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Abstract

A general formulation of the local power absorption density
is obtained from the Vlasov equation. An explicit expression

is derived for a specific case in a two-dimensional geo-

metry.



Various electromagnetic waves may be used for plasma heating in
fusion devices. In the theoretical modelling of the heating schemes an
important problem, common to all types of waves, is to determine the
amount of wave energy deposited into a species in different spatial
regions of the plasma. In other words, one would like to obtain the

power absorption density per species as a function of suitable spatial

coordinates.

Consider an electromagnetic field oscillating at a frequency w.
If the spatial structure of the field may be described within the WKB
approximation, i.e., represented by a travelling weakly-damped wave,
then the time averaged local power absorption density can be calcu-

lated fram the well-known formula (Stix, 1962; Bernstein, 1975)

-—%é—?—%

= ZE"E%E v

Here E is the electric field component of the electromagnetic field
* -
(E denoting the complex conjugate of %) and &2 is the anti-Hermi —~

tian part of the local dielectric tensor for the species in question.

In many circumstances, however, the field structure is much more
complicated: for example, the propagating waves may be reflected in
some regions and consequently, standing waves are partially formed; or
in other regions (around particle resonances) the damping may become
too strong so that the imaginary part of the wavenumber is comparable

with its real part; or the global eigenmodes of the whole system may



be excited. In all these cases expression (1) is clearly not applic-

able and therefore a more general one is needed.

Recently, a formulation of local power absorption has been pro-
posed by McVey et al. (1985) using an heuristic argument. The purpose
of this note is to show that the formulation can be obtained using a
more rigorous approach and to provide an explicit expression for the

local power absorption in a two-dimensional geometry.

Consider a collisionless plasma immersed in a magnetostatic field
ﬁo’ In the presence of an electromagnetic field E, §, the distribution

function £ of a species with charge g and mass m obeys the Vlasov

equation
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The mean energy density of the particles that are in a volume element

<§,§+d;> at a time t is given by the quantity
2
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In order to ascertain how this quantity varies with time we shall con-
struct an energy balance equation corresponding to (2). For this pur-
pose we multiply (2) by mv2/2 and integrate over the velocities. After

simple manipulations this yields
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From this equation one can see that the mean energy of the particles
in the volume element considered varies with time owing to two
effects: the work done by the electric field on these particles (the
first term on the right-hand side), and the flux of energy of those
particles that stream into or out of the volume element. Thus, if we
want to relate a time derivative of quantity (3) to the local power
absorption we must evaluate it in a frame of reference where the
particle streaming is absent. This can be achieved if we transform

equation (4) into suitable Lagrangian coordinates.

Iet X' and V' represent the position and velocity of a particle
at the time t' as it moves along an unperturbed trajectory (in the
absence of the electromagnetic field) with the "initial™ conditions ¥
and v at the time t. Choosing X' and ¥' as the new variables we trans-

form equation (4) into
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where the relations v° = v'2 and d$ = dz' have been used.

In order to show explicitly that the particle streaming is absent



in the new frame of reference we shall construct an equation of con—

tinuity corresponding to (2). Integrating equation (2) over the velo-

cities yields

(6)

On transforming (6) into the new variables we finally obtain
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Noting that ax =~d§', this equation shows that the number of particles
contained in the volume element is conserved. Consequently, equation

(5) may be used to calculate the local power absorption.

We now assume the amplitude of the elctromagnetic field to be

small. We may then expand the distribution function in powers of B
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Here f;, describes an equilibrium and f; is a solution of the corres-
ponding linear problem. Since a harmonic time-dependence of the field
is considered, the lowest order non-vanishing contribution to the time

average of equation (5) is given by



To make a practical use of equation (9) we must perform a time
average. Before doing so, 'however, let us note that the lowest fre-
quency involved in the quantity Q is ‘w - wc' , where wg is the
cyclotron frequency of the species. For a class of resonant particles
we have |w = wg| ~ vy/Ay, vhere v is a typical particle velo-
city component parallel to the magnetostatic field and M is a
characteristic length of the variation of the electromagnetic field in
the same direction. Thus, in general, if we perform a time average
over the scale |w - wg I'l, for consistency we have to perform also a
Space average over the scale Ay, since a resonant particle of the
above-mentioned class traverses this distance during the time

|w - wc]'l. Therefore, without loss of generality we can set
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and the same for f;. Substituting these into (9) and averaging over
Xy and t we finally obtain a general expression for the local power

absorption density as
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Let us now derive an explicit expression for this quantity by
considering a specific case. We shall assume that the Larmor radius of
the species is much smaller than the characteristic inhomogeneity
lengths of macroscopic quantities: density, temperature and magneto-
static field. To the lowest order, i.e., neglecting the explicit gra-
dients of these quantities, the equilibrium distribution function £,
may then be approximated by a local Maxwellian, fq, with a tempera-
ture T and density n. Moreover, to the same order, the particle tra-
jectories may be evaluated assuming a locally uniform magnetostatic

field. Thus, choosing the Cartesian coordinate systems with the z-axis

along 'ﬁo we can write
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To proceed further, we introduce a Fourier transform

e femt-fac e fan),



The solution of the linear problem is then easily obtained in the form
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where g = iELIYL/wC’ Jg and Jy are the Bessel function and its
derivative, and tg¢ = ky/kx. In order to satisfy causality the

frequency w is assumed to have a small, positive, imaginary part.

Using the Fourier transform (15) we now rewrite (11) as
T
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Further, substituting for X', V' and f, expressions (12), (13) and

(16), and applying the identity (Gradshteyn and Ryzhik, 1965)
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we transform equation (18) into
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where £ = liJ'. ‘V.l./“’c and tg¢' = k}'/k;{.

Upon carrying out the time average and using the summation

theorem (Gradshteyn and Ryzhik, 1965)
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where 6 is the Kronecker delta, equation (20) reduces to
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Next, applying again identity (19), we perform the integration over «
and transform the expression in the last braces using the recursion
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Finally, substituting for Ay expression (17) and making some re-

arrangements we can cast equation (23) into a compact form
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v, E, (k) J, (5)

Equation (24) is one of the main results of this note. It is
valid for an arbitrary field structure and absorption strength. As one
can see from the equation the local power absorption density, for a
species close to a local thermodynamical equilibrium, is a positive-
definite quantity. A result which one should expect. Moreover, we note
that for a weakly-damped travelling wave with a wave vector KLO'

i.e., for E(El) ~ 6(% - i_._o)r (24) reduces to expression (1).

In many situations of a practical interest the Larmor radius of
the species, p, appears to be much smaller than a characteristic
length, A 1+ Of the variation of the electromagnetic field. In such
cases we can expand the Bessel functions in (24), to any desired
order, to obtain more explicit expressions. In what follows we confine

ourselves to accuracy up to (p/)‘J.)z‘
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Let us define

2
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where wp is the plasma frequency of the species. Upon expanding the
Bessel functions to the required order we invert the resulting expres-—
sions from the Fourier space to real space and perform the remaining

velocity integrations. This finally yields
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The subscript I refers to the two-dimensional space x,y. The corres—
ponding Q ; are obtained from Qq by the replacements & + -2 and
i+ -i, If we set a/ay = 0 in expressions (26) - (28), they reduce
to those, in the limit of vanishing explicit gradients, obtained by

McVey et al. (1985).
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