates is constrained to be
u=[2(¥)/p]B for the standard ballooning theory to apply. This obser-
vation is originally due to Hameiri and Lawrence®’ who describe
ballooning modes using the theory of singular sequences due to Weyl.
The same difficulty appears in the WKB t:heory."""'1 We will comment
later on this problem.

If the toroidal rotation is rigid, the sufficient condition for
stability (19) can be reduced to the one-dimensional form37t40

4o
SW = f g_l [)'(2 |E|2 - X2 {2(N-JXB)(N'K) _mé(E.Vr) Q!'Vp)

(27)

1 2 2
+ — (o0 Jr
YP (p o—N ) }]

where X is the camponent of ¢ in the direction N, which is parallel to
B x k and normalised such that N « V¥ = 1, and dot indicates deriva-
tion with respect to 1, the coordinate along the field-line. It is
useful to consider the tokamak ordering used in Section 2, in which
the curvature \Kl = 0(6) . We consider a toroidal rotation speed of the
order of the sound speed cg =(Yg/p)1/2, i.e. Ry/cg ~ 1, which
implies that Qg = 0(63/2). Then, to 0(62), equation (27) reduces to
+
ow= [ SL[R2|N|2 - X2(2AN-TD) (Nek) = pQo2(N+VE) (N-¥p)],  (28)

which agrees with the corresponding expression in Ref. 37. However,
there is an error of interpretation in Ref. 37, where the effect of
the relative centrifugal separation of the pressure and the density
profiles from each other and fram flux surfaces, described in
Figure 1, is overlooked. If we consider a flux surface in the inter-
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mediate region, lying between the maxima of the pressure and density
profiles, the last termm in equation (28) is stabilising, and acts
against the second temm which is always destabilising in the bad-cur-
vature region. MNumerical results*?/°% seem to indicate, however,
that for rigid toroidal rotation, the stabilising effect of the third
term is not strong enough to overcome the destabilising pressure
term. As we move towards the outer edge of the plasma, out of the
intermediate region between pressure and density maxima, both the
second and the third temms are destabilising. We remind the reader
that the present theory is limited to the case of rigid toroidal rota-
tion, which is not expected to be applicable near the edge of the
plasma.

We now turn to the case when the equilibrium flow in the labora-
tory frame is purely field-aligned, i.e., v = [®(¥)/p]B.*! (The quali-
tative picture is not altered if an additional, rigid toroidal rota-
tion is included in the calculation). In this case, we obtain

f % [R2|N|% (1 - ¥2)- %% ( 2(N)((1 - M?) (N-VD) + v, %B(N-%)
MV, 2 (14B) (M2-1) (M2-28/(14B) )
+ (Mv,2/2) (N+7p)) + —B . b (M) ?]
B(1-M2/p) | (29)

We note that the last term on the right-hand side of equation (29)
contains the expression (1 - M2/[3) in the denaninator which multiplies
a negative definite term. In order to make the physical meaning of the
various terms in equation (29) more transparent, we again use tokamak
ordering. Since the first elliptic region for equilibria lies in the
damain <I>2/p < B, we take M = 0(61/2). We now order the various temms
in equation (29): the first tem is approximately |N‘ x2 the second

term gives -2x2 (Nex) (NeVp) to 0(62), and the third and fourth tems
are each 0(5%). In the last term, the expression multiplying the term
(I—Mz/ﬂ), is 0(63) . It is clear that as the quantity M2 approaches the
value B fram below and is sufficiently close to it, the last temm
daminates the other temms in &6W, and the sufficient condition for sta-
bility is violated before the occurence of the transition fram the
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first elliptic region to the first hyperbolic region. We remark that
equilibrium quantities, such as Vp, remain well-defined in the first
elliptic region, arbitrarily close to the transition M? = B. In other
words, the solutions are "strong solutions" which have no discontinui-
ties in ¥ and its derivatives.!® As we approach the transition M? = B
fram below, it is clear that the second and fourth terms in &W con-
tinue to be potentially destabilising. (The third term which is equal
to VAchxP' has no dependence on V¥ and remains well-behaved).

We have stated earlier that &§W > 0 is a sufficient condition for -
stability. By imposing an ordering on the eigenfrequency w, it can be

shown37 il

that 6W > 0 is also a necessary condition. Hence, the vio-
lation of this stability condition may be considered as evidence of

instability.

It is interesting to note that the threshold M? = B also appears
in the generalised Suydam criterion. However, for the straight cylin-
drical equilibria described in Section 3, there is no equilibrium
limit on field-aligned flows, unlike the case of a torus.

It is worthwhile to consider the fluid-dynamical analog of the
instabilities investigated in this section. In the presence of purely
toroidal, rigid rotation, the instability excited is analogous to the
Rayligh-Taylor instability. In this sense, the instability driven by
rigid toroidal rotation is similar in character to the standard
ballooning mode for static equilibria, with the flow-dependent term
destabilising in the bad-curvature region and stabilising in the good-
curvature region. On the other hand, the instability due to field-
aligned flows, in as much as it is driven by flow shear, is analogous
to the Kelvin-Helmholtz instability. Even though the mode is localised
to a field-line and hence can be described by the conventional
ballooning formalism, it has little in common with standard ballooning
modes. Since the destabilizing temm in §W is proportional to |§-_.5. |2,
it will occur on both the good and bad-curvature sides of a torus.
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6. CONCLUSIONS

The problem of stability of axisymmetric, rotating plasmas has
several surprises. Here we discuss some of the many unsolved problems
which remain.

In Section 5, we pointed out that the conventional ballooning
mode formalism breaks down in the presence of shear in that part of
the toroidal flow which is not field-aligned. It seems to us that this
is not so much a question of whether modes which are ballooning-like
(i.e., have long wavelengths parallel and short wavelengths perpendi-
cular to a field-line) exist as it is to find the appropriate mathema-
tical representation for them. We can, of course, place a bound on how
large toroidal flow shear can possibly be before the "quasi-mode"
structure of finite-n ballooning modes - to use the appealing notion
of Foberts and Taylor’l'3? _ jg destroyed. Ballooning modes are con-
structed fram the linear superposition of localised Fourier modes on
neighbouring rational swrfaces. In order for an instability to evolve
as a quasi-mode, it is essential that the difference in the Doppler-
Shifted frequency between two adjacent rational surfaces in a plasma
with flow be much smaller than the growth rate of the quasi-mode. This
immediately gives the condition y » IQ'(‘II)/q'(‘I’) ‘ , which must hold in
addition to the condition n[¥ q'(¥)]? » 1, required by the standard
ballooning theory for static equilibria.’? (We remark that these
inequalities should be regarded as necessary, but not sufficient, con-
ditions for the validity of standard ballooning theory.)

If a suitable mathematical representation can be found to des-
cribe ballooning modes in the presence of sheared toroidal flow, we
expect that there should be a threshold (akin to M2 = B for field-
aligned flow) below which instability should exist independent of the
pressure gradient. We are gquided to this conclusion due to the
appearance of exactly the same threshold in the cylindrical plasma, in
which the instability occurs independent of whether the shear is in
the axial or the field-aligned camponent of the flow. Since there is
no MHD equilibrium limit for purely toroidal flow, it is tempting to
suyygest that the toroidal plasma should be stable to ballooning modes
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just above the threshold, except for the sobering fact that  sheared
flows in a cylinder have been found to destabilize the edge of con—
tinua, and may be expected to do the same in a torus.

An important problem, to be addressed in future work, is the
effect of flow on kink modes. This will undoubtedly require a major
analytical and computational effort. We also remark that discrete-
particle effects, which have been found to eliminate the narrow hyper-
bolic region separating the first and second elliptic regions of MHD
equilibria, may have important consequences for stability.

ACKNOWLEDGEMENTS

We would like to thank Professor F. Troyon for his support and
interest. This research is supported in part by the Fonds National
Suisse de la Recherche Scientifique. A. Bhattacharjee would like to
thank Professor T.C. Marshall for stimulating his interest in this
problem, and Dr. R.J. Goldston and Dr.F.L. Hinton for helpful discus-
sions. This work is also supported by the U.S. Department of Energy,
Grant No DE-FG02-86ER53222.



- 19 -

REFERENCES

[1]

[2]

[s]

(6]
(7]

R.C. Isler, L.E. Mwray, E.C. Crume, C.E. Bush, L.L. bunlap,
P.H. Himonds, S. Kasai, E.A. Lazarus, M. Murakami, G.H. Neilson,
V.K. Papé, S.D. Scott, C.E. Thomas and A.J. Wootton, Nucl. Fusion

23, 1017 (1983)

K. Brau, M. Bitter, R.J. Goldston, D. Manos, K. McGuire and
S. Suckewer, Nucl. Fusion 23, 1643 (1983)

S.D. Scott, M. Bitter, H. Hsuan, K.W. Hill, R.J. Goldston, S. Von
Goeler and M. Zarnstorff, in Proceedings of the 14th Buropean
Qnference on ontrolled Fusion and Plasma Physics, Madrid,
22-26 June, 1987, Editors: F. Engelmann, J.L. Alvarez Rivas(Euro-
pean Physical Society), Vol. 11D, Part 1, pp. 65-68

W.G.F. Qore, P. van Bell and G. Sadler, op. cit., pp. 49-52

B. Grek, H. park, R.J. Goldston, D.W. Johnson, D.K. Mansfield
and J. Schivell, op. cit., pp. 132-135

F.L. Hinton, private communication

R.J. Goldston, A.B. Hassam and M.C. Zarnstorff, in the 1987 Sher-
wood Coontrolled Fusion Theory Conference, April 6-8, 1987, San

Diego, Paper 3B32

G.A. Navratil, Y. Baransky, A. Bhattacharjee, C.K. chu,
A.V. Deniz, A.A. Grossman, A. Holland, T. Ivers, X.L. Li,
T.C. Marshall, M.E. Mauel, S. Sabbagh, A.K. Sen, J.W. Van Dam,
X.-H. Wang, M. Phillips and A.M.M. Todd, in Proceedings of the
11th Int. Conf. on Plasma Physics and Contr. Nucl. Fus. Research,
Kyoto, Japan, 13-20 November 1986, Paper IAEA-VN-47/A-V-4

B. (Qoppi, A. Ferreira, J.W.-K. Mark and J.J. Ramos, Nucl. Fusion
19, 715 (1979)



- 20 -

[10] J.M. Greene and M.S. Chance, Nucl. Fusion 21, 453 (1981)
[11] M.D. Kruskal and R.M. Kulsrud, Phys. Fluids 1, 265 (1958)
[12] J.M. Greene and E.T. Karlson, Phys. Fluids 12, 561 (1969)
[13] L. woltjer, Astrophys. J. 130, 405 (1959)

[14] A.I. Morozov and L.S. Solovév, Sov. Phys. Dokl. 8, 243 (1963)
[15] H.P. Zehrfeld and B.J. Green, Nucl. Fusion 12, 569 (1972)
[16] E. Hameiri, Phys. Fluids 26, 230 (1983)

[17] H. Grad, Rev. Mod. Phys. 32, 830 (1960)

[18] R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience, New York, 1962), Vol. II

[19] s. semenzato, R. Gruber and H.P. Zehrfeld, Comp. Phys. Reports 1,
389 (1984)

[20] Y. Baransky, Ph.D. Thesis, Department of Applied Physics, blum—
bia University (1987)

[21] H.R. Strauss, Nucl. Fusion 23, 649 (1983)

[22] C.A. Kostek, Ph.D. Thesis, Department of Applied Physics, Colum-
bia University (1983)

[23] H. Grad, in Magneto-Fluid and Plasma Dynamics, edited by H. Grad
(American Mathematical Society, Providence, Fhode Island, 1967),
p. 162

[24] D. Dobrott and J.M. Greene, Phys. Fluids 13, 2391 (1970)

[25] W. Kerner and 0. Jandl, Comput. Phys. Comm. 31, 269 (1984)



[26]

[27]

(28]

[29]

- 21 -

K. Elsdsser and A. Heimsoth, 7. Naturforsch. Adla, 883 (1986)

W.A. Oooper and S.P. Hirshman, Plasma Phys, Qontr. Fusion (1987),
to be published

E.K. Maschke and H. Perrin, Plasma Physics 22, 679 (1980)

S. Semenzato, R. Gruber, R. Iacono, F. Troyon and H.P. Zehrfeld,
CRPP-EPFL Laboratory Report, LRP258/85 (1985)

E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960)

I.B. Bernstein, E.A. Frieman, M.D. Kruskal and R.M. Kulsrud,
Proc. R. Soc. London, A224, 1 (1958)

T.A.K. Hellsten and G.O. Spies, Phys. Fluids 22, 743 (1979)

E. Hameiri and J.H. Hammer, Phys. Fluids 22, 1700 (1979)

G.O. Spies, Nucl. Fusion 19, 1531 (1979)

G.O. Spies, Phys. Fluids 23, 2017 (1980)

E. Hameiri, J. Math. Phys. 22, 2080 (1981)

E. Hameiri and P. Laurence, J. Math. Phys. 25, 396 (1984)

E. Hameiri, (Qourant Institute Report MF-85 (000-3077-123) (1976)

A. Bondeson, R. Iacono and A. Bhattacherjee, Phys. Fluids 30,
2167 (1987)

A. Bhattacharjee, A. Bondeson, R. Iacono, C. Paranicas, R. Gruber
and F. Troyon, in the 1987 Sherwood Controlled Fusion Theory Con-
ference, April 6-8, 1987, San Diego, Paper 1D19




[48]

- 22 -

A. Bhattacharjee, R. Iacono and C. Paranicas, submitted to phys.
Rev. lLett.

K. Pppert, R. Gruber and J. Vaclavik, Phys. Fluids 17, 147
(1974)

B.R. Suydam, in Proceedings of the Second Intern. Gonf. on the
Peaceful Uses of Atamic Energy (Geneva), p. 157 (1958)

J.A. Tataronis and M. Mond, Phys. Fluids 30, 84 (1987)
J.M. Greene, CRPP-EPFL Laboratory Report, LRP 114/76 (1976)

D. Dobrott, D.B. Nelson, J.M. Greene, A.H. Glasser, M.S. Chance
and E.A. Frieman, Phys. Rev. Lett. 39, 943 (1977)

Y.C. Lee and J.W. Van Dam in Proceedings of the Workshop on
Finite Beta Theory, Varenna, 1977, edited by B. Coppi and W.L.
Sadowski (U.S. Department of Energy, Washington, D.C. 1977),
CONF-7709167, p. 55

J.W. Gonnor, R.J. Hastie and J.B. Taylor, Proc. R. Soc. Iondon
A365, 1 (1979)

R.L. Dewar and A.H. Glasser, Phys. Fluids 26, 3038 (1983)

A. Bhattacharjee, R. Iacono and C. Paranicas, to be submitted to
Phys. Fluids

K.V. Poberts and J.B. Taylor, pPhys, Fluids 8, 315 (1965)

R.J. Hastie and J.B. Taylor, Nucl. Fusion 21, 187 (1981)



